1
|
Li G, Li Z, Wang Y. The genus Litsea: A comprehensive review of traditional uses, phytochemistry, pharmacological activities and other studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118494. [PMID: 38944358 DOI: 10.1016/j.jep.2024.118494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus L. has high medicinal value and has traditional been used to treat a variety of gastrointestinal disorders, as well as diabetes, edema, colds, arthritis, asthma, and traumatic injuries. AIM OF THE REVIEW This work addresses the missing information by conducting a comprehensive analysis of the traditional uses, chemical components, and pharmacological applications of the more reported species of the genus L. The origin of the genus, its toxicology, and the use of classical therapies in modern medicine were also discussed. It provides references for historical evidence, resource development, and medical research on the genus. METHOD ology: Data about the genus L. were gathered via Web of Science, PubMed, Science Direct, Google Scholar, Connected Papers, China National Knowledge Infrastructure (CNKI), electronic ancient books and local chronicles. The WFO Plant List (wfoplantlist.org) and Flora of China (www.iplant.cn) confirmed L.'s Latin name, and the species information. The program ChemBioDraw Ultra 14.0 was used to create the molecular structures of the compounds that were displayed in the text. RESULT Currently, at least 740 constituents have been isolated and identified from L. These include 9 groups of chemicals, such as flavonoids, alkaloids, and terpenoids. They have been shown to have over 20 biological properties in vivo and in vitro, such as antibacterial, anti-inflammatory, and anti-oxidant effects. CONCLUSION Based on pharmacological investigations, chemical components, and traditional folk applications, L. is considered a medicinal plant having a variety of pharmacological actions. However, although the pharmacological activity of the L. genus has been preliminary demonstrated, most have only been assessed using simple in vitro cell lines or animal disease models. In order to fully elucidate the pharmacological activity and mechanisms of L., future studies should be conducted in a more comprehensive clinical manner.
Collapse
Affiliation(s)
- Guangyao Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Zhimin Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| |
Collapse
|
2
|
Habeeba KU, Rasmi AR. Anti-inflammatory and in silico docking studies of Litsea wightiana (Nees) Hook.f. (Lauraceae) leaf constituents. Nat Prod Res 2024:1-8. [PMID: 39093996 DOI: 10.1080/14786419.2024.2385023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Current study aimed to disclose the anti-inflammatory potential of the methanolic leaf extracts of L. wightiana (LWME). The in vitro studies focused on enzyme inhibition assays targeting the key enzymes such as cyclooxygenase, lipoxygenase and nitric oxide synthase and revealed that LWME effectively inhibited the activity of these enzymes. Gene expression studies confirmed the anti-inflammatory effect, demonstrating down regulation of genes associated with inflammation and key proinflammatory factors such as COX-2, TNF-α, IL-6 and NFkB. In vivo anti-inflammatory experiments by carrageenan-induced paw edoema method in model animals and inflammation was found to be reduced by 10% concentration of extract and significant at P˂0.001 level. GCMS and LCMS analysis were conducted and the resulted compounds were docked against target proteins indicated that most of the bioactive compounds showed better binding affinity with enzymes in which the dicentrinone showed higher affinity and it may be useful in the treatment of several ailments.
Collapse
Affiliation(s)
| | - Avanoor Ramanathan Rasmi
- PG & Research Department of Botany, Government Victoria College, University of Calicut, Palakkad, Kerala, India
| |
Collapse
|
3
|
Liu Y, Ren H, Li K. Litsea cubeba essential oil: Extraction, chemical composition, antioxidant and antimicrobial properties, and applications in the food industry. J Food Sci 2024; 89:4583-4603. [PMID: 39013008 DOI: 10.1111/1750-3841.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Litsea cubeba (Lour.) Pers. (Lauraceae) is a valuable industrial crop that produces essential oil. The essential oil extracted from L. cubeba (LCEO) has broad-spectrum antimicrobial activity and high antioxidant properties, with great potential for increased usage in the food industry. This literature review summarizes the extraction techniques, content and chemical composition, and antioxidant and antimicrobial activities of LCEO, with a focus on its usage in the food industry, which is an area of substantial recent research. The chemical composition of LCEO, which is affected by various factors, plays a key role in determining its bioactivity and usage in food. The potent antimicrobial activity of LCEO against various foodborne pathogens gives it potential for use in food packaging and preservation to extend shelf life. Future research challenges include the elucidation of the role and mechanism of individual chemical components of LCEO in inhibiting specific foodborne microorganisms; cultivar development to produce germplasm that yields essential oils of the desired chemical composition; and the development of commercial products that can be used in the food industry.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| | - Huanhuan Ren
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| | - Kehu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
4
|
Panday H, Jha SK, Al-Shehri M, Panda SP, Rana R, Alwathinani NF, Azhar EI, Dwivedi VD, Jha AK. Allosteric inhibition of dengue virus RNA-dependent RNA polymerase by Litsea cubeba phytochemicals: a computational study. J Biomol Struct Dyn 2024; 42:5402-5414. [PMID: 38764132 DOI: 10.1080/07391102.2023.2226759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/11/2023] [Indexed: 05/21/2024]
Abstract
RNA-dependent RNA polymerase (RdRp) is considered a potential drug target for dengue virus (DENV) inhibition and has attracted attention in antiviral drug discovery. Here, we screened 121 natural compounds from Litsea cubeba against DENV RdRp using various approaches of computer-based drug discovery. Notably, we identified four potential compounds (Ushinsunine, Cassameridine, (+)-Epiexcelsin, (-)-Phanostenine) with good binding scores and allosteric interactions with the target protein. Moreover, molecular dynamics simulation studies were done to check the conformational stability of the complexes under given conditions. Additionally, we performed post-simulation analysis to find the stability of potential drugs in the target protein. The findings suggest Litsea cubeba-derived phytomolecules as a therapeutic solution to control DENV infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hrithika Panday
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Nada F Alwathinani
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| |
Collapse
|
5
|
Taychaworaditsakul W, Sawong S, Intatham S, Chansakaow S, Chewonarin T, Kunnaja P, Jaijoy K, Wittayapraparat A, Yusuk P, Charoensup W, Sireeratawong S. The Safety Assessment of Mutagenicity, Acute and Chronic Toxicity of the Litsea martabanica (Kurz) Hook.f. Water Leaf Extract. TOXICS 2024; 12:470. [PMID: 39058122 PMCID: PMC11281209 DOI: 10.3390/toxics12070470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Litsea martabanica (Kurz) Hook.f. has traditionally been used as an anti-insecticidal agent and as a medication due to its hepatoprotective properties by highland communities in Thailand. This study examined the mutagenicity, as well as the acute and chronic toxicity, of the L. martabanica water leaf extract in Sprague-Dawley rats. The pharmacognostic evaluation of L. martabanica was performed in this study to ensure its authenticity and purity. Then, the sample was extracted using decoction with water to obtain the crude water extract. The assessment of acute toxicity involved a single oral administration of 5000 mg/kg, whereas the chronic toxicity assessment comprised daily oral doses of 250, 750, and 2250 mg/kg over 270 days. Various physiological and behavioral parameters, as well as body and organ weights, were systematically monitored. The endpoint assessments involved hematological and biochemical analyses plus gross and histopathological assessments of the internal organs. Our results exhibited no mutagenic activation by the L. martabanica water leaf extract in the Ames test, and no acute toxicity was observed. In the chronic toxicity tests, no abnormalities were found in rats receiving the L. martabanica water leaf extract across multiple measures, comprising behavioral, physiological, and hematological indices. Crucially, the histopathological assessment corroborated previous studies, reporting an absence of any tissue abnormalities. The results revealed that the L. martabanica water leaf extract had no adverse effects on rats over 270 days of oral administration. This demonstrates its safety and crucial scientific evidence for informing public policy and enabling its potential future commercial use in both highland and lowland communities.
Collapse
Affiliation(s)
- Weerakit Taychaworaditsakul
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (S.S.); (S.I.)
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Suphunwadee Sawong
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (S.S.); (S.I.)
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supaporn Intatham
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (S.S.); (S.I.)
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (W.C.)
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Phraepakaporn Kunnaja
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kanjana Jaijoy
- McCormick Faculty of Nursing, Payap University, Chiang Mai 50000, Thailand;
| | - Absorn Wittayapraparat
- Highland Research and Development Institute (Public Organization), Chiang Mai 50200, Thailand; (A.W.); (P.Y.)
| | - Pedcharada Yusuk
- Highland Research and Development Institute (Public Organization), Chiang Mai 50200, Thailand; (A.W.); (P.Y.)
| | - Wannaree Charoensup
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (W.C.)
| | - Seewaboon Sireeratawong
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (S.S.); (S.I.)
