1
|
Fransgo K, Lin LC, Rho H. Distinct interactions of ericoid mycorrhizae and plant growth-promoting bacteria: impacts on blueberry growth and heat resilience. PLANT SIGNALING & BEHAVIOR 2024; 19:2329842. [PMID: 38493504 PMCID: PMC10950280 DOI: 10.1080/15592324.2024.2329842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Blueberries confront substantial challenges from climate change, such as rising temperatures and extreme heat, necessitating urgent solutions to ensure productivity. We hypothesized that ericoid mycorrhizal fungi (ErM) and plant growth-promoting bacteria (PGPB) would establish symbiotic relationships and increase heat stress tolerance in blueberries. A growth chamber study was designed with low (25/20°C) and high temperature (35/30°C) conditions with micropropagated blueberry plantlets inoculated with ErM, PGPB, and both. Gas exchange and chlorophyll fluorescence properties of the leaves were monitored throughout the growth. At harvest, biochemical assays and biomass analysis were performed to evaluate potential oxidative stress induced by elevated temperatures. ErM application boosted root biomass under 25/20°C conditions but did not impact photosynthetic efficiency. In contrast, PGPB demonstrated a dual role: enhancing photosynthetic capacity and reducing stomatal conductance notably under 35/30°C conditions. Moreover, PGPB showcased conflicting effects, reducing oxidative damage under 25/20°C conditions while intensifying it during 47°C heat shock. A significant highlight lies in the opposing effects of ErM and PGPB on root growth and stomatal conductance, signifying their reciprocal influence on blueberry plant behavior, which may lead to increased water uptake or reduced water use. Understanding these complex interactions holds promise for refining sustainable strategies to overcome climate challenges.
Collapse
Affiliation(s)
- Kaleb Fransgo
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Lei-Chen Lin
- Department of Forestry and Natural Resources, National Chiayi University, Chiayi, Taiwan
| | - Hyungmin Rho
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Rehman M, Pan J, Mubeen S, Ma W, Luo D, Cao S, Saeed W, Jin G, Li R, Chen T, Chen P. Morpho-physio-biochemical, molecular, and phytoremedial responses of plants to red, blue, and green light: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20772-20791. [PMID: 38393568 DOI: 10.1007/s11356-024-32532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Light is a basic requirement to drive carbon metabolism in plants and supports life on earth. Spectral quality greatly affects plant morphology, physiology, and metabolism of various biochemical pathways. Among visible light spectrum, red, blue, and green light wavelengths affect several mechanisms to contribute in plant growth and productivity. In addition, supplementation of red, blue, or green light with other wavelengths showed vivid effects on the plant biology. However, response of plants differs in different species and growing conditions. This review article provides a detailed view and interpretation of existing knowledge and clarifies underlying mechanisms that how red, blue, and green light spectra affect plant morpho-physiological, biochemical, and molecular parameters to make a significant contribution towards improved crop production, fruit quality, disease control, phytoremediation potential, and resource use efficiency.
Collapse
Affiliation(s)
- Muzammal Rehman
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Jiao Pan
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Samavia Mubeen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Wenyue Ma
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Dengjie Luo
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Shan Cao
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Wajid Saeed
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Peng Chen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China.
| |
Collapse
|