1
|
Rett-Cadman S, Weng Y, Fei Z, Thompson A, Grumet R. Genome-Wide Association Study of Cuticle and Lipid Droplet Properties of Cucumber ( Cucumis sativus L.) Fruit. Int J Mol Sci 2024; 25:9306. [PMID: 39273254 PMCID: PMC11395541 DOI: 10.3390/ijms25179306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
The fruit surface is a critical first line of defense against environmental stress. Overlaying the fruit epidermis is the cuticle, comprising a matrix of cutin monomers and waxes that provides protection and mechanical support throughout development. The epidermal layer of the cucumber (Cucumis sativus L.) fruit also contains prominent lipid droplets, which have recently been recognized as dynamic organelles involved in lipid storage and metabolism, stress response, and the accumulation of specialized metabolites. Our objective was to genetically characterize natural variations for traits associated with the cuticle and lipid droplets in cucumber fruit. Phenotypic characterization and genome-wide association studies (GWAS) were performed using a resequenced cucumber core collection accounting for >96% of the allelic diversity present in the U.S. National Plant Germplasm System collection. The collection was grown in the field, and fruit were harvested at 16-20 days post-anthesis, an age when the cuticle thickness and the number and size of lipid droplets have stabilized. Fresh fruit tissue sections were prepared to measure cuticle thickness and lipid droplet size and number. The collection showed extensive variation for the measured traits. GWAS identified several QTLs corresponding with genes previously implicated in cuticle or lipid biosynthesis, including the transcription factor SHINE1/WIN1, as well as suggesting new candidate genes, including a potential lipid-transfer domain containing protein found in association with isolated lipid droplets.
Collapse
Affiliation(s)
- Stephanie Rett-Cadman
- Department of Horticulture, Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI 48824, USA
| | - Yiqun Weng
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Madison, WI 53706, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Addie Thompson
- Department of Plant, Soil and Microbial Sciences, Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI 48824, USA
| | - Rebecca Grumet
- Department of Horticulture, Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Li R, Atarashi R, Kharisma AD, Arofatullah NA, Tashiro Y, Satitmunnaithum J, Tanabata S, Yamane K, Sato T. Search for Expression Marker Genes That Reflect the Physiological Conditions of Blossom End Enlargement Occurrence in Cucumber. Int J Mol Sci 2024; 25:8317. [PMID: 39125887 PMCID: PMC11312178 DOI: 10.3390/ijms25158317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Blossom end enlargement (BEE) is a postharvest deformation that may be related to the influx of photosynthetic assimilates before harvest. To elucidate the mechanism by which BEE occurs, expression marker genes that indicate the physiological condition of BEE-symptomatic fruit are necessary. First, we discovered that preharvest treatment with a synthetic cytokinin, N-(2-Chloro-4-pyridyl)-N'-phenylurea (CPPU), promoted fruit growth and suppressed BEE occurrence. This suggests that excessive assimilate influx is not a main cause of BEE occurrence. Subsequently, the expression levels of seven sugar-starvation marker genes, CsSEF1, AS, CsFDI1, CsPID, CsFUL1, CsETR1, and CsERF1B, were compared among symptomatic and asymptomatic fruits, combined with and without CPPU treatment. Only CsSEF1 showed a higher expression level in asymptomatic fruits than in symptomatic fruits, regardless of CPPU treatment. This was then tested using fruits stored via the modified-atmosphere packaging technique, which resulted in a lower occurrence of BEE, and the asymptomatic fruits showed a higher CsSEF1 expression level than symptomatic fruits, regardless of the packaging method. CsSEF1 codes a CCCH-type zinc finger protein, and an increase in the expression of CsSEF1 was correlated with a decrease in the fruit respiration rate. Thus, CsSEF1 may be usable as a BEE expression marker gene.