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Taychaworaditsakul W, Sawong S, Intatham S, Chansakaow S, Kunnaja P, Chewonarin T, Jaijoy K, Wittayapraparat A, Yusuk P, Sireeratawong S. The Ameliorative Effect of Litsea martabanica (Kurz) Hook. f. Leaf Water Extract on Chlorpyrifos-Induced Toxicity in Rats and Its Antioxidant Potentials. Foods 2024; 13:1695. [PMID: 38890923 PMCID: PMC11172329 DOI: 10.3390/foods13111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Litsea martabanica root's antioxidant and acetylcholinesterase (AChE) activity showed promise as a pesticide detoxification agent in our previous study. In addition to its root, leaves can help alleviate pesticide exposure, although there is limited scientific evidence supporting their efficacy. However, the use of roots in several countries, such as Thailand, could contribute to environmental degradation, as highland communities traditionally used leaves instead of roots. This study aims to evaluate the antioxidant activity and anti-pesticide potential of water extract from L. martabanica leaves through in vitro and in vivo investigations. In the in vitro study, L. martabanica water extract and its fractions demonstrated antioxidant activity and induced apoptosis in hepatic satellite cells. In the in vivo study, treatment with the leaf extract led to increased AChE activity, decreased malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) levels, and reduced glutathione in chlorpyrifos-exposed rats. Histopathological examination revealed that chlorpyrifos-treated rats exhibited liver cell damage, while treatment with the water extract of L. martabanica exhibited a protective effect on the liver. In conclusion, L. martabanica water extract exhibited antioxidant activity, enhanced AChE activity, and improved histopathological abnormalities in the liver.
Collapse
Affiliation(s)
- Weerakit Taychaworaditsakul
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (S.S.); (S.I.)
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Suphunwadee Sawong
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (S.S.); (S.I.)
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supaporn Intatham
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (S.S.); (S.I.)
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Phraepakaporn Kunnaja
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kanjana Jaijoy
- McCormick Faculty of Nursing, Payap University, Chiang Mai 50000, Thailand;
| | - Absorn Wittayapraparat
- Highland Research and Development Institute (Public Organization), Chiang Mai 50200, Thailand; (A.W.); (P.Y.)
| | - Pedcharada Yusuk
- Highland Research and Development Institute (Public Organization), Chiang Mai 50200, Thailand; (A.W.); (P.Y.)
| | - Seewaboon Sireeratawong
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.T.); (S.S.); (S.I.)
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Pante GC, Castro JC, Lini RS, Romoli JCZ, Pires TY, Garcia FP, Nakamura CV, Mulati ACN, Matioli G, Machinski Junior M. Inclusion Complexes of Litsea cubeba (Lour.) Pers Essential Oil into β-Cyclodextrin: Preparation, Physicochemical Characterization, Cytotoxicity and Antifungal Activity. Molecules 2024; 29:1626. [PMID: 38611905 PMCID: PMC11013208 DOI: 10.3390/molecules29071626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 04/14/2024] Open
Abstract
The uses of natural compounds, such as essential oils (EOs), are limited due to their instability to light, oxygen and temperature, factors that affect their application. Therefore, improving stability becomes necessary. The objective of this study was to prepare inclusion complexes of Litsea cubeba essential oil (LCEO) with β-cyclodextrin (β-CD) using physical mixing (PM), kneading (KN) and co-precipitation (CP) methods and to evaluate the efficiency of the complexes and their physicochemical properties using ATR-FTIR, FT-Raman, DSC and TG. The study also assessed cytotoxicity against human colorectal and cervical cancer cells and antifungal activity against Aspergillus flavus and Fusarium verticillioides. The complexation efficiency results presented significant evidence of LCEO:β-CD inclusion complex formation, with KN (83%) and CP (73%) being the best methods used in this study. All tested LCEO:β-CD inclusion complexes exhibited toxicity to HT-29 cells. Although the cytotoxic effect was less pronounced in HeLa tumor cells, LCEO-KN was more active against Hela than non-tumor cells. LCEO-KN and LCEO-CP inclusion complexes were efficient against both toxigenic fungi, A. flavus and F. verticillioides. Therefore, the molecular inclusion of LCEO into β-CD was successful, as well as the preliminary biological results, evidencing that the β-CD inclusion process may be a viable alternative to facilitate and increase future applications of this EO as therapeutic medication, food additive and natural antifungal agent.
Collapse
Affiliation(s)
- Giseli Cristina Pante
- Department of Health Basic Science, Laboratory of Toxicology, State University of Maringa, Avenue Colombo n° 5790, Maringa 87020-900, PR, Brazil; (G.C.P.); (R.S.L.); (J.C.Z.R.); (F.P.G.); (C.V.N.); (M.M.J.)
| | - Juliana Cristina Castro
- Department of Health Basic Science, Laboratory of Toxicology, State University of Maringa, Avenue Colombo n° 5790, Maringa 87020-900, PR, Brazil; (G.C.P.); (R.S.L.); (J.C.Z.R.); (F.P.G.); (C.V.N.); (M.M.J.)
| | - Renata Sano Lini
- Department of Health Basic Science, Laboratory of Toxicology, State University of Maringa, Avenue Colombo n° 5790, Maringa 87020-900, PR, Brazil; (G.C.P.); (R.S.L.); (J.C.Z.R.); (F.P.G.); (C.V.N.); (M.M.J.)
| | - Jéssica Cristina Zoratto Romoli
- Department of Health Basic Science, Laboratory of Toxicology, State University of Maringa, Avenue Colombo n° 5790, Maringa 87020-900, PR, Brazil; (G.C.P.); (R.S.L.); (J.C.Z.R.); (F.P.G.); (C.V.N.); (M.M.J.)
| | - Thiago Yoshioka Pires
- Department of Physics, State University of Maringa, Avenue Colombo n° 5790, Maringa 87020-900, PR, Brazil (A.C.N.M.)
| | - Francielle Pelegrin Garcia
- Department of Health Basic Science, Laboratory of Toxicology, State University of Maringa, Avenue Colombo n° 5790, Maringa 87020-900, PR, Brazil; (G.C.P.); (R.S.L.); (J.C.Z.R.); (F.P.G.); (C.V.N.); (M.M.J.)
| | - Celso Vataru Nakamura
- Department of Health Basic Science, Laboratory of Toxicology, State University of Maringa, Avenue Colombo n° 5790, Maringa 87020-900, PR, Brazil; (G.C.P.); (R.S.L.); (J.C.Z.R.); (F.P.G.); (C.V.N.); (M.M.J.)
| | - Ana Claúdia Nogueira Mulati
- Department of Physics, State University of Maringa, Avenue Colombo n° 5790, Maringa 87020-900, PR, Brazil (A.C.N.M.)
| | - Graciette Matioli
- Department of Pharmacy, State University of Maringa, Avenue Colombo n° 5790, Maringa 87020-900, PR, Brazil;
| | - Miguel Machinski Junior
- Department of Health Basic Science, Laboratory of Toxicology, State University of Maringa, Avenue Colombo n° 5790, Maringa 87020-900, PR, Brazil; (G.C.P.); (R.S.L.); (J.C.Z.R.); (F.P.G.); (C.V.N.); (M.M.J.)
