1
|
De Silva AL, Kämper W, Ogbourne SM, Nichols J, Royle JWL, Peters T, Hawkes D, Hosseini Bai S, Wallace HM, Trueman SJ. MassARRAY and SABER Analyses of SNPs in Embryo DNA Reveal the Abscission of Self-Fertilised Progeny during Fruit Development of Macadamia ( Macadamia integrifolia Maiden & Betche). Int J Mol Sci 2024; 25:6419. [PMID: 38928124 PMCID: PMC11204000 DOI: 10.3390/ijms25126419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality. Here, we aimed to understand the effects of pollen parentage on fruitlet retention and nut quality in orchards of macadamia (Macadamia integrifolia Maiden & Betche). We identified the pollen parent of macadamia 'cultivar '816' embryos by analysing single nucleotide polymorphisms (SNPs) in their DNA using customised MassARRAY and Single Allele Base Extension Reaction (SABER) methods. This allowed us to determine the proportions of self-fertilised and cross-fertilised progeny during premature fruit drop at 6 weeks and 10 weeks after peak anthesis, as well as at nut maturity. We determined how pollen parentage affected nut-in-shell (NIS) mass, kernel mass, kernel recovery, and oil concentration. Macadamia trees retained cross-fertilised fruitlets rather than self-fertilised fruitlets. The percentage of progeny that were cross-fertilised increased from 6% at 6 weeks after peak anthesis to 97% at nut maturity, with each tree producing on average 22 self-fertilised nuts and 881 cross-fertilised nuts. Three of the four cross-pollen parents provided fruit with significantly higher NIS mass, kernel mass, or kernel recovery than the few remaining self-fertilised fruit. Fruit that were cross-fertilised by '842', 'A4', or 'A203' had 16-29% higher NIS mass and 24-44% higher kernel mass than self-fertilised fruit. Nuts that were cross-fertilised by 'A4' or 'A203' also had 5% or 6% higher kernel recovery, worth approximately $US460-540 more per ton for growers than self-fertilised nuts. The highly selective abscission of self-fertilised fruitlets and the lower nut quality of self-fertilised fruit highlight the critical importance of cross-pollination for macadamia productivity.
Collapse
Affiliation(s)
- Anushika L. De Silva
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; (A.L.D.S.); (J.N.); (S.H.B.)
| | - Wiebke Kämper
- Functional Agrobiodiversity and Agroecology, Department of Crop Sciences, University of Göttingen, 37077 Göttingen, Germany;
| | - Steven M. Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia;
- School of Science, Technology & Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Joel Nichols
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; (A.L.D.S.); (J.N.); (S.H.B.)
| | - Jack W. L. Royle
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, Brisbane, QLD 4072, Australia; (J.W.L.R.); (T.P.); (D.H.)
| | - Trent Peters
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, Brisbane, QLD 4072, Australia; (J.W.L.R.); (T.P.); (D.H.)
| | - David Hawkes
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, Brisbane, QLD 4072, Australia; (J.W.L.R.); (T.P.); (D.H.)
| | - Shahla Hosseini Bai
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; (A.L.D.S.); (J.N.); (S.H.B.)
| | - Helen M. Wallace
- School of Biology and Environmental Science, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia;
| | - Stephen J. Trueman
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; (A.L.D.S.); (J.N.); (S.H.B.)
