1
|
Tripathi PN, Lodhi A, Rai SN, Nandi NK, Dumoga S, Yadav P, Tiwari AK, Singh SK, El-Shorbagi ANA, Chaudhary S. Review of Pharmacotherapeutic Targets in Alzheimer's Disease and Its Management Using Traditional Medicinal Plants. Degener Neurol Neuromuscul Dis 2024; 14:47-74. [PMID: 38784601 PMCID: PMC11114142 DOI: 10.2147/dnnd.s452009] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. While there is currently no cure for AD, several pharmacotherapeutic targets and management strategies have been explored. Additionally, traditional medicinal plants have gained attention for their potential role in AD management. Pharmacotherapeutic targets in AD include amyloid-beta (Aβ) aggregation, tau protein hyperphosphorylation, neuroinflammation, oxidative stress, and cholinergic dysfunction. Traditional medicinal plants, such as Ginkgo biloba, Huperzia serrata, Curcuma longa (turmeric), and Panax ginseng, have demonstrated the ability to modulate these targets through their bioactive compounds. Ginkgo biloba, for instance, contains flavonoids and terpenoids that exhibit neuroprotective effects by reducing Aβ deposition and enhancing cerebral blood flow. Huperzia serrata, a natural source of huperzine A, has acetylcholinesterase-inhibiting properties, thus improving cholinergic function. Curcuma longa, enriched with curcumin, exhibits anti-inflammatory and antioxidant effects, potentially mitigating neuroinflammation and oxidative stress. Panax ginseng's ginsenosides have shown neuroprotective and anti-amyloidogenic properties. The investigation of traditional medicinal plants as a complementary approach to AD management offers several advantages, including a lower risk of adverse effects and potential multi-target interactions. Furthermore, the cultural knowledge and utilization of these plants provide a rich source of information for the development of new therapies. However, further research is necessary to elucidate the precise mechanisms of action, standardize preparations, and assess the safety and efficacy of these natural remedies. Integrating traditional medicinal-plant-based therapies with modern pharmacotherapies may hold the key to a more comprehensive and effective approach to AD treatment. This review aims to explore the pharmacotherapeutic targets in AD and assess the potential of traditional medicinal plants in its management.
Collapse
Affiliation(s)
- Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Ankit Lodhi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Center of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilay Kumar Nandi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Shweta Dumoga
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Pooja Yadav
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Amit Kumar Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Santosh Kumar Singh
- Center of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Abdel-Nasser A El-Shorbagi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sachin Chaudhary
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Current trends in natural products for the treatment and management of dementia: Computational to clinical studies. Neurosci Biobehav Rev 2023; 147:105106. [PMID: 36828163 DOI: 10.1016/j.neubiorev.2023.105106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
The number of preclinical and clinical studies evaluating natural products-based management of dementia has gradually increased, with an exponential rise in 2020 and 2021. Keeping this in mind, we examined current trends from 2016 to 2021 in order to assess the growth potential of natural products in the treatment of dementia. Publicly available literature was collected from various databases like PubMed and Google Scholar. Oxidative stress-related targets, NF-κB pathway, anti-tau aggregation, anti-AChE, and A-β aggregation were found to be common targets and pathways. A retrospective analysis of 33 antidementia natural compounds identified 125 sustainable resources distributed among 65 families, 39 orders, and 7 classes. We found that families such as Berberidaceae, Zingiberaceae, and Fabaceae, as well as orders such as Lamiales, Sapindales, and Myrtales, appear to be important and should be researched further for antidementia compounds. Moreover, some natural products, such as quercetin, curcumin, icariside II, berberine, and resveratrol, have a wide range of applications. Clinical studies and patents support the importance of dietary supplements and natural products, which we will also discuss. Finally, we conclude with the broad scope, future challenges, and opportunities for field researchers.
