1
|
Tsiakanikas P, Athanasopoulou K, Darioti IA, Agiassoti VT, Theocharis S, Scorilas A, Adamopoulos PG. Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies. Life (Basel) 2024; 14:922. [PMID: 39202666 PMCID: PMC11355349 DOI: 10.3390/life14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a form of a circular double-stranded DNA that exists independently of conventional chromosomes. eccDNA exhibits a broad and random distribution across eukaryotic cells and has been associated with tumor-related properties due to its ability to harbor the complete gene information of oncogenes. The complex and multifaceted mechanisms underlying eccDNA formation include pathways such as DNA damage repair, breakage-fusion-bridge (BFB) mechanisms, chromothripsis, and cell apoptosis. Of note, eccDNA plays a pivotal role in tumor development, genetic heterogeneity, and therapeutic resistance. The high copy number and transcriptional activity of oncogenes carried by eccDNA contribute to the accelerated growth of tumors. Notably, the amplification of oncogenes on eccDNA is implicated in the malignant progression of cancer cells. The improvement of high-throughput sequencing techniques has greatly enhanced our knowledge of eccDNA by allowing for a detailed examination of its genetic structures and functions. However, we still lack a comprehensive and efficient annotation for eccDNA, while challenges persist in the study and understanding of the functional role of eccDNA, emphasizing the need for the development of robust methodologies. The potential clinical applications of eccDNA, such as its role as a measurable biomarker or therapeutic target in diseases, particularly within the spectrum of human malignancies, is a promising field for future research. In conclusion, eccDNA represents a quite dynamic and multifunctional genetic entity with far-reaching implications in cancer pathogenesis and beyond. Further research is essential to unravel the molecular pathways of eccDNA formation, elucidate its functional roles, and explore its clinical applications. Addressing these aspects is crucial for advancing our understanding of genomic instability and developing novel strategies for tailored therapeutics, especially in cancer.
Collapse
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Ioanna A. Darioti
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vasiliki Taxiarchoula Agiassoti
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Stamatis Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
2
|
Merkulov P, Serganova M, Petrov G, Mityukov V, Kirov I. Long-read sequencing of extrachromosomal circular DNA and genome assembly of a Solanum lycopersicum breeding line revealed active LTR retrotransposons originating from S. Peruvianum L. introgressions. BMC Genomics 2024; 25:404. [PMID: 38658857 PMCID: PMC11044480 DOI: 10.1186/s12864-024-10314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Transposable elements (TEs) are a major force in the evolution of plant genomes. Differences in the transposition activities and landscapes of TEs can vary substantially, even in closely related species. Interspecific hybridization, a widely employed technique in tomato breeding, results in the creation of novel combinations of TEs from distinct species. The implications of this process for TE transposition activity have not been studied in modern cultivars. In this study, we used nanopore sequencing of extrachromosomal circular DNA (eccDNA) and identified two highly active Ty1/Copia LTR retrotransposon families of tomato (Solanum lycopersicum), called Salsa and Ketchup. Elements of these families produce thousands of eccDNAs under controlled conditions and epigenetic stress. EccDNA sequence analysis revealed that the major parts of eccDNA produced by Ketchup and Salsa exhibited low similarity to the S. lycopersicum genomic sequence. To trace the origin of these TEs, whole-genome nanopore sequencing and de novo genome assembly were performed. We found that these TEs occurred in a tomato breeding line via interspecific introgression from S. peruvianum. Our findings collectively show that interspecific introgressions can contribute to both genetic and phenotypic diversity not only by introducing novel genetic variants, but also by importing active transposable elements from other species.
Collapse
Affiliation(s)
- Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, 127550, Moscow, Russia
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Melania Serganova
- All-Russia Research Institute of Agricultural Biotechnology, 127550, Moscow, Russia
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Georgy Petrov
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Vladislav Mityukov
- Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051, Moscow, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, 127550, Moscow, Russia.
