1
|
Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024; 10:e39120. [PMID: 39498017 PMCID: PMC11532279 DOI: 10.1016/j.heliyon.2024.e39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The fight against insect pests primarily relies on the utilization of synthetic insecticides. However, improper application of these chemicals can lead to detrimental effects on both the environment and human health, as well as foster the development of insect resistance. Consequently, novel strategies must be implemented to address the challenges stemming from the prolonged use of synthetic insecticides in agricultural and public health environments. Certain strategies involve the combination of crop protectants, which not only enhance insecticidal effectiveness but also reduce application rates. Plant-based natural products emerge as promising alternatives for insect management. Monoterpenes, which are abundant plant compounds produced through the activation of various enzymes, have attracted significant attention for their effectiveness in insect control. Notably, they are prolific in fragrance-producing plants. This review explores the plant defense, insecticidal, and antimicrobial characteristics of monoterpenes against insect pests, shedding light on their potential modes of action and possibilities for commercialization. Emphasizing their role as targeted and environmentally safer, the review highlights the practical viability of monoterpenes within integrated pest management programs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Dilbar Hussain
- Department of Entomology, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
2
|
Khan R. Mycotoxins in food: Occurrence, health implications, and control strategies-A comprehensive review. Toxicon 2024; 248:108038. [PMID: 39047955 DOI: 10.1016/j.toxicon.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Mycotoxins are secondary metabolites produced by various filamentous fungi, including Aspergillus, Fusarium, Penicillium, Alternaria, Claviceps, Mucor, Trichoderma, Trichothecium, Myrothecium, Pyrenophora, and Stachybotrys. They can contaminate various plants or animal foods, resulting in a significant loss of nutritional and commercial value. Several factors contribute to mycotoxin production, such as humidity, temperature, oxygen levels, fungal species, and substrate. When contaminated food is consumed by animals and humans, mycotoxins are rapidly absorbed, affecting the liver, and causing metabolic disorders. The detrimental effects on humans and animals include reduced food intake and milk production, reduced fertility, increased risk of abortion, impaired immune response, and increased occurrence of diseases. Therefore, it is imperative to implement strategies for mycotoxin control, broadly classified as preventing fungal contamination and detoxifying their toxic compounds. This review aims to discuss various aspects of mycotoxins, including their occurrence, and risk potential. Additionally, it provides an overview of mycotoxin detoxification strategies, including the use of mycotoxin absorbents, as potential techniques to eliminate or mitigate the harmful effects of mycotoxins and masked mycotoxins on human and animal health while preserving the nutritional and commercial value of affected food products.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43300, Malaysia.
| |
Collapse
|
3
|
Edis Z, Bloukh SH. Thymol, a Monoterpenoid within Polymeric Iodophor Formulations and Their Antimicrobial Activities. Int J Mol Sci 2024; 25:4949. [PMID: 38732168 PMCID: PMC11084924 DOI: 10.3390/ijms25094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Samir Haj Bloukh
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
4
|
Akdeniz Y, Kesimci TG. Chemical Composition and Biocontrol Activity of Different Essential Oils against Soil-Borne Fungal Pathogens. THE PLANT PATHOLOGY JOURNAL 2024; 40:192-204. [PMID: 38606448 PMCID: PMC11016558 DOI: 10.5423/ppj.oa.01.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 04/13/2024]
Abstract
In this study, the efficacy of the essential oil of Mentha longifolia, Achillea arabica and Artemisia absinthium plants were evaluated against important soil-borne fungal pathogens as Verticillium dahliae, Rhizoctonia solani, and Fusarium oxysporum. Essential oils were obtained from plants by hydrodistillation method and the chemical components of essential oils were determined by analyzing by gas chromatography-mass spectrometry. The main components found as piperitone oxide (13.61%), piperitenone oxide (15.55%), pulegone (12.47%), 1-menthone (5.75%), and camphor (5.75%) in M. longifolia, á-selinene 13.38%, camphor 13.34%, L-4-terpineneol 8.40%, (-)-á-Elemene 7.01%, 1,8-cineole 4.71%, and (-)-spathulenol 3.84% in A. arabica, and á-thujone (34.64%), 1,8-cineole (19.54%), pulegone (7.86%), camphene (5.31%), sabinene (4.86%), and germacrene-d (3.67%) in A. absinthium. The antifungal activities of the oils were investigated 0.05, 0.1, 0.25, 0.5, 1.00, and 2.00 μl/ml concentrations with the contact effect method. M. longifolia oil (1.00 and 2.00 μl/ml) has displayed remarkable antifungal effect and provided 100% inhibition on mycelial growth of V. dahliae, R. solani and F. oxysporum. The results obtained from this study may contribute to the development of new alternative and safe methods against soil-borne fungal pathogens.