| |
Collapse
|
8
|
Khadka A, Budha Magar A, Sharma KR. Chemical Profiling and Biological Activities on Nepalese Medicinal Plant Extracts and Isolation of Active Fraction of Nyctanthes arbor-tristis. ScientificWorldJournal 2024; 2024:5080176. [PMID: 38515931 PMCID: PMC10957254 DOI: 10.1155/2024/5080176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/21/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
The importance of medicinal plants for the treatment of different diseases is high from the aspects of the pharmaceutical industry and traditional healers. The present study involves nine different medicinal plants, namely, Neolamarckia cadamba, Nyctanthes arbor-tristis, Pogostemon benghalensis, Equisetum debile, Litsea monopetala, Spilanthes uliginosa, Desmostachya bipinnata, Mallotus philippensis, and Phoenix humilis, collected from Chitwan district of Nepal for biochemical analysis followed by the isolation of active plant fractions from the bioactive plant extract. The methanolic extracts of roots, barks, seeds, seed cover, and the other aerial parts of plants were used for the phytochemical analysis and biological activities. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay was adopted to evaluate the antioxidant activity. Antibacterial activity was evaluated using the agar well diffusion method. The antidiabetic activity was studied by the α-amylase enzyme inhibition assay. The highest antioxidant activity was observed in extracts of Nyctanthes arbor-tristis followed by Mallotus philippensis (seed cover), Pogostemon benghalensis, Litsea monopetala, Phoenix humilis, and Neolamarckia cadamba with IC50 values of 27.38 ± 1.35, 32.08 ± 2.81, 32.75 ± 2.13, 33.82 ± 1.07, 40.14 ± 0.93, and 50.44 ± 3.75 µg/mL, respectively. The highest antidiabetic activity was observed in extracts of Phoenix humilis followed by Desmostachya bipinnata and Pogostemon benghalensis with IC50 values of 95.69 ± 6.97, 99.24 ± 12.6, and 106.3 ± 12.89 µg/mL, respectively. The mild α-amylase enzyme inhibition was found in extracts of Nyctanthes arbor-tristis, Spilanthes uliginosa Swartz, Litsea monopetala, and Equisetum debile showing IC50 values of 110.4 ± 7.78, 115.98 ± 10.24, 149.83 ± 8.3, and 196.45 ± 6.04 µg/mL, whereas Mallotus Philippensis (seed cover), Mallotus philippensis (seed), and Desmostachya bipinnata showed weak α-amylase inhibition with IC50 values of 208.87 ± 1.76, 215.41 ± 2.09, and 238.89 ± 9.27 µg/mL, respectively. The extract of Nyctanthes arbor-tristis showed high zones of inhibition against S. aureus (ATCC 25923) and E. coli (ATCC 25922) of ZOI 26 and 22 mm, respectively. The chemical constituents isolated from the active plant Nyctanthes arbor-tristis were subjected to GCMS analysis where the major chemical compounds were 11,14,17-eicosatrienoic acid and methyl ester. These results support the partial scientific validation for the traditional uses of these medicinal plants in the treatment of diabetes and infectious diseases by the people living in different communities of Chitwan, Nepal.
Collapse
Affiliation(s)
- Anita Khadka
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Akash Budha Magar
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
9
|
Rajiv C, Sanjita Devi H, Devi AK, Tamreihao K, Kshetri P, Tania C, Singh TS, Sonia C, Singh MN, Sen A, Sharma SK, Roy SS. Pharmacological potential of Jussiaea repens L. against CuSO 4 and bacterial lipopolysaccharide O55:B5 induced inflammation using in-vivo zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116932. [PMID: 37473823 DOI: 10.1016/j.jep.2023.116932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Northeastern state of India is known for its remarkable biodiversity and untapped medicinal resources. Jussiaea repens L., commonly known as water primrose, is a plant found in this region that has been traditionally used by indigenous communities for various purposes. It has been employed to treat skin ulcerations, bone fractures, rheumatism, stomach pain, and intestinal worms. Despite its long-standing ethnopharmacological usage, there is limited scientific research on the bioactivity of Jussiaea repens L. However, preliminary studies have shown its potential antioxidant properties and cytotoxicity against cancer cells. Further exploration of its medicinal properties, particularly its potential as an anti-inflammatory agent, is warranted. AIM OF THE STUDY This study aimed to investigate the anti-inflammatory properties of Jussiaea repens L., a plant species found in the biodiverse Northeastern region of India. The plant has been traditionally used by indigenous communities for various ailments. By utilizing zebrafish as an animal model and evaluating its effects in different inflammation models, the study aimed to uncover the plant's potential as an anti-inflammatory agent. The research contributes to the scientific understanding of this traditional remedy and its potential therapeutic applications. METHODS Jussiaea repens L. extract was obtained from the stem and leaves using methanol as the solvent. Zebrafish embryos were used for in vivo assays. The anti-inflammatory study included two models: CuSO4-induced inflammation and tail wounding followed by bacterial lipopolysaccharide-induced inflammation. The activities of catalase (CAT) and superoxide dismutase (SOD) were measured in CuSO4-induced inflammation. Leukocyte migration at the injury site was observed in the tail wounding model. The extract's inhibition of the 15-LOX enzyme was assessed. All procedures followed established protocols and ethical guidelines. RESULTS AND CONCLUSION Jussiaea repens L. extract exhibited anti-inflammatory activity in two in vivo zebrafish models: CuSO4-induced inflammation and tail wounding combined with bacterial lipopolysaccharide-induced inflammation. The extract reduced mortality rates and showed antioxidant effects by increasing catalase (CAT) and superoxide dismutase (SOD) activities in the CuSO4 model. In the tail wounding model, the extract reduced leukocyte migration in a concentration-dependent manner. Additionally, the extract demonstrated dose-dependent inhibition of the 15-LOX enzyme in the in vitro assay. These results suggest that Jussiaea repens L. extract possesses anti-inflammatory properties and inhibits the 15-LOX enzyme.
Collapse
Affiliation(s)
- Chongtham Rajiv
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | | | - Asem Kajal Devi
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - K Tamreihao
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; St. Joseph College, Ukhrul, 795142, Manipur, India
| | - Pintubala Kshetri
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; Yairipok Universal College, Yairipok, 795138, Manipur, India
| | - Chongtham Tania
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - Thangjam Surchandra Singh
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; TS Paul Women's College, Mongsangei, 795003, Manipur, India
| | - Chongtham Sonia
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | | | - Arnab Sen
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - Susheel Kumar Sharma
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Subhra Saikat Roy
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; ICAR-Central Citrus Research Institute, Nagpur, 440033, Maharashtra, India.
| |
Collapse
|
10
|
Wang S, Zhao Y, Chen Y, Gao M, Wang Y. The Association between BZIP Transcription Factors and Flower Development in Litsea cubeba. Int J Mol Sci 2023; 24:16646. [PMID: 38068969 PMCID: PMC10705912 DOI: 10.3390/ijms242316646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The basic leucine zipper (bZIP) family is one of the largest families of transcription factors among eukaryotic organisms. Members of the bZIP family play various roles in regulating the intricate process of flower development in plants. Litsea cubeba (Lour.) (family: Lauraceae) is an aromatic, dioecious plant used in China for a wide range of applications. However, no study to date has undertaken a comprehensive analysis of the bZIP gene family in L. cubeba. In this work, we identified 68 members of the bZIP gene family in L. cubeba and classified them into 12 subfamilies based on previous studies on Arabidopsis thaliana. Transcriptome data analysis revealed that multiple LcbZIP genes exhibit significantly high expression levels in the flowers of L. cubeba, while some also demonstrate distinct temporal specificity during L. cubeba flower development. In particular, some LcbZIP genes displayed specific and high expression levels during the stamen and pistil degradation process. Using differential gene expression analysis, weighted gene co-expression network analysis, and Gene Ontology enrichment analysis, we identified six candidate LcbZIP genes that potentially regulate stamen or pistil degradation during flower development. In summary, our findings provide a framework for future functional analysis of the LcbZIP gene family in L. cubeba and offer novel insights for investigating the mechanism underlying pistil and stamen degeneration in this plant.
Collapse
Affiliation(s)
- Siqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| |
Collapse
|
11
|
Liao G, Ning X, Yang Y, Wang Z, Fan G, Wang X, Fu D, Liu J, Tang M, Chen S, Wang J. Main Habitat Factors Driving the Phenotypic Diversity of Litsea cubeba in China. PLANTS (BASEL, SWITZERLAND) 2023; 12:3781. [PMID: 37960137 PMCID: PMC10648399 DOI: 10.3390/plants12213781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Litsea cubeba (Lour.) Pers. is an important woody spice tree in southern China, and its fruit is a rich source of valuable essential oil. We surveyed and sampled L. cubeba germplasm resources from 36 provenances in nine Chinese provinces, and detected rich phenotypic diversity. The survey results showed that plants of SC-KJ, SC-HJ, and SC-LS provenance presented higher leaf area (LA); YN-SM and YN-XC plants had larger thousand-grain fresh weight (TFW); and HN-DX plants had the highest essential oil content (EOC). To explain the large differences in the phenotypes of L. cubeba among different habitats, we used Pearson's correlation analysis, multiple stepwise regression path analysis, and redundancy analysis to evaluate the phenotypic diversity of L. cubeba. It was found that compared to other traits, leaf and fruit traits had more significant geographical distributions, and that leaf phenotypes were correlated to fruit phenotypes. The results showed that elevation, latitude, longitude, total soil porosity (SP), soil bulk density (SBD), and average annual rainfall (AAR, mm) contributed significantly to the phenotypic diversity of L. cubeba. Geographical factors explained a higher percentage of variation in phenotypic diversity than did soil factors and climate factors. Plants of SC-KJ and HN-DX provenances could be important resources for domestication and breeding to develop new high-yielding varieties of this woody aromatic plant. This study describes significant phenotypic differences in L. cubeba related to adaptation to different environments, and provides a theoretical basis for the development of a breeding strategy and for optimizing L. cubeba cultivation.