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia.
| |
Collapse
|
3
|
Garcia S, Kovarik A, Maiwald S, Mann L, Schmidt N, Pascual-Díaz JP, Vitales D, Weber B, Heitkam T. The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics. Mol Biol Evol 2024; 41:msae025. [PMID: 38306580 PMCID: PMC10946416 DOI: 10.1093/molbev/msae025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Although both are salient features of genomes, at first glance ribosomal DNAs and transposable elements are genetic elements with not much in common: whereas ribosomal DNAs are mainly viewed as housekeeping genes that uphold all prime genome functions, transposable elements are generally portrayed as selfish and disruptive. These opposing characteristics are also mirrored in other attributes: organization in tandem (ribosomal DNAs) versus organization in a dispersed manner (transposable elements); evolution in a concerted manner (ribosomal DNAs) versus evolution by diversification (transposable elements); and activity that prolongs genomic stability (ribosomal DNAs) versus activity that shortens it (transposable elements). Re-visiting relevant instances in which ribosomal DNA-transposable element interactions have been reported, we note that both repeat types share at least four structural and functional hallmarks: (1) they are repetitive DNAs that shape genomes in evolutionary timescales, (2) they exchange structural motifs and can enter co-evolution processes, (3) they are tightly controlled genomic stress sensors playing key roles in senescence/aging, and (4) they share common epigenetic marks such as DNA methylation and histone modification. Here, we give an overview of the structural, functional, and evolutionary characteristics of both ribosomal DNAs and transposable elements, discuss their roles and interactions, and highlight trends and future directions as we move forward in understanding ribosomal DNA-transposable element associations.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | - Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | | | - Daniel Vitales
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
- Laboratori de Botànica–Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Beatrice Weber
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, A-8010 Graz, Austria
| |
Collapse
|
4
|
Ko I, Kranse OP, Senatori B, Eves-van den Akker S. A Critical Appraisal of DNA Transfer from Plants to Parasitic Cyst Nematodes. Mol Biol Evol 2024; 41:msae030. [PMID: 38366574 PMCID: PMC10899095 DOI: 10.1093/molbev/msae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 02/18/2024] Open
Abstract
Plant-parasitic nematodes are one of the most economically important pests of crops. It is widely accepted that horizontal gene transfer-the natural acquisition of foreign genes in parasitic nematodes-contributes to parasitism. However, an apparent paradox has emerged from horizontal gene transfer analyses: On the one hand, distantly related organisms with very dissimilar genetic structures (i.e. bacteria), and only transient interactions with nematodes as far as we know, dominate the list of putative donors, while on the other hand, considerably more closely related organisms (i.e. the host plant), with similar genetic structure (i.e. introns) and documented long-term associations with nematodes, are rare among the list of putative donors. Given that these nematodes ingest cytoplasm from a living plant cell for several weeks, there seems to be a conspicuous absence of plant-derived cases. Here, we used comparative genomic approaches to evaluate possible plant-derived horizontal gene transfer events in plant parasitic nematodes. Our evidence supports a cautionary message for plant-derived horizontal gene transfer cases in the sugar beet cyst nematode, Heterodera schachtii. We propose a 4-step model for horizontal gene transfer from plant to parasite in order to evaluate why the absence of plant-derived horizontal gene transfer cases is observed. We find that the plant genome is mobilized by the nematode during infection, but that uptake of the said "mobilome" is the first major barrier to horizontal gene transfer from host to nematode. These results provide new insight into our understanding of the prevalence/role of nucleic acid exchange in the arms race between plants and plant parasites.
Collapse
Affiliation(s)
- Itsuhiro Ko
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB2 3EA, UK
- Present address: Department of Plant Pathology, Washington State University, Pullman 99163, USA
| | - Olaf Prosper Kranse
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB2 3EA, UK
| | - Beatrice Senatori
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB2 3EA, UK
| | | |
Collapse
|
5
|
Lu W, Li F, Ouyang Y, Jiang Y, Zhang W, Bai Y. A comprehensive analysis of library preparation methods shows high heterogeneity of extrachromosomal circular DNA but distinct chromosomal amount levels reflecting different cell states. Analyst 2023; 149:148-160. [PMID: 37987554 DOI: 10.1039/d3an01300f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Extrachromosomal circular DNA (eccDNA) was discovered several decades ago, but little is known about its function. With the development of sequencing technology, several library preparation methods have been developed to elucidate the biogenesis and function of eccDNA. However, different treatment methods have certain biases that can lead to their erroneous interpretation. To address these issues, we compared the performance of different library preparation methods. Our investigation revealed that the utilization of rolling-circle amplification (RCA) and restriction enzyme linearization of mitochondrial DNA (mtDNA) significantly enhanced the efficiency of enriching extrachromosomal circular DNA (eccDNA). However, it also introduced certain biases, such as an unclear peak in ∼160-200 bp periodicity and the absence of a typical motif pattern. Furthermore, given that RCA can lead to a disproportionate change in copy numbers, eccDNA quantification using split and discordant reads should be avoided. Analysis of the genomic and elements distribution of the overall population of eccDNA molecules revealed a high correlation between the replicates, and provided a possible stability signature for eccDNA, which could potentially reflect different cell lines or cell states. However, we found only a few eccDNA with identical junction sites in each replicate, showing a high degree of heterogeneity of eccDNA. The emergence of different motif patterns flanking junctional sites in eccDNAs of varying sizes suggests the involvement of multiple potential mechanisms in eccDNA generation. This study comprehensively compares and discusses various essential approaches for eccDNA library preparation, offering valuable insights and practical advice to researchers involved in characterizing eccDNA.
