1
|
Gentile D, Serino G, Frugis G. CRF transcription factors in the trade-off between abiotic stress response and plant developmental processes. Front Genet 2024; 15:1377204. [PMID: 38694876 PMCID: PMC11062136 DOI: 10.3389/fgene.2024.1377204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Climate change-induced environmental stress significantly affects crop yield and quality. In response to environmental stressors, plants use defence mechanisms and growth suppression, creating a resource trade-off between the stress response and development. Although stress-responsive genes have been widely engineered to enhance crop stress tolerance, there is still limited understanding of the interplay between stress signalling and plant growth, a research topic that can provide promising targets for crop genetic improvement. This review focuses on Cytokinin Response Factors (CRFs) transcription factor's role in the balance between abiotic stress adaptation and sustained growth. CRFs, known for their involvement in cytokinin signalling and abiotic stress responses, emerge as potential targets for delaying senescence and mitigating yield penalties under abiotic stress conditions. Understanding the molecular mechanisms regulated by CRFs paves the way for decoupling stress responses from growth inhibition, thus allowing the development of crops that can adapt to abiotic stress without compromising development. This review highlights the importance of unravelling CRF-mediated pathways to address the growing need for resilient crops in the face of evolving climatic conditions.
Collapse
Affiliation(s)
- Davide Gentile
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Rome, Italy
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Giovanna Serino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Giovanna Frugis
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Rome, Italy
| |
Collapse
|
2
|
Iannelli MA, Nicolodi C, Coraggio I, Fabriani M, Baldoni E, Frugis G. A Novel Role of Medicago truncatula KNAT3/4/5-like Class 2 KNOX Transcription Factors in Drought Stress Tolerance. Int J Mol Sci 2023; 24:12668. [PMID: 37628847 PMCID: PMC10454132 DOI: 10.3390/ijms241612668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Class 2 KNOX homeobox transcription factors (KNOX2) play a role in promoting cell differentiation in several plant developmental processes. In Arabidopsis, they antagonize the meristematic KNOX1 function during leaf development through the modulation of phytohormones. In Medicago truncatula, three KNOX2 genes belonging to the KNAT3/4/5-like subclass (Mt KNAT3/4/5-like or MtKNOX3-like) redundantly works upstream of a cytokinin-signaling module to control the symbiotic root nodule formation. Their possible role in the response to abiotic stress is as-of-yet unknown. We produced transgenic M. truncatula lines, in which the expression of four MtKNOX3-like genes was knocked down by RNA interference. When tested for response to water withdrawal in the soil, RNAi lines displayed a lower tolerance to drought conditions compared to the control lines, measured as increased leaf water loss, accelerated leaf wilting time, and faster chlorophyll loss. Reanalysis of a transcriptomic M. truncatula drought stress experiment via cluster analysis and gene co-expression networks pointed to a possible role of MtKNOX3-like transcription factors in repressing a proline dehydrogenase gene (MtPDH), specifically at 4 days after water withdrawal. Proline measurement and gene expression analysis of transgenic RNAi plants compared to the controls confirmed the role of KNOX3-like genes in inhibiting proline degradation through the regulation of the MtPDH gene.
Collapse
Affiliation(s)
- Maria Adelaide Iannelli
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy; (M.A.I.); (C.N.); (I.C.); (M.F.)
| | - Chiara Nicolodi
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy; (M.A.I.); (C.N.); (I.C.); (M.F.)
| | - Immacolata Coraggio
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy; (M.A.I.); (C.N.); (I.C.); (M.F.)
| | - Marco Fabriani
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy; (M.A.I.); (C.N.); (I.C.); (M.F.)
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Alfonso Corti 12, 20133 Milan, Italy;
| | - Giovanna Frugis
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy; (M.A.I.); (C.N.); (I.C.); (M.F.)
| |
Collapse
|
3
|
Pirona R, Frugis G, Locatelli F, Mattana M, Genga A, Baldoni E. Transcriptomic analysis reveals the gene regulatory networks involved in leaf and root response to osmotic stress in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1155797. [PMID: 37332696 PMCID: PMC10272567 DOI: 10.3389/fpls.2023.1155797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Tomato (Solanum lycopersicum L.) is a major horticultural crop that is cultivated worldwide and is characteristic of the Mediterranean agricultural system. It represents a key component of the diet of billion people and an important source of vitamins and carotenoids. Tomato cultivation in open field often experiences drought episodes, leading to severe yield losses, since most modern cultivars are sensitive to water deficit. Water stress leads to changes in the expression of stress-responsive genes in different plant tissues, and transcriptomics can support the identification of genes and pathways regulating this response. Methods Here, we performed a transcriptomic analysis of two tomato genotypes, M82 and Tondo, in response to a PEG-mediated osmotic treatment. The analysis was conducted separately on leaves and roots to characterize the specific response of these two organs. Results A total of 6,267 differentially expressed transcripts related to stress response was detected. The construction of gene co-expression networks defined the molecular pathways of the common and specific responses of leaf and root. The common response was characterized by ABA-dependent and ABA-independent signaling pathways, and by the interconnection between ABA and JA signaling. The root-specific response concerned genes involved in cell wall metabolism and remodeling, whereas the leaf-specific response was principally related to leaf senescence and ethylene signaling. The transcription factors representing the hubs of these regulatory networks were identified. Some of them have not yet been characterized and can represent novel candidates for tolerance. Discussion This work shed new light on the regulatory networks occurring in tomato leaf and root under osmotic stress and set the base for an in-depth characterization of novel stress-related genes that may represent potential candidates for improving tolerance to abiotic stress in tomato.