Collapse
Affiliation(s)
- Yusuf Akdeniz
- Department of Plant Protection, Faculty of Agriculture, Iğdır University, Iğdır 76002, Türkiye
| | - Tuba Genç Kesimci
- Department of Plant Protection, Faculty of Agriculture, Iğdır University, Iğdır 76002, Türkiye
| |
Collapse
|
5
|
Antón-Domínguez BI, López-Moral A, Romero-Salguero FJ, Trapero A, Trapero C, Agustí-Brisach C. Bioprotection of Olive Trees Against Verticillium Wilt by Pomegranate and Carob Extracts. PLANT DISEASE 2024; 108:1073-1082. [PMID: 37933148 DOI: 10.1094/pdis-09-23-1770-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Bioprotection through the use of plant extracts is an environmentally friendly strategy in crop protection. Effective control of Verticillium wilt of olive (Olea europaea; VWO), caused by Verticillium dahliae, has proven challenging because of the ineffectiveness of chemicals, which makes it necessary to search for new control tools. Thus, the aim of this study was to evaluate the effect of pomegranate (Punica granatum) and carob (Ceratonia siliqua) extracts on VWO. Extracts derived from pomegranate peels and carob pods and leaves were obtained using ethanol, methanol, or ethyl acetate as a solvent. A targeted analysis of their metabolite composition was performed using QTRAP ultrahigh-performance liquid chromatography with mass spectrometry. Remarkably, gallic acid was detected in all extracts at a high concentration. The effect of the extracts on the mycelial growth and on the germination of conidia and microsclerotia of V. dahliae was evaluated by in vitro sensitivity tests at various doses: 0 (control), 3, 30, 300, and 3,000 mg of extract/liter. Extracts obtained with ethanol or methanol significantly reduced the viability of V. dahliae structures when applied at the highest dose, while those obtained with ethyl acetate were ineffective across all doses. The most effective extracts, as determined in vitro, were then evaluated against the disease in olive plants. Potted plants of the cultivar Picual were treated by spraying (foliar application) or irrigation (root application) of extracts at 3,000 mg/liter, followed by inoculation with V. dahliae. The results indicated that foliar applications were ineffective, while root treatments with pomegranate peel or carob leaf extracts were more effective in reducing disease severity, regardless of the solvent, compared with that of the untreated control.
Collapse
Affiliation(s)
- Begoña I Antón-Domínguez
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-2024), ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edificio Celestino Mutis, 14071 Córdoba, Spain
| | - Ana López-Moral
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-2024), ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edificio Celestino Mutis, 14071 Córdoba, Spain
| | - Francisco J Romero-Salguero
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Antonio Trapero
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-2024), ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edificio Celestino Mutis, 14071 Córdoba, Spain
| | - Carlos Trapero
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-2024), ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edificio Celestino Mutis, 14071 Córdoba, Spain
| | - Carlos Agustí-Brisach
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-2024), ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edificio Celestino Mutis, 14071 Córdoba, Spain
| |
Collapse
|
6
|
Kashyap AS, Manzar N, Vishwakarma SK, Mahajan C, Dey U. Tiny but mighty: metal nanoparticles as effective antimicrobial agents for plant pathogen control. World J Microbiol Biotechnol 2024; 40:104. [PMID: 38372816 DOI: 10.1007/s11274-024-03911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Metal nanoparticles (MNPs) have gained significant attention in recent years for their potential use as effective antimicrobial agents for controlling plant pathogens. This review article summarizes the recent advances in the role of MNPs in the control of plant pathogens, focusing on their mechanisms of action, applications, and limitations. MNPs can act as a broad-spectrum antimicrobial agent against various plant pathogens, including bacteria, fungi, and viruses. Different types of MNPs, such as silver, copper, zinc, iron, and gold, have been studied for their antimicrobial properties. The unique physicochemical properties of MNPs, such as their small size, large surface area, and high reactivity, allow them to interact with plant pathogens at the molecular level, leading to disruption of the cell membrane, inhibition of cellular respiration, and generation of reactive oxygen species. The use of MNPs in plant pathogen control has several advantages, including their low toxicity, selectivity, and biodegradability. However, their effectiveness can be influenced by several factors, including the type of MNP, concentration, and mode of application. This review highlights the current state of knowledge on the use of MNPs in plant pathogen control and discusses the future prospects and challenges in the field. Overall, the review provides insight into the potential of MNPs as a promising alternative to conventional chemical agents for controlling plant pathogens.
Collapse
Affiliation(s)
- Abhijeet Shankar Kashyap
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India.
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India.
| | - Shailesh Kumar Vishwakarma
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - Chetna Mahajan
- Department of Plant Pathology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, HP, 176062, India
| | - Utpal Dey
- Krishi Vigyan Kendra (KVK)-Sepahijala, Central Agricultural University (Imphal), Sepahijala, Tripura, India
| |
Collapse
|
7
|
Edis Z, Bloukh SH, Sara HA, Bloukh IH. Green Synthesized Polymeric Iodophors with Thyme as Antimicrobial Agents. Int J Mol Sci 2024; 25:1133. [PMID: 38256211 PMCID: PMC10815993 DOI: 10.3390/ijms25021133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing concern for the future of mankind. Common antibiotics fail in the treatment of microbial infections at an alarming rate. Morbidity and mortality rates increase, especially among immune-compromised populations. Medicinal plants and their essential oils, as well as iodine could be potential solutions against resistant pathogens. These natural antimicrobials abate microbial proliferation, especially in synergistic combinations. We performed a simple, one-pot synthesis to prepare our formulation with polyvinylpyrrolidone (PVP)-complexed iodine (I2), Thymus Vulgaris L. (Thyme), and Aloe Barbadensis Miller (AV). SEM/EDS, UV-vis, Raman, FTIR, and XRD analyses verified the purity, composition, and morphology of AV-PVP-Thyme-I2. We investigated the inhibitory action of the bio-formulation AV-PVP-Thyme-I2 against 10 selected reference pathogens on impregnated sterile discs, surgical sutures, cotton gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thyme-I2 were studied by disc diffusion methods and compared with those of the antibiotics gentamycin and nystatin. The results confirm AV-PVP-Thyme-I2 as a strong antifungal and antibacterial agent against the majority of the tested microorganisms with excellent results on cotton bandages and face masks. After storing AV-PVP-Thyme-I2 for 18 months, the inhibitory action was augmented compared to the fresh formulation. Consequently, we suggest AV-PVP-Thyme-I2 as an antimicrobial agent against wound infections and a spray-on contact killing agent.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
| | - Samir Haj Bloukh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Hamed Abu Sara
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Iman Haj Bloukh
- College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| |
Collapse
|