| |
Collapse
|
2
|
Shahbaz M, Akram A, Raja NI, Mukhtar T, Mehak A, Fatima N, Ajmal M, Ali K, Mustafa N, Abasi F. Antifungal activity of green synthesized selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease. PLoS One 2023; 18:e0274679. [PMID: 36749754 PMCID: PMC9904489 DOI: 10.1371/journal.pone.0274679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/01/2022] [Indexed: 02/08/2023] Open
Abstract
Plant extract-based green synthesis of nanoparticles is an emerging class of nanotechnology that has revolutionized the entire field of biological sciences. Green synthesized nanoparticles are used as super-growth promoters and antifungal agents. In this study, selenium nanoparticles (SeNPs) were synthesized using Melia azedarach leaves extract as the main reducing and stabilizing agent and characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and fourier transform infrared spectrometer (FTIR). The green synthesized SeNPs were exogenously applied on Mangifera indica infected with mango malformation disease. The SeNPs at a concentration of 30 μg/mL were found to be the best concentration which enhanced the physiological (chlorophyll and membrane stability index), and biochemical (proline and soluble sugar) parameters. The antioxidant defense system was also explored, and it was reported that green synthesized SeNPs significantly reduced the biotic stress by enhancing enzymatic and non-enzymatic activities. In vitro antifungal activity of SeNPs reported that 300 μg/mL concentration inhibited the Fusarium mangiferae the most. This study is considered the first biocompatible approach to evaluate the potential of green synthesized SeNPs to improve the health of mango malformation-infected plants and effective management strategy to inhibit the growth of F. mangifera.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Abida Akram
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Tariq Mukhtar
- Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Asma Mehak
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Maryam Ajmal
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- * E-mail: (KA); (MA)
| | - Kishwar Ali
- College of General Education, University of Doha for Science and Technology, Doha, Qatar
- * E-mail: (KA); (MA)
| | - Nilofar Mustafa
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Fozia Abasi
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
3
|
Alshallash KS, Sharaf M, Hmdy AE, Khalifa SM, Abdel-Aziz HF, Sharaf A, Ibrahim MTS, Alharbi K, Elkelish A. Hydrogel Improved Growth and Productive Performance of Mango Trees under Semi-Arid Condition. Gels 2022; 8:602. [PMID: 36286103 PMCID: PMC9601894 DOI: 10.3390/gels8100602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 04/12/2024] Open
Abstract
Nowadays, the production of new mango cultivars is increased in many countries worldwide. The soil application of hydrogel represents a novel approach in the fruit trees industry. This investigation aims to study the effect of adding hydrogel (as soil conditioner) on the growth and yield of Shelly cv. mango trees. The experimental groups were assigned to a control group and three other treated groups, including 250, 500, or 750 g hydrogel∙tree-1. The results demonstrated that all applications of hydrogel composite had higher vegetative growth parameters, yield, and fruit quality characteristics of Shelly cv. mango trees compared to the control. The treatment of 750 g hydrogel∙tree-1 had higher values of vegetative growth parameters such as the leaf area, shoot length and tree canopy volume, compared to the control group and the other treatments. Similarly, higher values for yield and fruit quality were observed in the treatment of 750 g hydrogel∙tree-1. In conclusion, different amounts of hydrogel agent can improve the production and fruit quality of Shelly cv. mango trees in arid and semi-arid conditions in a dose-dependent manner.
Collapse
Affiliation(s)
- Khalid S Alshallash
- College of Science and Humanities-Huraymila, Imam Mohammed Bin Saud Islamic University (IM SIU), P.O. Box. 5701, Riyadh 11432, Saudi Arabia
| | - Mohamed Sharaf
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ashraf E Hmdy
- Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Sobhy M Khalifa
- Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Hosny F Abdel-Aziz
- Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Sharaf
- Soils and Water Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Mariam T S Ibrahim
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University Ismailia, Ismailia 41522, Egypt
| |
Collapse
|
4
|
Correlation of Soil Characteristics and Citrus Leaf Nutrients Contents in Current Scenario of Layyah District. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Soil with low fertility is a big problem for achieving citrus productivity. In this regard, the management of macro and micronutrients is essential. Macro and micronutrient deficiency decreased the yield and the quality of citrus fruit. It is the need of the hour to classify the soil fertility status under changing climatic scenarios. The current soil fertility survey was conducted to examine the macro and micronutrient status in the citrus production area. In soil, three depths (0–15, 15–30, and 30–45 cm) were taken for sampling. For leaves, 4–6-months-old non-bearing twigs were sampled from 20 trees per orchard at breast height. Results showed that soil pH (7.1–8.4) was slightly alkaline, electrical conductivity (EC) was non-saline (<4 dSm−1), soil organic matter (SOM) was deficient (<0.86%), and calcium carbonate (CaCO3) was slight calcareous (<8%), at 0–15, 15–30, and 30–45 cm depths. The majority of soil samples were low in nitrogen (N) contents at all depths, i.e., (<0.043) 0–15 (85%), 15–30 (97%), and 30–45 (100%) cm depths. Phosphorus (P) was medium (7–15 mg kg−1) at 0–15 cm (60%) but low (<7 mg kg−1) at 15–30 (63%) and 30–45 cm (82%) depths. Potassium (K) was medium (80–180 mg kg−1) at 0–15 (69%), 15–30 (69%), and 30–45 cm (10%) depths. Boron (B) and manganese (Mn) were medium, and Cu was high in 0.15 cm, but all were low at 15–30 and 30–45 cm depths. Iron (Fe) and zinc (Zn) were low at depths of 0–15, 15–30, and 30–45 cm. Most citrus leaves were deficient in N (94%), Fe (76%), Zn (67%), and B (67%). In conclusion, soil fertilization is not sufficient for optimum citrus yield because of alkaline pH and slight calcareous soil conditions in this region. Foliar application of nutrients is suggested instead of only soil fertilization, for better nutrient management in citrus orchards.