Collapse
Affiliation(s)
- Guoxiang Liao
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaodan Ning
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuling Yang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zongde Wang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guorong Fan
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuefang Wang
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dan Fu
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Juan Liu
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ming Tang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shangxing Chen
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiawei Wang
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
12
|
Yang Z, Wang F, Yin Y, Huang P, Jiang Q, Liu Z, Yin Y, Chen J. Dietary Litsea cubeba essential oil supplementation improves growth performance and intestinal health of weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:9-18. [PMID: 36941959 PMCID: PMC10023852 DOI: 10.1016/j.aninu.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/09/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
This paper was to determine the effects of dietary Litsea cubeba essential oil (LEO) supplementation on growth performance, immune function, antioxidant level, intestinal morphology and microbial composition in weaned piglets. One hundred and ninety-two piglets (Duroc × [Large White × Landrace]) with 6.85 ± 0.22 kg mean body weight weaned at 21 d of age were randomly assigned to 4 treatment groups with 8 replicates and were fed with a basal diet (CON) or CON diet containing 100 (LLEO), 200 (MLEO) and 400 (HLEO) mg/kg LEO. The results revealed that HLEO supplementation (P < 0.05) increased the average daily gain on d 28 compared with CON. MLEO and HLEO supplementation decreased (P < 0.05) feed conversion ratio. LEO-containing diets had a lower (P < 0.05) diarrhea rate. Supplementation with HLEO increased (P < 0.05) total antioxidant capacity (T-AOC) both in the serum and liver. Meanwhile, the supplementation of MLEO and HLEO resulted in higher (P < 0.05) glutathione peroxidase (GPx) activities both in serum and liver. Supplementation of HLEO increased (P < 0.05) serum immunoglobulin A, immunoglobulin G and interleukin-10, whereas supplementation with MLEO and HLEO decreased (P < 0.05) tumor necrosis factor-α. Villus height in the duodenum or jejunum was increased (P < 0.05) in the HLEO group, and the villus height to crypt depth ratio in the jejunum was also improved (P < 0.05) in the MLEO group. The addition of LEO increased (P < 0.05) the richness and diversity of the microbial community in the cecum, which mainly increased the relative abundance of Oscillospiraceae _UCG-005, Faecalibacterium, Blautia and Coprococcus. Piglets supplemented with HLEO increased (P < 0.05) the concentration of short chain fatty acids (SCFA), including acetic acid in the cecum and propionic acid in the colon. In conclusion, these findings indicated that LEO supplementation improved growth performance and intestinal health in weaned piglets.
Collapse
Affiliation(s)
- Zhe Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
- CAS Key Laboratory of Agro Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, Hunan, 410125, China
| | - Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yexin Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Peng Huang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhimou Liu
- Hunan Nuoz Biological Technology Co., Ltd., Yiyang, Hunan, 413056, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
- CAS Key Laboratory of Agro Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, Hunan, 410125, China
- Corresponding authors.
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
- CAS Key Laboratory of Agro Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, Hunan, 410125, China
- Corresponding authors.
| |
Collapse
|
13
|
Bai X, Chen T, Liu X, Liu Z, Ma R, Su R, Li X, Lü X, Xia X, Shi C. Antibacterial Activity and Possible Mechanism of Litsea cubeba Essential Oil Against Shigella sonnei and Its Application in Lettuce. Foodborne Pathog Dis 2023; 20:138-148. [PMID: 37010405 DOI: 10.1089/fpd.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Shigella sonnei, the causative agents of bacillary dysentery, remains a significant threat to public health. Litsea cubeba essential oil (LC-EO), one of the natural essential oils, exhibited promising biological activities. In this study, the antibacterial effects and possible mechanisms of LC-EO on S. sonnei and its application in lettuce medium were investigated. The minimum inhibitory concentration (MIC) of LC-EO against S. sonnei ATCC 25931 and CMCC 51592 was 4 and 6 μL/mL, respectively. The LC-EO could inhibit the growth of S. sonnei, and decreased S. sonnei to undetectable levels with 4 μL/mL for 1 h in Luria-Bertani broth. The antibacterial mechanism indicated that after the treatment of LC-EO, the production of reactive oxygen species and the activity of superoxide dismutase were significantly elevated in S. sonnei cells, and eventually led to the lipid oxidation product, the malondialdehyde content that significantly increased. Moreover, LC-EO at 2 MIC could destroy 96.51% of bacterial cell membrane integrity, and made S. sonnei cells to appear wrinkled with a rough surface, so that the intracellular adenosine triphosphate leakage was about 0.352-0.030 μmol/L. Finally, the results of application evaluation indicated that the addition of LC-EO at 4 μL/mL in lettuce leaves and 6 μL/mL in lettuce juice could decrease the number of S. sonnei to undetectable levels without remarkable influence on the lettuce leaf sensory quality. In summary, LC-EO exerted strong antibacterial activity and has the potential to control S. sonnei in food industry.
Collapse
Affiliation(s)
- Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tianxiao Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaoxiao Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Run Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Zeng R, Zou X, Huang C, Si H, Song J, Zhang J, Luo H, Wang Z, Wang P, Fan G, Rao X, Liao S, Chen S. Novel Design of Citral-Thiourea Derivatives for Enhancing Antifungal Potential against Colletotrichum gloeosporioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3173-3183. [PMID: 36760014 DOI: 10.1021/acs.jafc.2c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although much progress has been made in developing botanical fungicides to combat fungal diseases in crops, there remains a great need to improve the efficiency and long-term safety of these fungicides. This study proposes a novel strategy for designing citral-thiourea derivatives that feature such desirable properties. The motivation of the work herein was to enhance the antifungal activity of citral against C. gloeosprioides by exploiting the synergistic effect that arises from combining citral and thiourea compounds, thereby producing citral-thiourea derivatives that exhibit good long-term safety. The results revealed that the generated compounds e1, e3, e6, e18, and g showed remarkable antifungal activities against C. gloeosprioides, with corresponding EC50 values reaching 0.16, 1.66, 1.37, 4.76, and 4.60 mg/L, respectively, showing that the compounds significantly outperformed both the positive control kresoxim-methyl and the commercially available fungicide carbendazim. Furthermore, compound g showed stronger protective efficacy against C. gloeosprioides than carbendazim on mango fruit at 25 mg/L. Investigating the preliminary structure-activity relationship (SAR) of the compounds also revealed that the citral-thiourea derivatives exhibited higher antifungal activities against C. gloeosprioides compared to citral and thiourea compounds. This reinforcement of antifungal activity observed in the derivatives was found to be attributable to the two characteristics of low molecular size and the presence of a fluorine atom in the meta-position of the benzene ring. Beyond this, it was determined from QSAR that two molecular descriptors (the Kier-Hall index (order 3) and Tot dipole of the molecules) were negatively related to the antifungal activity of the citral-thiourea derivatives, while one other (the maximum resonance energy of a C-H bond) was positively related to their antifungal activity. More importantly, the citral-thiourea derivatives with high antifungal activities (i.e., compounds e1, e3, e6, e14, e15, e18, and g) exhibited negligible cytotoxicity to LO2 and HEK293T cell lines. The antifungal mechanism of the generated citral-thiourea derivatives was investigated by scanning electron microscopy (SEM) and relative conductivity. The derivatives were found to affect mycelial morphology and increase fungal cell membrane permeability, thereby resulting in the destruction of fungal cell membranes. These promising results provide novel insights into the study and potential application value of citral-thiourea derivatives as high-efficiency antifungal agents against C. gloeosprioides.
