1
|
Camarero MC, Briegas B, Corbacho J, Labrador J, Román ÁC, Verde A, Gallardo M, Gomez-Jimenez MC. Variations in Fruit Ploidy Level and Cell Size between Small- and Large-Fruited Olive Cultivars during Fruit Ontogeny. PLANTS (BASEL, SWITZERLAND) 2024; 13:990. [PMID: 38611519 PMCID: PMC11013306 DOI: 10.3390/plants13070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Olive (Olea europaea L.) is one of the major oil fruit tree crops worldwide. However, the mechanisms underlying olive fruit growth remain poorly understood. Here, we examine questions regarding the interaction of endoreduplication, cell division, and cell expansion with olive fruit growth in relation to the final fruit size by measuring fruit diameter, pericarp thickness, cell area, and ploidy level during fruit ontogeny in three olive cultivars with different fruit sizes. The results demonstrate that differences in the fruit size are related to the maximum growth rate between olive cultivars during early fruit growth, about 50 days post-anthesis (DPA). Differences in fruit weight between olive cultivars were found from 35 DPA, while the distinctive fruit shape became detectable from 21 DPA, even though the increase in pericarp thickness became detectable from 7 DPA in the three cultivars. During early fruit growth, intense mitotic activity appeared during the first 21 DPA in the fruit, whereas the highest cell expansion rates occurred from 28 to 42 DPA during this phase, suggesting that olive fruit cell number is determined from 28 DPA in the three cultivars. Moreover, olive fruit of the large-fruited cultivars was enlarged due to relatively higher cell division and expansion rates compared with the small-fruited cultivar. The ploidy level of olive fruit pericarp between early and late growth was different, but similar among olive cultivars, revealing that ploidy levels are not associated with cell size, in terms of different 8C levels during olive fruit growth. In the three olive cultivars, the maximum endoreduplication level (8C) occurred just before strong cell expansion during early fruit growth in fruit pericarp, whereas the cell expansion during late fruit growth occurred without preceding endoreduplication. We conclude that the basis for fruit size differences between olive cultivars is determined mainly by different cell division and expansion rates during the early fruit growth phase. These data provide new findings on the contribution of fruit ploidy and cell size to fruit size in olive and ultimately on the control of olive fruit development.
Collapse
Affiliation(s)
- Maria C. Camarero
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Beatriz Briegas
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Jorge Corbacho
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Juana Labrador
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Ángel-Carlos Román
- Department of Molecular Biology, Biochemistry and Genetics, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Antía Verde
- Laboratory of Plant Physiology, Universidad de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Mercedes Gallardo
- Laboratory of Plant Physiology, Universidad de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Maria C. Gomez-Jimenez
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
2
|
Serrano A, Moret M, Fernández-Parras I, Bombarely A, Luque F, Navarro F. RNA Polymerases IV and V Are Involved in Olive Fruit Development. Genes (Basel) 2023; 15:1. [PMID: 38275583 PMCID: PMC10815247 DOI: 10.3390/genes15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Transcription is carried out in most eukaryotes by three multimeric complexes (RNA polymerases I, II and III). However, plants contain two additional RNA polymerases (IV and V), which have evolved from RNA polymerase II. RNA polymerases II, IV and V contain both common and specific subunits that may specialise some of their functions. In this study, we conducted a search for the genes that putatively code for the specific subunits of RNA polymerases IV and V, as well as those corresponding to RNA polymerase II in olive trees. Based on the homology with the genes of Arabidopsis thaliana, we identified 13 genes that putatively code for the specific subunits of polymerases IV and V, and 16 genes that code for the corresponding specific subunits of polymerase II in olives. The transcriptomic analysis by RNA-Seq revealed that the expression of the RNA polymerases IV and V genes was induced during the initial stages of fruit development. Given that RNA polymerases IV and V are involved in the transcription of long non-coding RNAs, we investigated their expression and observed relevant changes in the expression of this type of RNAs. Particularly, the expression of the intergenic and intronic long non-coding RNAs tended to increase in the early steps of fruit development, suggesting their potential role in this process. The positive correlation between the expression of RNA polymerases IV and V subunits and the expression of non-coding RNAs supports the hypothesis that RNA polymerases IV and V may play a role in fruit development through the synthesis of this type of RNAs.