Collapse
|
3
|
Wojtunik-Kulesza K, Oniszczuk T, Mołdoch J, Kowalska I, Szponar J, Oniszczuk A. Selected Natural Products in Neuroprotective Strategies for Alzheimer's Disease-A Non-Systematic Review. Int J Mol Sci 2022; 23:1212. [PMID: 35163136 PMCID: PMC8835836 DOI: 10.3390/ijms23031212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) are distinguished by the irreversible degeneration of central nervous system function and structure. AD is characterized by several different neuropathologies-among others, it interferes with neuropsychiatrical controls and cognitive functions. This disease is the number one neurodegenerative disorder; however, its treatment options are few and, unfortunately, ineffective. In the new strategies devised for AD prevention and treatment, the application of plant-based natural products is especially popular due to lesser side effects associated with their taking. Moreover, their neuroprotective activities target different pathological mechanisms. The current review presents the anti-AD properties of several natural plant substances. The paper throws light on products under in vitro and in vivo trials and compiles information on their mechanism of actions. Knowledge of the properties of such plant compounds and their combinations will surely lead to discovering new potent medicines for the treatment of AD with lesser side effects than the currently available pharmacological proceedings.
Collapse
Affiliation(s)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Jarosław Szponar
- Toxicology Clinic, Clinical Department of Toxicology and Cardiology, Medical University of Lublin, Stefan Wyszyński Regional Specialist Hospital, Al. Kraśnicka 100, 20-718 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Rastogi S, Pandey DN, Singh RH. COVID-19 pandemic: A pragmatic plan for ayurveda intervention. J Ayurveda Integr Med 2022; 13:100312. [PMID: 32382220 PMCID: PMC7177084 DOI: 10.1016/j.jaim.2020.04.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/23/2022] Open
Abstract
World community is facing an unprecedented pandemic of novel corona virus disease (COVID-19) caused by Severe Acute Respiratory Syndrome Corona virus 2 (SARS-CoV- 2). The disease has spread globally with more than 1.43 million confirmed cases and 82,100 deaths as of April 8, 2020. Despite worldwide efforts to contain it, the pandemic is continuing to spread for want of a clinically-proven prophylaxis and therapeutic strategy. The dimensions of pandemic require an urgent harnessing of all knowledge systems available globally. Utilization of Traditional Chinese Medicine in Wuhan to treat COVID-19 cases sets the example demonstrating that traditional health care can contribute to treatment of these patients successfully. Drawing on the Ayurveda classics, contemporary scientific studies, and experiential knowledge on similar clinical settings, here we propose a pragmatic plan for intervention in India. We provide a plan for graded response, depending on the stage of infection among individuals, in a population. Notwithstanding the fact that no system of medicine has any evidence-based treatment for COVID-19 as yet, clinical interventions are required to be put in place. Therefore, pragmatic strategy proposed here for Ayurveda system of medicine requires immediate implementation. It will facilitate learning, generate evidence and shall be a way forward.
Collapse
Affiliation(s)
- Sanjeev Rastogi
- Dept of Kaya Chikitsa, State Ayurvedic College and Hospital, Lucknow, 226003, India.
| | - Deep Narayan Pandey
- Department of Environment/Forests, Government of Rajasthan, Secretariat, Jaipur, 302005, Rajasthan, India
| | - Ram Harsh Singh
- Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
5
|
Tan MA, Tan BLU, Nonato MG, An SSA. Neuroprotective effects on amyloid- beta induced cytotoxicity of Pandanus clementis Merr. 3 Biotech 2021; 11:330. [PMID: 34194913 DOI: 10.1007/s13205-021-02889-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
The present study determined the neuroprotective potential of the alcoholic and aqueous extracts of Pandanus clementis Merr. (Pandanaceae) to protect the neuroblastoma SH-SY5Y cells against amyloid-beta 1-42 (Aβ) cytotoxicity. Inhibition of Aβ aggregation was determined by Thioflavin T (ThT) assay, and in vitro neuroprotective cell viability, intracellular reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were evaluated with human neuroblastoma SH-SY5Y cells insulted with Aβ. Chromatographic separation on the alcoholic extract yielded known phytosterols. Results showed that pretreatment of the SH-SY5Y cells with the P. clementis extracts increased cell viability and MMP, and decreased ROS, suggesting protective effects. Hence, P. clementis extract has promising neuroprotective therapeutic potential. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02889-3.