Collapse
Affiliation(s)
- Rong Zeng
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Xiuxiu Zou
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Cong Huang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Hongyan Si
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Jie Song
- Department of Natural Sciences, University of Michigan-Flint, 303E Kearsley, Flint, Michigan 48502, United States
| | - Ji Zhang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Hai Luo
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Zongde Wang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Peng Wang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Guorong Fan
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Xiaoping Rao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Shengliang Liao
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Shangxing Chen
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| |
Collapse
|
15
|
Hung TT, Ngan LTM, Viet H, Hoang NVM, Hieu TT. Chemical composition and anti- Helicobacter pylori activity of essential oil from fresh fruits of Litsea cubeba (Lour.) Pers. JOURNAL OF ESSENTIAL OIL RESEARCH 2023. [DOI: 10.1080/10412905.2023.2167876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tran Thanh Hung
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh city, Vietnam
| | - Luong Thi My Ngan
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
| | - Hoang Viet
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
| | | | - Tran Trung Hieu
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Exploration of Potent Antiviral Phytomedicines from Lauraceae Family Plants against SARS-CoV-2 Main Protease. Viruses 2022; 14:v14122783. [PMID: 36560787 PMCID: PMC9785681 DOI: 10.3390/v14122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
A new Coronaviridae strain, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), emerged from Wuhan city of China and caused one of the substantial global health calamities in December 2019. Even though several vaccines and drugs have been developed worldwide since COVID-19, a cost-effective drug with the least side effects is still unavailable. Currently, plant-derived compounds are mostly preferred to develop antiviral therapeutics due to its less toxicity, easy access, and cost-effective characteristics. Therefore, in this study, 124 phytochemical compounds from plants of Lauraceae family with medicinal properties were virtually screened against SARS-CoV-2 Mpro. Identification of four phytomolecules, i.e., cassameridine, laetanine, litseferine and cassythicine, with docking scores -9.3, -8.8, -8.6, and -8.6 kcal/mol, respectively, were undertaken by virtual screening, and molecular docking. Furthermore, the molecular dynamic simulation and essential dynamics analysis have contributed in understanding the stability and inhibitory effect of these selected compounds. These phytomolecules can be considered for further in vitro and in vivo experimental study to develop anti-SARS-CoV-2 therapeutics targeting the main protease (Mpro).
Collapse
|
17
|
Wang H, Li Y, Li Z, Ma R, Bai X, Zhan X, Luo K, Su R, Li X, Xia X, Shi C. Inhibition of Cronobacter sakazakii by Litsea cubeba Essential Oil and the Antibacterial Mechanism. Foods 2022; 11:foods11233900. [PMID: 36496708 PMCID: PMC9736361 DOI: 10.3390/foods11233900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Litsea cubeba essential oil (LC-EO) has anti-insecticidal, antioxidant, and anticancer proper-ties; however, its antimicrobial activity toward Cronobacter sakazakii has not yet been researched extensively. The objective of this study was to investigate the antimicrobial and antibiofilm effects of LC-EO toward C. sakazakii, along with the underlying mechanisms. The minimum inhibitory concentrations of LC-EO toward eight different C. sakazakii strains ranged from 1.5 to 4.0 μL/mL, and LC-EO exposure showed a longer lag phase and lower specific growth compared to untreated bacteria. LC-EO increased reactive oxygen species production, decreased the integrity of the cell membrane, caused cell membrane depolarization, and decreased the ATP concentration in the cell, showing that LC-EO caused cellular damage associated with membrane permeability. LC-EO induced morphological changes in the cells. LC-EO inhibited C. sakazakii in reconstituted infant milk formula at 50 °C, and showed effective inactivation of C. sakazakii biofilms on stainless steel surfaces. Confocal laser scanning and attenuated total reflection-Fourier-transform infrared spectrometry indicated that the biofilms were disrupted by LC-EO. These findings suggest a potential for applying LC-EO in the prevention and control of C. sakazakii in the dairy industry as a natural antimicrobial and antibiofilm agent.
Collapse
Affiliation(s)
- Haoran Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Yulu Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Zhuo Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Run Ma
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Kunyao Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Correspondence: ; Tel.: +86-29-87092486; Fax: +86-29-87091391
| |
Collapse
|
18
|
Qiu Y, Wang Y, Li Y. Solvent-Free Microwave Extraction of Essential Oils from Litsea cubeba (Lour.) Pers. at Different Harvesting Times and Their Skin-Whitening Cosmetic Potential. Antioxidants (Basel) 2022; 11:antiox11122389. [PMID: 36552598 PMCID: PMC9774158 DOI: 10.3390/antiox11122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Litsea cubeba fruit, which has the highest content of essential oils in the plant, is an important woody oil plant resource. In this study, the influence of the solvent-free microwave extraction (SFME) and hydrodistillation (HD) techniques on the extraction of L. cubeba fruit essential oils was investigated in terms of yield, kinetics, and chemical composition, where the former conditions were optimized by the response surface design. The maximal essential oil yield was obtained under the optimal SFME process conditions (442 W and 24 min), where the irradiation time was the most important variable (p < 0.0001). Regardless of the extraction method used, the influence of harvesting time on L. cubeba fruit essential oils were quantitatively and qualitatively analyzed afterwards, where the SFME essential oil from July showed its superiority over the others regarding its higher extraction yield and better bioactivities. Compared with the HD method, the SFME approach could significantly enhance the yield of essential oils extracted from June to August by nearly 47% with the advantages of saving energy and low environmental impact. Interestingly, the SFME method could selectively extract monoterpene hydrocarbons such as D-limonene with relation to different compositions and bioactivities. Moreover, SFME essential oil showed a better inhibitory effect on tyrosinase and melanogenesis, indicating its skin-whitening potential as a new promising natural cosmetic ingredient.
Collapse
Affiliation(s)
- Yufei Qiu
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Li
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Qingyuan Yaokang Biotechnology, Qingyuan 513200, China
- Correspondence: ; Tel.: +86-20-85220032; Fax: +86-20-8522-6630
| |
Collapse
|
19
|
Comparative Analysis of Complete Chloroplast Genomes of Nine Species of Litsea (Lauraceae): Hypervariable Regions, Positive Selection, and Phylogenetic Relationships. Genes (Basel) 2022; 13:genes13091550. [PMID: 36140718 PMCID: PMC9498446 DOI: 10.3390/genes13091550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Litsea is a group of evergreen trees or shrubs in the laurel family, Lauraceae. Species of the genus are widely used for a wide range of medicinal and industrial aspects. At present, most studies related to the gene resources of Litsea are restricted to morphological analyses or features of individual genomes, and currently available studies of select molecular markers are insufficient. In this study, we assembled and annotated the complete chloroplast genomes of nine species in Litsea, carried out a series of comparative analyses, and reconstructed phylogenetic relationships within the genus. The genome length ranged from 152,051 to 152,747 bp and a total of 128 genes were identified. High consistency patterns of codon bias, repeats, divergent analysis, single nucleotide polymorphisms (SNP) and insertions and deletions (InDels) were discovered across the genus. Variations in gene length and the presence of the pseudogene ycf1Ψ, resulting from IR contraction and expansion, are reported. The hyper-variable gene rpl16 was identified for its exceptionally high Ka/Ks and Pi values, implying that those frequent mutations occurred as a result of positive selection. Phylogenetic relationships were recovered for the genus based on analyses of full chloroplast genomes and protein-coding genes. Overall, both genome sequences and potential molecular markers provided in this study enrich the available genomic resources for species of Litsea. Valuable genomic resources and divergent analysis are also provided for further research of the evolutionary patterns, molecular markers, and deeper phylogenetic relationships of Litsea.