Collapse
|
5
|
Comparative Efficiency of Native Insect Pollinators in Reproductive Performance of Medicago sativa L. in Pakistan. INSECTS 2021; 12:insects12111029. [PMID: 34821829 PMCID: PMC8625494 DOI: 10.3390/insects12111029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Lucerne (Medicago sativa L.) is a cross-pollinated crop and requires entomophilous pollination for tripping of flowers and subsequent pod and seed set. To discover the best pollinators for lucerne seed production, a two-year field trial was carried out at the research farm of MNS University of Agriculture, Multan, Pakistan. Abundance and diversity of insect pollinators along with the foraging behavior were recorded in terms of tripping efficiency, stay time, visitation rate and pollen harvest. The single-visit efficiency of abundant insect pollinators was also evaluated in terms of number of seeds and seed weight per raceme along with germination percentage. Ten most abundant floral visitors (five solitary bee species, three honeybee species and two syrphid fly species) were tested for their pollination efficiency. Honeybees were most abundant in both the years followed by the solitary bees and syrphid flies. Single-visit efficacy in terms of number of pods per raceme, number of seeds per raceme, 1000 seed weight and germination percentage revealed Megachile cephalotes as the most efficient insect pollinator followed by Megachile hera and Amegilla sp. Future studies should investigate the biology and ecology of these bee species with special emphasis on their nesting behavior and seasonality.
Collapse
|
6
|
The Exogenous Application of Micro-Nutrient Elements and Amino Acids Improved the Yield, Nutritional Status and Quality of Mango in Arid Regions. PLANTS 2021; 10:plants10102057. [PMID: 34685865 PMCID: PMC8540748 DOI: 10.3390/plants10102057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
The mango is one of the most valuable and appealing tropical fruits due to its color, aroma, tasteful remarkable flavor, and nutritive value; however, improving the yield and quality of mango is an urgent goal in order to combat global population growth. The application of amino acids and a micronutrient mixture might improve the yield and quality features but further research is still required in arid regions. To study the combined effect of a micronutrient mixture (MM) and amino acids (AA) at different rates, twenty-seven Fagri Kalan mango trees (15 years old) were carefully selected. The foliar application effect of MM and AA on vegetative growth, total chlorophyll, leaf chemical constituents, productivity, and the fruit quality of mango trees (cv. Fagri Kalan) was investigated. The findings revealed that the investigated growth measurements and leaf chemical contents, as well as the fruiting aspects and the fruit quality improved significantly due to the application of MM and AA. A higher application rate of the micronutrient mixture (2 g L−1) in combination with the highest amino acid concentration (2 mg L−1) was the most effective combination that increased the yield, total soluble solids (TSS), total sugars (TS), and total carbohydrates by 28.0%, 3.0%, 5.8% and 15.0%, respectively, relative to untreated plants. The relationship between such characteristics revealed a strong positive correlation (0.80–0.95), confirming the importance of these materials in increasing the yield and quality of mangoes. Thus, using doses of MM and AA as a foliar spray four times during each growing season is recommended under similar environmental conditions and horticulture practices used in the current experiment.
Collapse
|
7
|
Zinc Oxide and Silicone Nanoparticles to Improve the Resistance Mechanism and Annual Productivity of Salt-Stressed Mango Trees. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10040558] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Limited findings have been reported on using nanomaterials to improve tree fruit growth, development, and productivity under various stress conditions. To assess the effect of nanoparticles (NPs) like nano-zinc oxide (nZnO) and nano-silicon (nSi) on mango tree growth, yield, and fruit quality under salinity conditions, a factorial experiment was conducted using twelve treatments; three replicates each. Foliar spray of nZnO (50, 100, and 150 mg/L), nSi (150 and 300 mg/L), their combinations, and distilled water as a control was applied at full bloom and one month after of salt-stressed “Ewais” mango trees. Trees positively responded to different levels of nZnO and nSi. Plant growth, nutrients uptake, and carbon assimilation have improved with all treatments, except the higher concentration of nSi. Plant response to stress conditions was represented by a high level of proline content with all treatments, but changes in the activity of the antioxidant enzymes were positively related to the lower and medium concentrations of NPs. Flower malformation has significantly decreased, and the annual fruit yield and physiochemical characteristics have improved with all treatments. It could be recommended that a combination of 100 mg/L nZnO and 150 mg/L nSi improves mango tree resistance, annual crop load, and fruit quality under salinity conditions.