Collapse
Affiliation(s)
- Alicia Serrano
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Martín Moret
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Isabel Fernández-Parras
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC and Universitat Politécnica de Valencia, 46011 Valencia, Spain;
| | - Francisco Luque
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Francisco Navarro
- Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain
| |
Collapse
|
3
|
Camarero MC, Briegas B, Corbacho J, Labrador J, Gomez-Jimenez MC. Hormonal Content and Gene Expression during Olive Fruit Growth and Ripening. PLANTS (BASEL, SWITZERLAND) 2023; 12:3832. [PMID: 38005729 PMCID: PMC10675085 DOI: 10.3390/plants12223832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
The cultivated olive (Olea europaea L. subsp. europaea var. europaea) is one of the most valuable fruit trees worldwide. However, the hormonal mechanisms underlying the fruit growth and ripening in olives remain largely uncharacterized. In this study, we investigated the physiological and hormonal changes, by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), as well as the expression patterns of hormone-related genes, using quantitative real-time PCR (qRT-PCR) analysis, during fruit growth and ripening in two olive cultivars, 'Arbequina' and 'Picual', with contrasting fruit size and shape as well as fruit ripening duration. Hormonal profiling revealed that olive fruit growth involves a lowering of auxin (IAA), cytokinin (CKs), and jasmonic acid (JA) levels as well as a rise in salicylic acid (SA) levels from the endocarp lignification to the onset of fruit ripening in both cultivars. During olive fruit ripening, both abscisic acid (ABA) and anthocyanin levels rose, while JA levels fell, and SA levels showed no significant changes in either cultivar. By contrast, differential accumulation patterns of gibberellins (GAs) were found between the two cultivars during olive fruit growth and ripening. GA1 was not detected at either stage of fruit development in 'Arbequina', revealing a specific association between the GA1 and 'Picual', the cultivar with large sized, elongated, and fast-ripening fruit. Moreover, ABA may play a central role in regulating olive fruit ripening through transcriptional regulation of key ABA metabolism genes, whereas the IAA, CK, and GA levels and/or responsiveness differ between olive cultivars during olive fruit ripening. Taken together, the results indicate that the relative absence or presence of endogenous GA1 is associated with differences in fruit morphology and size as well as in the ripening duration in olives. Such detailed knowledge may be of help to design new strategies for effective manipulation of olive fruit size as well as ripening duration.
Collapse
Affiliation(s)
| | | | | | | | - Maria C. Gomez-Jimenez
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
4
|
Bazakos C, Alexiou KG, Ramos-Onsins S, Koubouris G, Tourvas N, Xanthopoulou A, Mellidou I, Moysiadis T, Vourlaki IT, Metzidakis I, Sergentani C, Manolikaki I, Michailidis M, Pistikoudi A, Polidoros A, Kostelenos G, Aravanopoulos F, Molassiotis A, Ganopoulos I. Whole genome scanning of a Mediterranean basin hotspot collection provides new insights into olive tree biodiversity and biology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:303-319. [PMID: 37164361 DOI: 10.1111/tpj.16270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/29/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Olive tree (Olea europaea L. subsp. europaea var. europaea) is one of the most important species of the Mediterranean region and one of the most ancient species domesticated. The availability of whole genome assemblies and annotations of olive tree cultivars and oleaster (O. europaea subsp. europaea var. sylvestris) has contributed to a better understanding of genetic and genomic differences between olive tree cultivars. However, compared to other plant species there is still a lack of genomic resources for olive tree populations that span the entire Mediterranean region. In the present study we developed the most complete genomic variation map and the most comprehensive catalog/resource of molecular variation to date for 89 olive tree genotypes originating from the entire Mediterranean basin, revealing the genetic diversity of this commercially significant crop tree and explaining the divergence/similarity among different variants. Additionally, the monumental ancient tree 'Throuba Naxos' was studied to characterize the potential origin or routes of olive tree domestication. Several candidate genes known to be associated with key agronomic traits, including olive oil quality and fruit yield, were uncovered by a selective sweep scan to be under selection pressure on all olive tree chromosomes. To further exploit the genomic and phenotypic resources obtained from the current work, genome-wide association analyses were performed for 23 morphological and two agronomic traits. Significant associations were detected for eight traits that provide valuable candidates for fruit tree breeding and for deeper understanding of olive tree biology.