Collapse
Affiliation(s)
- Wenxiang Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Fuyu Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yunfei Ouyang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yali Jiang
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, Xinjiang Uygur Autonomous Region, 835000, China
| | - Weizhong Zhang
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
6
|
Kirov I. Toward Transgene-Free Transposon-Mediated Biological Mutagenesis for Plant Breeding. Int J Mol Sci 2023; 24:17054. [PMID: 38069377 PMCID: PMC10706983 DOI: 10.3390/ijms242317054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Genetic diversity is a key factor for plant breeding. The birth of novel genic and genomic variants is also crucial for plant adaptation in nature. Therefore, the genomes of almost all living organisms possess natural mutagenic mechanisms. Transposable elements (TEs) are a major mutagenic force driving genetic diversity in wild plants and modern crops. The relatively rare TE transposition activity during the thousand-year crop domestication process has led to the phenotypic diversity of many cultivated species. The utilization of TE mutagenesis by artificial and transient acceleration of their activity in a controlled mode is an attractive foundation for a novel type of mutagenesis called TE-mediated biological mutagenesis. Here, I focus on TEs as mutagenic sources for plant breeding and discuss existing and emerging transgene-free approaches for TE activation in plants. Furthermore, I also review the non-randomness of TE insertions in a plant genome and the molecular and epigenetic factors involved in shaping TE insertion preferences. Additionally, I discuss the molecular mechanisms that prevent TE transpositions in germline plant cells (e.g., meiocytes, pollen, egg and embryo cells, and shoot apical meristem), thereby reducing the chances of TE insertion inheritance. Knowledge of these mechanisms can expand the TE activation toolbox using novel gene targeting approaches. Finally, the challenges and future perspectives of plant populations with induced novel TE insertions (iTE plant collections) are discussed.
Collapse
Affiliation(s)
- Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
7
|
Li F, Ming W, Lu W, Wang Y, Li X, Dong X, Bai Y. FLED: a full-length eccDNA detector for long-reads sequencing data. Brief Bioinform 2023; 24:bbad388. [PMID: 37930031 PMCID: PMC10632013 DOI: 10.1093/bib/bbad388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Reconstructing the full-length sequence of extrachromosomal circular DNA (eccDNA) from short sequencing reads has proved challenging given the similarity of eccDNAs and their corresponding linear DNAs. Previous sequencing methods were unable to achieve high-throughput detection of full-length eccDNAs. Herein, a novel algorithm was developed, called Full-Length eccDNA Detection (FLED), to reconstruct the sequence of eccDNAs based on the strategy that combined rolling circle amplification and nanopore long-reads sequencing technology. Seven human epithelial and cancer cell line samples were analyzed by FLED and over 5000 full-length eccDNAs were identified per sample. The structures of identified eccDNAs were validated by both Polymerase Chain Reaction (PCR) and Sanger sequencing. Compared to other published nanopore-based eccDNA detectors, FLED exhibited higher sensitivity. In cancer cell lines, the genes overlapped with eccDNA regions were enriched in cancer-related pathways and cis-regulatory elements can be predicted in the upstream or downstream of intact genes on eccDNA molecules, and the expressions of these cancer-related genes were dysregulated in tumor cell lines, indicating the regulatory potency of eccDNAs in biological processes. The proposed method takes advantage of nanopore long reads and enables unbiased reconstruction of full-length eccDNA sequences. FLED is implemented using Python3 which is freely available on GitHub (https://github.com/FuyuLi/FLED).
Collapse
Affiliation(s)
- Fuyu Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Wenlong Ming
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Wenxiang Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ying Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xiaohan Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xianjun Dong
- Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, MA 02115, USA
- Precision Neurology Program, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|