Collapse
|
8
|
Younis U, Danish S, Malik SA, Ahmed N, Munir TM, Rasheed MK. Role of cotton sticks biochar in immobilization of nickel under induced toxicity condition and growth indices of Trigonella corniculata L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1752-1761. [PMID: 31758478 DOI: 10.1007/s11356-019-06466-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Among various heavy metals, nickel (Ni) is a potential pollutant that accumulates in broad-leaf vegetables and is reported to be carcinogenic. Biochar (BC) is a nutrient-rich and effective organic amendment for immobilization of Ni in soil. Fenugreek (Trigonella corniculata L.), a broad-leaf vegetable, is commonly cultivated due to its all-inclusive composition of nutrients such as calcium and iron and β-carotene and vitamins. Therefore, a field-pot study was conducted to examine the effectiveness of cotton-sticks-waste biochar (BC) for soil immobilization of Ni in fenugreek crop cultivated between early-October to end-November 2015. Fenugreek was grown in a sandy-loam soil experimentally contaminated with various Ni levels (0, 25, 50, and 100 mg Ni kg-1 soil) under three BC levels (0, 3, and 5%; w/w). Overall, results showed increasing plant lipid peroxidation (assessed via malondialdehyde) and ascorbic-acid concentration with increasing Ni toxicity level without BC application (p ≤ 0.05). Application of 3% BC increased the chlorophyll a (20.0%), chlorophyll b (49.1%), total chlorophyll (27.6%), carotenoids (21.6%), anthocyanin (27.2%), photosynthetic rate (112%), transpiration rate (45.0%), and sub-stomatal CO2 concentration (19.9%) in fenugreek as compared to control (0% BC) under 50 mg Ni kg-1 soil. Higher BC application rate (5%) was more effective in increasing the chlorophyll a (33.6%), chlorophyll b (81.1%), total chlorophyll (43.9%), carotenoids (71.7%), anthocyanin (77.8%), photosynthetic rate (127%), transpiration rate (42.2%), and sub-stomatal CO2 concentration (23.5) over control under 100 mg Ni kg-1 soil. We suggest that the consistent increases in dry mass, carbon flux rate and, protein, amino acids, and sugar contents of fenugreek (cultivated in a soil toxified with Ni and amended with 5% BC) seems to be caused by the reduction in the mobility of Ni in the presence of BC in a sandy-loam soil.
Collapse
Affiliation(s)
- Uzma Younis
- University of Central Punjab, Lahore, Punjab, Pakistan
| | - Subhan Danish
- Depertment of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
- Soil and Water Testing Laboratory, PakArab Fertilizer Limited Plant Site, Multan, Punjab, Pakistan.
| | | | - Niaz Ahmed
- Depertment of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Tariq Muhammad Munir
- Department of Geography, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | | |
Collapse
|
9
|
ACC Deaminase Producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with Biochar Improve Wheat Productivity under Drought Stress. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9070343] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drought stress retards wheat plant’s vegetative growth and physiological processes and results in low productivity. A stressed plant synthesizes ethylene which inhibits root elongation; however, the enzyme 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase catabolizes ethylene produced under water stress. Therefore, the ACC deaminase producing plant growth promoting rhizobacteria (PGPR) can be used to enhance crop productivity under drought stress. Biochar (BC) is an organically active and potentially nutrient-rich amendment that, when applied to the soil, can increase pore volume, cation exchange capacity and nutrient retention and bioavailability. We conducted a field experiment to study the effect of drought tolerant, ACC deaminase producing PGPR (with and without timber waste BC) on plant growth and yield parameters under drought stress. Two PGPR strains, Agrobacterium fabrum or Bacillus amyloliquefaciens were applied individually and in combination with 30 Mg ha−1 BC under three levels of irrigation, i.e., recommended four irrigations (4I), three irrigations (3I) and two irrigations (2I). Combined application of B. amyloliquefaciens and 30 Mg ha−1 BC under 3I, significantly increased growth and yield traits of wheat: grain yield (36%), straw yield (50%), biological yield (40%). The same soil application under 2I resulted in greater increases in several of the growth and yield traits: grain yield (77%), straw yield (75%), above- and below-ground biomasses (77%), as compared to control; however, no significant increases in chlorophyll a, b or total, and photosynthetic rate and stomatal conductance in response to individual inoculation of a PGPR strain (without BC) were observed. Therefore, we suggest that the combined soil application of B. amyloliquefaciens and BC more effectively mitigates drought stress and improves wheat productivity as compared to any of the individual soil applications tested in this study.
Collapse
|