Collapse
|
20
|
Liu C, Chen HH, Tang LZ, Khine PK, Han LH, Song Y, Tan YH. Plastid genome evolution of a monophyletic group in the subtribe Lauriineae (Laureae, Lauraceae). PLANT DIVERSITY 2022; 44:377-388. [PMID: 35967258 PMCID: PMC9363652 DOI: 10.1016/j.pld.2021.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 06/15/2023]
Abstract
Litsea, a non-monophyletic group of the tribe Laureae (Lauraceae), plays important roles in the tropical and subtropical forests of Asia, Australia, Central and North America, and the islands of the Pacific. However, intergeneric relationships between Litsea and Laurus, Lindera, Parasassafras and Sinosassafras of the tribe Laureae remain unresolved. In this study, we present phylogenetic analyses of seven newly sequenced Litsea plastomes, together with 47 Laureae plastomes obtained from public databases, representing six genera of the Laureae. Our results highlight two highly supported monophyletic groups of Litsea taxa. One is composed of 16 Litsea taxa and two Lindera taxa. The 18 plastomes of these taxa were further compared for their gene structure, codon usage, contraction and expansion of inverted repeats, sequence repeats, divergence hotspots, and gene evolution. The complete plastome size of newly sequenced taxa varied between 152,377 bp (Litsea auriculata) and 154,117 bp (Litsea pierrei). Seven of the 16 Litsea plastomes have a pair of insertions in the IRa (trnL-trnH) and IRb (ycf2) regions. The 18 plastomes of Litsea and Lindera taxa exhibit similar gene features, codon usage, oligonucleotide repeats, and inverted repeat dynamics. The codons with the highest frequency among these taxa favored A/T endings and each of these plastomes had nine divergence hotspots, which are located in the same regions. We also identified six protein coding genes (accD, ndhJ, rbcL, rpoC2, ycf1 and ycf2) under positive selection in Litsea; these genes may play important roles in adaptation of Litsea species to various environments.
Collapse
Affiliation(s)
- Chao Liu
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Huan-Huan Chen
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Li-Zhou Tang
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Phyo Kay Khine
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Li-Hong Han
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education), Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Yun-Hong Tan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| |
Collapse
|
21
|
Borotová P, Galovičová L, Vukovic NL, Vukic M, Kunová S, Hanus P, Kowalczewski PŁ, Bakay L, Kačániová M. Role of Litsea cubeba Essential Oil in Agricultural Products Safety: Antioxidant and Antimicrobial Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:1504. [PMID: 35684278 PMCID: PMC9182909 DOI: 10.3390/plants11111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The essential oil from Litsea cubeba (LCEO) has good antioxidant, antimicrobial, anti-insect properties, which gives it the potential for use as a natural additive to food resources and food products in order to prevent spoilage and extend shelf life. In this study the biological activity related to food preservation was observed. The main volatile organic compounds were geranial (39.4%), neral (29.5%), and limonene (14.3%). Antioxidant activity was 30.9%, which was equal to 167.94 µg of Trolox per mL of sample. Antimicrobial activity showed the strongest inhibition against Serratia marcescens by disk diffusion method and minimum inhibitory concentrations MIC 50 and MIC 90 were the lowest for Micrococcus luteus with values 1.46 and 3.52 µL/mL, respectively. Antimicrobial activity of the LCEO vapor phase showed strong inhibition of microorganisms on apples, pears, potatoes, and kohlrabies. Over 50% of gram-positive and gram-negative bacteria and yeasts were inhibited by a concentration of 500 µL/mL. The inhibition of microorganisms was concentration dependent. Anti-insect activity was also strong, with 100% lethality of Pyrrhocoris apterus at a concentration of 25%. These results suggest that LCEO could be potentially used as a food preservative.
Collapse
Affiliation(s)
- Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Lucia Galovičová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Milena Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Simona Kunová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Paweł Hanus
- Department of Food Technology and Human Nutrition, Institute of Food and Nutrition Technology, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznan, Poland;
| | - Ladislav Bakay
- Department of Planting Design and Maintenance, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza, 35601 Rzeszow, Poland
| |
Collapse
|
22
|
Zhang XY, Wu CB, Wu CX, Lin L, Zhou YJ, Zhu YY, Tian WQ, Luo SM. Case Report: Torsade de Pointes Induced by the Third-Generation Epidermal Growth Factor Receptor–Tyrosine Kinase Inhibitor Osimertinib Combined With Litsea Cubeba. Front Cardiovasc Med 2022; 9:903354. [PMID: 35711361 PMCID: PMC9193968 DOI: 10.3389/fcvm.2022.903354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Torsades de Pointes (TdP) occurred in a 68-year-old female with epidermal growth factor receptor (EGFR) mutant lung cancer administered osimertinib, the third-generation EGFR tyrosine kinase inhibitor (TKI). Electrocardiogram (ECG) recorded at Tdp showed QT prolongation (QTc = 515 ms), to which a Traditional Chinese Medicine (TCM) named “Litsea Cubeba” may have contributed. After discontinuation of osimertinib and Litsea Cubeba, magnesium supplementation, potassium supplementation, lidocaine infusion, and the pacemaker frequency adjustment, Tdp terminated. However, QT prolongation sustained at discharge (QTc = 528 ms), partly because of the emergency use of amiodarone. Osimertinib may prolong the QT interval leading to TdP, especially when multiple risk factors to lengthen QT interval are incidentally overlapped. Thus, regular monitoring of ECG and appropriate management of concomitant drugs are highly recommended.
Collapse
Affiliation(s)
- Xia-yan Zhang
- Department of Pharmacy, Lishui Central Hospital, Lishui, China
| | - Cha-bin Wu
- Department of Pharmacy, Lishui Central Hospital, Lishui, China
- Department of Pharmacy, Longquan Hospital of TCM, Lishui, China
| | - Cai-xia Wu
- Department of Pharmacy, Lishui Central Hospital, Lishui, China
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Qingyuan, Lishui, China
| | - Li Lin
- Department of Cardiovascular Medicine, Lishui Central Hospital, Lishui, China
| | - Yue-juan Zhou
- Department of Pharmacy, Lishui Central Hospital, Lishui, China
| | - Yan-yan Zhu
- Department of Pharmacy, Lishui Central Hospital, Lishui, China
- *Correspondence: Yan-yan Zhu,
| | - Wei-qiang Tian
- Department of Pharmacy, Lishui Central Hospital, Lishui, China
| | - Song-mei Luo
- Department of Pharmacy, Lishui Central Hospital, Lishui, China
| |
Collapse
|
23
|
Liu I, Varinthra P, Suresh P, Chokkalingam P, Ibiayo A. Anti-inflammatory and memory-enhancing properties of Chinese herbal extracts: The possible application in Alzheimer's disease. Tzu Chi Med J 2022. [DOI: 10.4103/tcmj.tcmj_139_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Zhang L, Shi Y, Duan X, He W, Si H, Wang P, Chen S, Luo H, Rao X, Wang Z, Liao S. Novel Citral-thiazolyl Hydrazine Derivatives as Promising Antifungal Agents against Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14512-14519. [PMID: 34809431 DOI: 10.1021/acs.jafc.1c04064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To develop new antifungal agents against phytopathogenic fungi, a series of citral-thiazolyl hydrazine derivatives were designed, synthesized, and characterized by FT-IR, 1H NMR, 13C NMR, and HRMS. Antifungal activity results showed that most synthetic compounds exhibited broad-spectrum antifungal activities against six phytopathogenic fungi in vitro. Notably, compounds b and c15 exhibited remarkable antifungal activity against Colletotrichum gloeosprioides, Rhizoctonia solani, Phytophthora nicotianae var. nicotianae, Diplodia pinea, Colletotrichum acutatum, and Fusarium oxysporum f. sp. niveum, which were all superior to the positive control tricyclazole. Structure-activity relationship (SAR) studies demonstrated that introducing electron-withdrawing groups such as F on the benzene ring exhibited outstanding antifungal activities against all the tested fungi. Furthermore, compound b could effectively control rice sheath blight and showed higher curative activities against R. solani than validamycin·bacillus in vivo. In addition, the in vitro cytotoxicity results indicated that compound b possessed moderate cytotoxicity activity, and all citral-thiazolyl hydrazine derivatives exhibited lower or no cytotoxicity to the LO2 and HEK293 cell lines. In addition, the acute oral toxicity test showed that compound b had moderate toxicity (level II) with an LD50 value of 310 mg/kg bw (95% confidence limit: 175-550 mg/kg bw). Finally, a preliminary action mechanism study showed that causing obvious malformation of mycelium and increasing cell membrane permeability are two of the potential mechanisms by which compound b exerts antifungal activity. The present work indicates that some of these derivatives may serve as novel potential fungicides, and compound b is expected to be the leading structure for the development of new antifungal agents.