Collapse
Affiliation(s)
- Rui Li
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-8-1, Saiwaicho, Fuchu 183-0054, Japan; (R.L.)
| | - Runewa Atarashi
- Center for International Field Agriculture, Research and Education, College of Agriculture, Ibaraki University, Ami 4668-1, Ami, Inashiki 300-0331, Japan (S.T.)
| | - Agung Dian Kharisma
- Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur, Yogyakarta 55281, Indonesia; (A.D.K.); (N.A.A.)
| | - Nur Akbar Arofatullah
- Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur, Yogyakarta 55281, Indonesia; (A.D.K.); (N.A.A.)
| | - Yuki Tashiro
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-8-1, Saiwaicho, Fuchu 183-0054, Japan; (R.L.)
| | - Junjira Satitmunnaithum
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki 214-8571, Japan;
| | - Sayuri Tanabata
- Center for International Field Agriculture, Research and Education, College of Agriculture, Ibaraki University, Ami 4668-1, Ami, Inashiki 300-0331, Japan (S.T.)
| | - Kenji Yamane
- School of Agriculture, Utsunomiya University, Mine 350, Utsunomiya 321-8505, Japan;
| | - Tatsuo Sato
- Center for International Field Agriculture, Research and Education, College of Agriculture, Ibaraki University, Ami 4668-1, Ami, Inashiki 300-0331, Japan (S.T.)
| |
Collapse
|
3
|
Cesarino I, Oliveira DM. Lignin strips in glandular trichomes. NATURE PLANTS 2024; 10:706-707. [PMID: 38589486 DOI: 10.1038/s41477-024-01676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Affiliation(s)
- Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
4
|
Liu L, Gu C, Zhang J, Guo J, Zhang X, Zhou Z. Genome-Wide Analysis of Exocyst Complex Subunit Exo70 Gene Family in Cucumber. Int J Mol Sci 2023; 24:10929. [PMID: 37446106 DOI: 10.3390/ijms241310929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable worldwide, but its yield is affected by a wide range of pathogens and pests. As the major subunit of the exocyst complex, the roles of Exo70 members have been shown in Arabidopsis and rice, but their function are unknown in cucumber. Here, we identified 18 CsExo70 members in cucumber, which were divided into three groups (Exo70.1-Exo70.3) and nine subgroups (Exo70A-Exo70I) based on the phylogenetic tree. Subsequently, systematical analyses were performed, including collinearity, gene structure, cis-acting elements, conserved motifs, expression patterns, and subcellular localization. Our results showed that CsExo70 genes were generally expressed in all tissues, and CsExo70C1 and CsExo70C2 were highly expressed in the stamen. Moreover, the expression levels of most CsExo70 genes were induced by Pseudomonas syringae pv. lachrymans (Psl) and Fusarium oxysporum f. sp. cucumerinum Owen (Foc), especially CsExo70E2 and CsExo70H3. In addition, these CsExo70s displayed similar location patterns with discrete and punctate signals in the cytoplasm. Together, our results indicate that CsExo70 members may be involved in plant development and resistance, and provide a reference for future in-depth studies of Exo70 genes in cucumber.
Collapse
Affiliation(s)
- Liu Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoheng Gu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jiahao Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jingyu Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Zhou
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Luo H, Zhang H, Wang H. Advance in sex differentiation in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1186904. [PMID: 37265638 PMCID: PMC10231686 DOI: 10.3389/fpls.2023.1186904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Cucumber belongs to the family Cucurbitaceae (melon genus) and is an annual herbaceous vegetable crop. Cucumber is an important cash crop that is grown all over the world. From morphology to cytology, from canonical genetics to molecular biology, researchers have performed much research on sex differentiation and its regulatory mechanism in cucumber, mainly in terms of cucumber sex determination genes, environmental conditions, and the effects of plant hormones, revealing its genetic basis to improve the number of female flowers in cucumber, thus greatly improving the yield of cucumber. This paper reviews the research progress of sex differentiation in cucumber in recent years, mainly focusing on sex-determining genes, environmental conditions, and the influence of phytohormones in cucumber, and provides a theoretical basis and technical support for the realization of high and stable yield cultivation and molecular breeding of cucumber crop traits.
Collapse
Affiliation(s)
- Haiyan Luo
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Hangzhou Lin’an District Agricultural and Rural Bureau, Hangzhou, China
| | - Huanchun Zhang
- Yantai Institute of Agricultural Sciences, Yantai, China
| | - Huasen Wang
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|