Collapse
|
6
|
Singh H, Bharadvaja N. Treasuring the computational approach in medicinal plant research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:19-32. [PMID: 34004233 DOI: 10.1016/j.pbiomolbio.2021.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 01/24/2023]
Abstract
Medicinal plants serve as a valuable source of secondary metabolites since time immemorial. Computational Research in 21st century is giving more attention to medicinal plants for new drug design as pharmacological screening of bioactive compound was time consuming and expensive. Computational methods such as Molecular Docking, Molecular Dynamic Simulation and Artificial intelligence are significant Insilico tools in medicinal plant research. Molecular docking approach exploits the mechanism of potential phytochemicals into the target active site to elucidate its interactions and biological therapeutic properties. MD simulation illuminates the dynamic behavior of biomolecules at atomic level with fine quality representation of biomolecules. Dramatical advancement in computer science is illustrating the biological mechanism via these tools in different diseases treatment. The advancement comprises speed, the system configuration, and other software upgradation to insights into the structural explanation and optimization of biomolecules. A probable shift from simulation to artificial intelligence has in fact accelerated the art of scientific study to a sky high. The most upgraded algorithm in artificial intelligence such as Artificial Neural Networks, Deep Neural Networks, Neuro-fuzzy Logic has provided a wide opportunity in easing the time required in classical experimental strategy. The notable progress in computer science technology has paved a pathway for understanding the pharmacological functions and creating a roadmap for drug design and development and other achievement in the field of medicinal plants research. This review focus on the development and overview in computational research moving from static molecular docking method to a range of dynamic simulation and an advanced artificial intelligence such as machine learning.
Collapse
Affiliation(s)
- Harshita Singh
- Plant Biotechnology Laboratory, Delhi Technological University, Delhi, 110042, India
| | - Navneeta Bharadvaja
- Plant Biotechnology Laboratory, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
7
|
Tan Lim AM, Oyong GG, Tan MCS, Chang Shen C, Ragasa CY, Cabrera EC. Quorum quenching activity of Andrographis paniculata (Burm f.) Nees andrographolide compounds on metallo-β-lactamase-producing clinical isolates of Pseudomonas aeruginosa PA22 and PA247 and their effect on lasR gene expression. Heliyon 2021; 7:e07002. [PMID: 34027192 PMCID: PMC8131311 DOI: 10.1016/j.heliyon.2021.e07002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/03/2020] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Andrographis paniculata (Burm f.) Nees is a tropical plant native to Southeast Asia that has been used as an effective remedy for a wide variety of illnesses in traditional Chinese and Ayurvedic medicine. The antimicrobial activity of its crude extract had been shown to be due to its quorum quenching activity. The study determined the effect of purified extracted compounds from the leaf of A. paniculata, namely: andrographolide, 14-deoxyandrographolide, 14-deoxy-12-hydroxyandrographolide and neoandrographolide on quorum sensing-mediated virulence mechanisms in clinical isolates of metallo-β-lactamase (MβL)-producing Pseudomonas aeruginosa. Their effect on the expression of the lasR gene, which codes for LasR, a transcription activator protein of the quorum sensing system in P. aeruginosa was also determined using RT-qPCR. All the pure compounds significantly decreased the biofilm formation, protease production and swarming motility of the P. aeruginosa isolates compared to the untreated controls (p < 0.05). Results of the RT-qPCR assay showed that all compounds significantly downregulated the expression of lasR compared to the untreated control (p < 0.05), supporting the position that the lower virulence activities of the treated group were due to quorum quenching activity of the pure compounds. Multiple comparisons using Tukey's HSD analysis revealed that the means of the relative expression of lasR of the isolates treated with the different compounds were not significantly different from each other (p > 0.05), suggesting equal potencies. Results show the potential of the isolated pure compounds from A. paniculata for use as antimicrobial agents as a result of their quorum quenching activities.