Collapse
Affiliation(s)
- Li Zhang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Yunfei Shi
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Xinying Duan
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Wanrong He
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Hongyan Si
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Peng Wang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Shangxing Chen
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Hai Luo
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Xiaoping Rao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Zongde Wang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Shengliang Liao
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| |
Collapse
|
25
|
Anti-inflammatory, antioxidant, and dye removal properties of mucilage isolated from Litsea quinqueflora (Dennst.) Suresh. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
da Silva RA, Antonieti FMPM, Röder DVDDB, Pedroso RDS. Essential Oils of Melaleuca, Citrus, Cupressus, and Litsea for the Management of Infections Caused by Candida Species: A Systematic Review. Pharmaceutics 2021; 13:pharmaceutics13101700. [PMID: 34683994 PMCID: PMC8540016 DOI: 10.3390/pharmaceutics13101700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Candida is a common agent of infection in humans, which has a wide distribution and is a colonizer fungus of the body, occasionally assuming the role of a pathogen. The type of treatment depends on the site of infection and the clinical condition of the patient. Superficial infections, such as mucosal infections, can be treated with topical medications. So-called alternative therapies have rarely been studied, although the literature records the effectiveness of some treatments, especially as complementary therapy. The aims of this review were to analyze evidence of the anti-Candida inhibitory activity of essential oils of the Citrus, Cupressus, Litsea, and Melaleuca species; in addition to addressing the chemical composition, probable mechanisms of antifungal action and studies of toxicity, cytotoxicity, and genotoxicity were included. The literature from Medline/PubMed, Science Direct, Scopus, Web of Science, and the Brazilian database Periodic Capes was reviewed. Thirty-eight articles were selected, which included two articles on Litsea spp., seven on Cupressus spp., thirteen articles on Citrus spp., and twenty-one articles on Melaleuca spp. In conclusion, this study showed in vitro evidence for the use of essential oils of the plant species evaluated for the treatment of infections caused by different Candida species.
Collapse
Affiliation(s)
- Rafael Alves da Silva
- Post-Graduation Program in Health Sciences, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil; (R.A.d.S.); (F.M.P.M.A.)
| | | | - Denise Von Dolinger de Brito Röder
- Post-Graduation Program in Health Sciences, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil; (R.A.d.S.); (F.M.P.M.A.)
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
- Correspondence: ; Tel.: +55-34-3225-8670
| | | |
Collapse
|
27
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Fašmon Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Westendorf J, Manini P, Pizzo F, Dusemund B. Safety and efficacy of a feed additive consisting of an essential oil from the fruits of Litsea cubeba (Lour.) Pers. (litsea berry oil) for use in all animal species (FEFANA asbl). EFSA J 2021; 19:e06623. [PMID: 34135999 PMCID: PMC8193530 DOI: 10.2903/j.efsa.2021.6623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of an essential oil from the fruits of Litsea cubeba (Lour.) Pers. (litsea berry oil), when used as a sensory additive (flavouring) in feed and water for drinking for all animal species. The FEEDAP Panel concluded that litsea berry oil is safe up to the maximum proposed use level of 125 mg/kg complete feed for ornamental fish. For the other species, the calculated safe concentration in complete feed are 11 mg/kg for chicken for fattening, 16 mg/kg for laying hen, 14 mg/kg for turkey for fattening, 19 mg/kg for piglet, 23 mg/kg for pig for fattening, 28 mg/kg for lactating sow, 48 mg/kg for veal calf (milk replacer), 43 mg/kg for cattle for fattening, sheep, goat and horse, 28 mg/kg for dairy cow, 17 mg/kg for rabbit, 47 mg/kg for salmon, 50 mg/kg for dog and 8.5 mg/kg for cat. The FEEDAP Panel also concluded that the use of litsea berry oil at the maximum proposed use level in water for drinking of 1 mg/kg is safe for all animal species. Simultaneous use in feed and water for drinking may lead to the maximum safe dose being exceeded. No concerns for consumer safety were identified following the use of the additive up to the highest safe use level in feed for the target animals. The essential oil under assessment should be considered as irritant to skin and eyes, and as a skin and respiratory sensitiser. The use of the additive in animal feed under the proposed conditions was not expected to pose a risk for the environment. Litsea berry oil is recognised to flavour food. Since its function in feed would be essentially the same as that in food, no further demonstration of efficacy was considered necessary.
Collapse
|
28
|
In Vitro Antioxidant Activity of Litsea martabanica Root Extract and Its Hepatoprotective Effect on Chlorpyrifos-Induced Toxicity in Rats. Molecules 2021; 26:molecules26071906. [PMID: 33800652 PMCID: PMC8037761 DOI: 10.3390/molecules26071906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
In Thailand, people in the highland communities whose occupational exposure to pesticides used the root of Litsea martabanica as a detoxifying agent. However, the scientific data to support the traditional use of this plant are insufficient. This study aimed to evaluate the antioxidant activity and anti-pesticide potential of L. martabanica root extract. Antioxidant properties were investigated by 2,2′-diphenyl-1-picrylhydrazyl (DPPH) assay, superoxide radicals scavenging assay, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, ferric reducing antioxidant power (FRAP), and total phenolic content determination. In all assays, L. martabanica extracts and their fractions exhibited high antioxidant activities differently. The water extract is traditionally used as a detoxifying agent. Therefore, it was chosen for in vivo experiments. The rats received the extract in a way that mimics the traditional methods of tribal communities followed by chlorpyrifos for 16 days. The results showed that acetylcholinesterase activity decreases in pesticide-exposed rats. Treatment with the extract caused increasing acetylcholinesterase activity in the rats. Therefore, L. martabanica extract may potentially be used as a detoxifying agent, especially for the chlorpyrifos pesticide. The antioxidant properties of L. martabanica may provide a beneficial effect by protecting liver cells from damage caused by free radicals. Histopathology results revealed no liver cell necrosis and showed the regeneration of liver cells in the treatment group. L. martabanica extract did not cause changes in behavior, liver weight, hematological and biochemical profiles of the rats.
Collapse
|
29
|
Shima AL, Berger L, Skerratt LF. Haematological and serum biochemical reference intervals of free-ranging Lumholtz's tree-kangaroos (Dendrolagus lumholtzi). Aust Vet J 2021; 99:249-254. [PMID: 33751570 DOI: 10.1111/avj.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/13/2021] [Accepted: 02/21/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Reference intervals for haematology and serum biochemistry parameters were developed for free-ranging Lumholtz's tree-kangaroo (Dendrolagus lumholtzi) using 35 samples from 12 female and 15 male free-ranging animals. Captive tree-kangaroos (n = 12) were also sampled for comparison. Differences were found between free-ranging and captive animals in white blood cell and neutrophil counts, and levels of aspartate aminotransferase, alkaline phosphatase, bilirubin, creatine kinase, phosphate, triglycerides and lipase. These differences may be attributed to diet, activity, capture methods or age group. Reference intervals generated may be used for both free-ranging and captive Lumholtz's tree-kangaroos. This study provides a valuable tool for the assessment of health in rescued and captive tree-kangaroos and will aid in investigations into population health and disease in free-ranging Lumholtz's tree-kangaroos. OBJECTIVE To develop reference intervals (RIs) for haematology and serum biochemistry parameters in Lumholtz's tree-kangaroos. METHODS Haematological and serum biochemical RIs were determined using 35 samples from 27 clinically healthy Lumholtz's tree-kangaroos from the Atherton Tablelands region of Queensland examined between 2014 and 2019. Haematology and serum biochemistry parameters were measured from 16 samples from 12 captive animals for comparison. RESULTS Reference intervals based on 35 samples from free-ranging animals showed higher mean and standard deviation values for white blood cell and neutrophil counts, and levels of aspartate aminotransferase, alkaline phosphatase, bilirubin, creatine kinase, phosphate, triglycerides and lipase than results for 16 samples from captive animals. Captive individuals showed higher mean values than free-ranging individuals for albumin, protein, creatinine as well as Hb, MCV, MCH and MCHC. CONCLUSION The haematological and serum biochemistry RIs developed for Lumholtz's tree-kangaroos in this study will provide a valuable tool during clinical examination and investigations into disease and population health by veterinarians and researchers. The differences in parameters between free-ranging and captive animals are consistent with differences in diet, age cohort, activity or capture methods. Reference intervals generated from free-ranging animals should also be valid for captive Lumholtz's tree-kangaroos.