Collapse
Affiliation(s)
- Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
- Joint Laboratory of Horticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Konstantinos G Alexiou
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Sebastián Ramos-Onsins
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Georgios Koubouris
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Chania, 73134, Greece
| | - Nikolaos Tourvas
- Laboratory of Forest Genetics, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
- Joint Laboratory of Horticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
- Joint Laboratory of Horticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
| | - Theodoros Moysiadis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia, 2417, Cyprus
| | - Ioanna-Theoni Vourlaki
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Ioannis Metzidakis
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Chania, 73134, Greece
| | - Chrysi Sergentani
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Chania, 73134, Greece
| | - Ioanna Manolikaki
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Chania, 73134, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thermi, 57001, Thessaloniki, Greece
| | - Adamantia Pistikoudi
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Alexios Polidoros
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | - Filippos Aravanopoulos
- Laboratory of Forest Genetics, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thermi, 57001, Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
- Joint Laboratory of Horticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
| |
Collapse
|
5
|
Momeni H, Bouzari N, Zeinolabedini M, Jahromi MG. Genetic diversity in a core collection of Iranian sour cherry. BRAZ J BIOL 2023; 84:e273386. [PMID: 37341224 DOI: 10.1590/1519-6984.273386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/29/2023] [Indexed: 06/22/2023] Open
Abstract
The exploitation of plant genetic resources is an important and rapid strategy to release commercial cultivars. In this study, 234 sour cherry genotypes were collected from various locations of Iran and phenotypically assessed according to IPGRI and UPOV descriptors. The genotypes were grafted onto Mahaleb rootstock and were planted in Horticultural Science Research Institute (HSRI) core collection in Karaj, Iran. In this study, 22 different characteristics were measured in the sour cherry genotypes. The results showed that fruit and stone weights varied from 1.65 (G410) to 5.47 g (G125) and 0.13 (G428) to 0.59 g (G149), respectively. The fruit size index comprised average fruit length, width, and diameter, which varied from 10.57 to 19.13. The stalk length was less than 50 mm in 90.6% of the studied genotypes. Twelve of the 234 studied genotypes did not exhibit any symptoms of bacterial canker disease. Principle component analysis (PCA) and cluster analysis classified the studied genotypes into four main groups. Spearman's correlation analysis revealed that fruit size, stone shape, stone size, stalk thickness and weight, and fruit appearance correlated positively with stone and fruit weights. In contrast, fruit juice, fruit skin, and flesh color correlated negatively with the stone and fruit weights. The range of TSS varied between 12.66 (G251) and 26 (G427). Variations in pH value were between 3.66 (G236) and 5.63 (G352). In conclusion, a high level of genetic diversity was observed among the Iranian sour cherry genotypes. This diversity can be considered valuable and applicable for future breeding programs.
Collapse
Affiliation(s)
- H Momeni
- Islamic Azad University, Department of Horticultural Science and Agronomy, Science and Research Branch, Tehran, Iran
| | - N Bouzari
- Agricultural Research, Education and Extension Organization - AREEO, Temperate Fruits Research Center, Horticultural Science Research Institute, Karaj, Iran
| | - M Zeinolabedini
- Agricultural Research, Education and Extension Organization - AREEO, Agricultural Biotechnology Research Institute of Iran - ABRIL, Systems and Synthetic Biology Department, Karaj, Iran
| | - M Ghanbari Jahromi
- Islamic Azad University, Department of Horticultural Science and Agronomy, Science and Research Branch, Tehran, Iran
| |
Collapse
|