Collapse
Affiliation(s)
- An Margarete Tan Lim
- Biology Department, College of Science, De La Salle University, Manila, Philippines.,School of Medical Technology, Centro Escolar University, Manila, Philippines
| | - Glenn G Oyong
- Molecular Science Unit Laboratory, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines
| | - Maria Carmen S Tan
- Chemistry Department, College of Science, De La Salle University, Manila, Philippines
| | - Chien Chang Shen
- Chinese Medicinal Chemistry, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Consolacion Y Ragasa
- Chemistry Department, College of Science, De La Salle University, Manila, Philippines
| | - Esperanza C Cabrera
- Biology Department, College of Science, De La Salle University, Manila, Philippines.,Molecular Science Unit Laboratory, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines
| |
Collapse
|
8
|
Dual-target compounds for Alzheimer's disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur J Med Chem 2021; 221:113492. [PMID: 33984802 DOI: 10.1016/j.ejmech.2021.113492] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/17/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and represents the major cause of dementia worldwide. Currently, there are no available treatments capable to deliver disease-modifying effects, and the available drugs can only alleviate the symptoms. The exact pathology of AD is not yet fully understood and several hallmarks such as the presence of amyloid-β (Aβ) senile plaques, neurofibrillary tangles (NFTs) as well as the loss of cholinergic function have been associated to AD. Distinct pharmacological targets have been validated to address AD, with acetylcholinesterase (AChE) and β-secretase-1 (BACE-1) being two of the most explored ones. A great deal of research has been devoted to the development of new AChE and BACE-1 effective inhibitors, tackled separately or in combination of both. The multi-factorial nature of AD conducted to the development of multi-target directed ligands (MTDLs), defined as single molecules capable to modulate more than one biological target, as an alternative approach to the old paradigm one-target one-drug. In this context, this review describes a collection of natural and synthetic compounds with dual-inhibitory properties towards both AChE and BACE-1 in the MTDLs context. Furthermore, this review also provides a critical comprehensive analysis of structure-activity relationships (SAR) of the synthetic compounds.
Collapse
|
9
|
Gupta MS, Kumar TP. The potential of ODFs as carriers for drugs/vaccines against COVID-19. Drug Dev Ind Pharm 2021; 47:179-188. [PMID: 33300820 PMCID: PMC7784830 DOI: 10.1080/03639045.2020.1862180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 01/22/2023]
Abstract
COVID-19 has spread out its wings across the globe and is taking away many lives. Millions of people are (self) quarantined to prevent the spread of this viral disease. World Health Organization (WHO) has affirmed that there is not any medicine for COVID-19. Besides, there is also no single drug that is approved by any regulatory agency for usage against this dangerous disease. Researchers across the globe are working tirelessly to fix an end to this virus and to save precious lives. While the research is in full swing, one is not sure whether they would come up with a chemical/herbal drug or a vaccine. Irrespective of the type of active ingredient for COVID-19, one needs to have a proper system to deliver the identified active ingredient to subjects/patients across the globe. Orodispersible films (ODFs) are excellent and attractive drug delivery carriers that have the potential to deliver drugs, herbal extracts, and vaccines. They are apt for patients who have a problem consuming traditional drug products such as tablets or capsules. The beauty of this dosage form is that it does not need water to consume by the subjects and can be readily administered to the tongue. The present review highlights the true potential of ODFs to act as a carrier for the delivery of various antiviral drugs/herbs/vaccines.
Collapse
Affiliation(s)
- Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysore, India
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysore, India
| |
Collapse
|
10
|
Isochlorogenic acid (ICGA): natural medicine with potentials in pharmaceutical developments. Chin J Nat Med 2020; 18:860-871. [DOI: 10.1016/s1875-5364(20)60029-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 01/11/2023]
|
11
|
Talwar S, Sood S, Kumar J, Chauhan R, Sharma M, Tuli HS. Ayurveda and Allopathic Therapeutic Strategies in Coronavirus Pandemic Treatment 2020. CURRENT PHARMACOLOGY REPORTS 2020; 6:354-363. [PMID: 33106765 PMCID: PMC7577842 DOI: 10.1007/s40495-020-00245-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Purpose of Review In the last month of 2019, i.e., December, COVID-19 hit Wuhan city in China. Since then, it has infected more than 210 countries and nearly about 33.4 million people with one million deaths globally. It is a viral disease with flu-like symptoms; hence, prevention and management is the best option to be adopted for its cure. Recent Findings Many healthcare systems, scientists, and researchers are fighting for the cure of this pandemic. Ayurvedic and allopathic treatments have been studied extensively and approached for the cure of COVID-19. In addition to ayurvedic treatments, the Ministry of Ayush, India, has also recommended many remedies to boost up immunity. Allopathic studies involved several antiviral drugs which were used in different combinations for the treatment of COVID-19. Summary Comparative analysis of Ayurveda and allopathic treatment strategies were carried out in the present study. Depending upon the patient's conditions and symptoms, Ayurveda is useful for the treatment of COVID-19. Allopathic treatments inhibit viral infection by targeting majorly endocytosis, and angiotensin-converting enzyme (Ace) receptor signaling. In this article, we summarize different ayurvedic and allopathic medicines and treatment strategies which have been used for the treatment of COVID-19, a global pandemic.