Collapse
Affiliation(s)
- A L Shima
- One Health Research Group, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, Queensland, 4811, Australia
| | - L Berger
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| | - L F Skerratt
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| |
Collapse
|
30
|
Hao K, Xu B, Zhang G, Lv F, Wang Y, Ma M, Si H. Antibacterial Activity and Mechanism of Litsea cubeba L. Essential Oil Against Acinetobacter baumannii. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21999146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The main objective of this study was to investigate the antibacterial activity and mechanism of Litsea cubeba essential oil (LCEO) against Acinetobacter baumannii. The antibacterial activity was examined by a serial dilution method and growth curves. The essential oil showed strong activity against A. baumannii. The mechanism of the antibacterial action was evaluated by the integrity and permeability of the membrane, scanning electron microscopy ( SEM) and SDS-PAGE. The change in permeability of the cell membrane and leakage of cell intracellular biomacromolecules verified that LCEO has an obvious effect on the cell membrane. SEM showed the damaging effect of the essential oil on cells since the morphology of the treated bacteria was significantly changed. Different expression of proteins indicated the effect of the essential oil on protein synthesis. It is suggested that LCEO with both emulsifying and antibacterial activities, has a potential to serve as an inhibitor against A. baumannii.
Collapse
Affiliation(s)
- Kaiyuan Hao
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Baichang Xu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Geyin Zhang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Yuhan Wang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Mingxiang Ma
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| |
Collapse
|
31
|
SIVAMARUTHI BS, KESIKA P, CHAIYASUT C. The composition, pharmacological and economic importance of essential oil of Litsea cubeba (Lour.) Pers. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.35720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Vo TTT, Chu PM, Tuan VP, Te JSL, Lee IT. The Promising Role of Antioxidant Phytochemicals in the Prevention and Treatment of Periodontal Disease via the Inhibition of Oxidative Stress Pathways: Updated Insights. Antioxidants (Basel) 2020; 9:antiox9121211. [PMID: 33271934 PMCID: PMC7760335 DOI: 10.3390/antiox9121211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence on the involvement of oxidative stress, which is simply described as the imbalance between oxidants and antioxidants in favor of the former, in the development of periodontal disease that is the most common inflammatory disease in the oral cavity. Thus, the potential of antioxidant phytochemicals as adjunctively preventive and therapeutic agents against the initiation and progression of periodontal disease is a topic of great interest. The current review firstly aims to provide updated insights about the immuno-inflammatory pathway regulated by oxidative stress in periodontal pathology. Then, this work further presents the systemic knowledge of antioxidant phytochemicals, particularly the pharmacological activities, which can be utilized in the prevention and treatment of periodontal disease. Additionally, the challenges and future prospects regarding such a scope are figured out.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Pei-Ming Chu
- School of Medicine, College of Medicine, China Medical University, Taichung 406, Taiwan;
| | - Vo Phuoc Tuan
- Endoscopy Department, Cho Ray Hospital, Ho Chi Minh City 700000, Vietnam;
| | - Joyce Si-Liang Te
- Department of Medical Education, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Correspondence: ; Tel.: +886-2-27361661 (ext. 5162); Fax: +886-2-27362295
| |
Collapse
|
33
|
Seal T, Chaudhuri K, Pillai B, Chakrabarti S, Mondal T, Auddy B. Evaluation of antioxidant activities, toxicity studies and the DNA damage protective effect of various solvent extracts of Litsea cubeba fruits. Heliyon 2020; 6:e03637. [PMID: 32258483 PMCID: PMC7103777 DOI: 10.1016/j.heliyon.2020.e03637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/02/2020] [Accepted: 03/18/2020] [Indexed: 01/20/2023] Open
Abstract
Litsea cubeba is devoured by the ethnic individuals of Arunachal Pradesh in India as food and has been traditionally used for curing different ailments. The purpose of present study was to investigate the antioxidant activities of fruits of L. cubeba using different solvent extracts, quantification of phenolics, toxicity studies and DNA damage protective activities. The antioxidant activities of fruits using five different solvent extracts completed utilizing different in vitro examines. The quantitation of phenolic and polyphenolic compounds in the methanol extract of the fruits was carried out by HPLC. The in vitro haemolytic examination of plant concentrates were completed on rat erythrocytes. Appraisal of cytotoxicity of eatable fruits was assessed by MTT measure. The genotoxicity of the contemplated plant was tried by the single-cell gel electrophoresis comet measure. The DNA defensive impacts of the aqueous extracts of fruits on rodent lymphocyte DNA lesions were likewise assessed with the comet test. The extract obtained by methanol exhibited the highest antioxidant activity. The HPLC examination of the methanol concentrate of the plant demonstrated the occurrence of different phenolic acids and flavonoids like caffeic acid (145.96μg/100mg DE), syringic acid (125.85 μg/100mg DE), ferulic acid (155.89 μg/100mg DE), apigenin (28.43 μg/100mg DE), kaempferol (53.41 μg/100mg DE) etc. in various amounts. The consequences of haemolytic lethality, cytotoxicity and genotoxicity of fluid concentrates of the edible plant ensure the security at cell and genomic level. The fluid concentrate of the plant fundamentally repressed DNA harm and these information recommend that the watery concentrate of L. cubeba can forestall oxidative DNA harm to rodent lymphocytes, which is likely because of antioxidant constituents in the concentrate. These outcomes demonstrate that L. cubeba can be utilized in dietary applications with a possibility to diminish oxidative pressure.
Collapse
Affiliation(s)
- Tapan Seal
- Plant Chemistry Department, Botanical Survey of India, Howrah, India
| | - Kausik Chaudhuri
- Plant Chemistry Department, Botanical Survey of India, Howrah, India
| | - Basundhara Pillai
- Plant Chemistry Department, Botanical Survey of India, Howrah, India
| | | | - Tanmoy Mondal
- West Bengal University of Technology, Kolkata, India
| | - Biswajit Auddy
- Chigurupati Technologies Private Limited, Hyderabad, India
| |
Collapse
|
34
|
Bora H, Kamle M, Mahato DK, Tiwari P, Kumar P. Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. PLANTS (BASEL, SWITZERLAND) 2020; 9:E357. [PMID: 32168877 PMCID: PMC7154898 DOI: 10.3390/plants9030357] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
Citrus is a genus belonging to the Rutaceae family and includes important crops like orange, lemons, pummelos, grapefruits, limes, etc. Citrus essential oils (CEOs) consist of some major biologically active compounds like α-/β-pinene, sabinene, β-myrcene, d-limonene, linalool, α-humulene, and α-terpineol belonging to the monoterpenes, monoterpene aldehyde/alcohol, and sesquiterpenes group, respectively. These compounds possess several health beneficial properties like antioxidant, anti-inflammatory, anticancer, etc., in addition to antimicrobial properties, which have immense potential for food applications. Therefore, this review focused on the extraction, purification, and detection methods of CEOs along with their applications for food safety, packaging, and preservation. Further, the concerns of optimum dose and safe limits, their interaction effects with various food matrices and packaging materials, and possible allergic reactions associated with the use of CEOs in food applications were briefly discussed, which needs to be addressed in future research along with efficient, affordable, and "green" extraction methods to ensure CEOs as an ecofriendly, cost-effective, and natural alternative to synthetic chemical preservatives.
Collapse
Affiliation(s)
- Himashree Bora
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| | - Dipendra Kumar Mahato
- School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, Burwood, VIC 3125, Australia;
| | - Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| |
Collapse
|
35
|
In Vitro and In Vivo Anti- Candida spp. Activity of Plant-Derived Products. PLANTS 2019; 8:plants8110494. [PMID: 31718037 PMCID: PMC6918153 DOI: 10.3390/plants8110494] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/14/2019] [Accepted: 11/08/2019] [Indexed: 01/08/2023]
Abstract
Candidiasis therapy, especially for candidiasis caused by Candida non-albicans species, is limited by the relatively reduced number of antifungal drugs and the emergence of antifungal tolerance. This study evaluates the anticandidal activity of 41 plant-derived products against Candida species, in both planktonic and biofilm cells. This study also evaluates the toxicity and the therapeutic action of the most active compounds by using the Caenorhabditis elegans–Candida model. The planktonic cells were cultured with various concentrations of the tested agents. The Cupressus sempervirens, Citrus limon, and Litsea cubeba essential oils as well as gallic acid were the most active anticandidal compounds. Candida cell re-growth after treatment with these agents for 48 h demonstrated that the L. cubeba essential oil and gallic acid displayed fungistatic activity, whereas the C. limon and C. sempervirens essential oils exhibited fungicidal activity. The C. sempervirens essential oil was not toxic and increased the survival of C. elegans worms infected with C. glabrata or C. orthopsilosis. All the plant-derived products assayed at 250 µg/mL affected C. krusei biofilms. The tested plant-derived products proved to be potential therapeutic agents against Candida, especially Candida non-albicans species, and should be considered when developing new anticandidal agents.
Collapse
|