Collapse
Affiliation(s)
- Shivangi Talwar
- Amity Institute of Biotechnology, Amity University, Noida, Noida, India
| | - Shivani Sood
- Department of Biotechnology, Mukand Lal National College, Yamuna Nagar, India
| | - Jayant Kumar
- Department of Biotechnology, Mukand Lal National College, Yamuna Nagar, India
| | - Ritu Chauhan
- Amity Institute of Biotechnology, Amity University, Noida, Noida, India
| | - Mamta Sharma
- School of Law, Justice and Governance, Gautam Buddha University, Greater Noida, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| |
Collapse
|
12
|
Inestrosa NC, Tapia-Rojas C, Lindsay CB, Zolezzi JM. Wnt Signaling Pathway Dysregulation in the Aging Brain: Lessons From the Octodon degus. Front Cell Dev Biol 2020; 8:734. [PMID: 32850846 PMCID: PMC7419590 DOI: 10.3389/fcell.2020.00734] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Wnt signaling constitutes a fundamental cellular and molecular pathway, necessary from proper embryogenesis to function-maintenance of fully developed complex organisms. In this regard, Wnt pathway plays a crucial role in both the development of the central nervous system and in maintaining the structure and function of the neuronal circuits, and it has been suggested that its dysregulation is critical in the onset of several pathologies including cancer and neurodegenerative disorders, such as Alzheimer's disease (AD). Due to its relevance in the maintenance of the neuronal activity and its involvement in the outbreak of devastating diseases, we explored the age-related changes in the expression of Wnt key components in the cortex and hippocampus of 7 to 72-months-old Octodon degus (O. degus), a Chilean long-living endemic rodent that has been proposed and used as a natural model for AD. We found a down-regulation in the expression of different Wnt ligands (Wnt3a, Wnt7a, and Wnt5a), as well as in the Wnt co-receptor LRP6. We also observed an increase in the activity of GSK-3β related to the down-regulation of Wnt activity, a fact that was confirmed by a decreased expression of Wnt target genes. Relevantly, an important increase was found in secreted endogenous Wnt inhibitors, including the secreted-frizzled-related protein 1 and 2 (SFRP-1 and SFRP-2) and Dickkopf-1 (Dkk-1), all them antagonists at the cell surface. Furthermore, treatment with Andrographolide, a labdane diterpene obtained from Andrographis paniculata, prevents Wnt signaling loss in aging degus. Taken together, these results suggest that during the aging process Wnt signaling activity decreases in the brain of O. degus.
Collapse
Affiliation(s)
- Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Carolina B. Lindsay
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Juan Manuel Zolezzi
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Combining In Silico and In Vitro Studies to Evaluate the Acetylcholinesterase Inhibitory Profile of Different Accessions and the Biomarker Triterpenes of Centella asiatica. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25153353. [PMID: 32721993 PMCID: PMC7436049 DOI: 10.3390/molecules25153353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most cause of dementia in elderly adults. Acetylcholinesterase (AChE) is an important beneficial target for AD to control cholinergic signaling deficit. Centella asiatica (CA) has proven to be rich with active ingredients for memory enhancement. In the present study, the chemical profiling of three accession extracts of CA namely SECA-K017, SECA-K018, and, SECA-K019 were performed using high-performance liquid chromatography (HPLC). Four biomarker triterpene compounds were detected in all CA accessions. Quantitative analysis reveals that madecassoside was the highest triterpene in all the CA accessions. The biomarker compounds and the ethanolic extracts of three accessions were investigated for their acetylcholinesterase (AChE) inhibitory activity using Ellman's spectrophotometer method. The inhibitory activity of the triterpenes and accession extracts was compared with the standard AChE inhibitor eserine. The results from the in vitro study showed that the triterpene compounds exhibited an AChE inhibitory activity with the half-maximal inhibitory concentration (IC50) values between 15.05 ± 0.05 and 59.13 ± 0.18 µg/mL. Asiatic acid was found to possess strong AChE inhibitory activity followed by madecassic acid. Among the CA accession extracts, SECA-K017 and SECA-K018 demonstrated a moderate AChE inhibitory activity with an IC50 value of 481.5 ± 0.13 and 763.5 ± 0.16 µg/mL, respectively from the in silico docking studies, it is observed that asiatic acid and madecassic acid showed very good interactions with the active sites and fulfilled docking parameters against AChE. The present study suggested that asiatic acid and madecassic acid in the CA accessions could be responsible for the AChE inhibitory action and could be used as markers to guide further studies on CA as potential natural products for the treatment of AD.
Collapse
|
14
|
Taxonomic Distribution of Medicinal Plants for Alzheimer’s Disease: A Cue to Novel Drugs. Int J Alzheimers Dis 2020. [DOI: 10.1155/2020/7603015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder manifested by decline in memory and mild cognitive impairment leading to dementia. Despite global occurrence of AD, the severity and hence onset of dementia vary among different regions, which was correlated with the customary use of medicinal herbs and exposure level to the causatives. In spite of execution of versatile therapeutic strategies to combat AD and other neurodegenerative diseases, success is only limited to symptomatic treatment. The role of natural remedies remained primitive and irreplaceable in all ages. In some examples, the extracted drugs failed to show comparable results due to lack of micro ingredients. Micro ingredients impart a peerless value to natural remedies which are difficult to isolate and/or determine their precise role during treatment. A variety of plants have been used for memory enhancement and other dementia-related complications since ages. Acetyl choline esterase inhibition, antioxidant potential, neuroprotection, mitochondrial energy restoration, and/or precipitated protein clearance put a vast taxonomic variety into a single group of anti-AD plants. Secondary metabolites derived from these medicinal plants have the potential to treat AD and other brain diseases of common pathology. This review summarizes the potential of taxonomically diverse medicinal plants in the treatment of AD serving as a guide to further exploration.
Collapse
|
15
|
Aydin T. Secondary metabolites of Helichrysum plicatum DC. subsp. plicatum flowers as strong carbonic anhydrase, cholinesterase and α-glycosidase inhibitors. ACTA ACUST UNITED AC 2020; 75:153-159. [PMID: 32383693 DOI: 10.1515/znc-2020-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Indexed: 01/29/2023]
Abstract
Helichrysum plicatum species are used in Turkish folk medicine as lithagogue, diuretic, and nephritic. Research on the methanol (MeOH) extract of flowers of H. plicatum DC. subsp. plicatum resulted in the isolation of eight known compounds (1-8). The chemical structures of the compounds were determined as β-sitosterol (1), apigenin (2), nonacosanoic acid (3), astragalin (4), β-sitosterol-3-O-β-D-glucopyranoside (5), helichrysin A (6), helichrysin B (7), and isosalipurposide (8) by spectroscopic and chromatographic/spectrometric methods, including 1D and 2D nuclear magnetic resonance and liquid chromatography-tandem mass spectrometry. Nonacosanoic acid (3) was isolated for the first time from H. plicatum DC. subsp. plicatum. The MeOH extract and isolated compounds were evaluated for their in vitro human carbonic anhydrase I (hCAI) and II (hCAII), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase inhibitory activities. The IC50 values of H. plicatum DC. subsp. plicatum MeOH extract for hCAI, hCAII, AChE, BChE, and α-glycosidase were found to be 77.87, 52.90, 115.50, 117.46, and 81.53 mg/mL, respectively. The compounds showed IC50 values of 1.43-4.47, 1.40-4.32, 1.69-2.90, 1.09-3.89, and 1.61-3.80 μM against hCAI, hCAII, AChE, BChE, and α-glycosidase, respectively. In summary, H. plicatum DC. subsp. plicatum secondary metabolites demonstrated strong inhibitory effects especially against hCAI and hCAII, whereas the MeOH extract showed a weak inhibitory effect on all enzymes.
Collapse
Affiliation(s)
- Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Agri Ibrahim Cecen University, 04100 Agri, Turkey
| |
Collapse
|