Collapse
Affiliation(s)
- Raul Pirona
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Giovanna Frugis
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Roma, Italy
| | - Franca Locatelli
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Monica Mattana
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Annamaria Genga
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| |
Collapse
|
4
|
Wang R, Li Y, Gao M, Han M, Liu H. Genome-wide identification and characterization of the bHLH gene family and analysis of their potential relevance to chlorophyll metabolism in Raphanus sativus L. BMC Genomics 2022; 23:548. [PMID: 35915410 DOI: 10.1186/s12864-022-08782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Green-fleshed radish (Raphanus sativus L.) is an economically important root vegetable of the Brassicaceae family, and chlorophyll accumulates in its root tissues. It was reported that the basic helix-loop-helix (bHLH) transcription factors play vital roles in the process of chlorophyll metabolism. Nevertheless, a comprehensive study on the bHLH gene family has not been performed in Raphanus sativus L. RESULTS In this study, a total of 213 Raphanus sativus L. bHLH (RsbHLH) genes were screened in the radish genome, which were grouped into 22 subfamilies. 204 RsbHLH genes were unevenly distributed on nine chromosomes, and nine RsbHLH genes were located on the scaffolds. Gene structure analysis showed that 25 RsbHLH genes were intron-less. Collineation analysis revealed the syntenic orthologous bHLH gene pairs between radish and Arabidopsis thaliana/Brassica rapa/Brassica oleracea. 162 RsbHLH genes were duplicated and retained from the whole genome duplication event, indicating that the whole genome duplication contributed to the expansion of the RsbHLH gene family. RNA-seq results revealed that RsbHLH genes had a variety of expression patterns at five development stages of green-fleshed radish and white-fleshed radish. In addition, the weighted gene co-expression network analysis confirmed four RsbHLH genes closely related to chlorophyll content. CONCLUSIONS A total of 213 RsbHLH genes were identified, and we systematically analyzed their gene structure, evolutionary and collineation relationships, conserved motifs, gene duplication, cis-regulatory elements and expression patterns. Finally, four bHLH genes closely involved in chlorophyll content were identified, which may be associated with the photosynthesis of the green-fleshed radish. The current study would provide valuable information for further functional exploration of RsbHLH genes, and facilitate clarifying the molecular mechanism underlying photosynthesis process in green-fleshed radish.
Collapse
Affiliation(s)
- Ruihua Wang
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| | - Yuanyuan Li
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China.
| | - Minggang Gao
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| | - Min Han
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| | - Huilian Liu
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| |
Collapse
|
5
|
Li X, Cai K, Han Z, Zhang S, Sun A, Xie Y, Han R, Guo R, Tigabu M, Sederoff R, Pei X, Zhao C, Zhao X. Chromosome-Level Genome Assembly for Acer pseudosieboldianum and Highlights to Mechanisms for Leaf Color and Shape Change. FRONTIERS IN PLANT SCIENCE 2022; 13:850054. [PMID: 35310631 PMCID: PMC8927880 DOI: 10.3389/fpls.2022.850054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acer pseudosieboldianum (Pax) Komarov is an ornamental plant with prominent potential and is naturally distributed in Northeast China. Here, we obtained a chromosome-scale genome assembly of A. pseudosieboldianum combining HiFi and Hi-C data, and the final assembled genome size was 690.24 Mb and consisted of 287 contigs, with a contig N50 value of 5.7 Mb and a BUSCO complete gene percentage of 98.4%. Genome evolution analysis showed that an ancient duplication occurred in A. pseudosieboldianum. Phylogenetic analyses revealed that Aceraceae family could be incorporated into Sapindaceae, consistent with the present Angiosperm Phylogeny Group system. We further construct a gene-to-metabolite correlation network and identified key genes and metabolites that might be involved in anthocyanin biosynthesis pathways during leaf color change. Additionally, we identified crucial teosinte branched1, cycloidea, and proliferating cell factors (TCP) transcription factors that might be involved in leaf morphology regulation of A. pseudosieboldianum, Acer yangbiense and Acer truncatum. Overall, this reference genome is a valuable resource for evolutionary history studies of A. pseudosieboldianum and lays a fundamental foundation for its molecular breeding.
Collapse
Affiliation(s)
- Xiang Li
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiming Han
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Shikai Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Anran Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ying Xie
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Rui Han
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Ruixue Guo
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Faculty of Forest Science, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Chunli Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
6
|
Baldoni E, Frugis G, Martinelli F, Benny J, Paffetti D, Buti M. A Comparative Transcriptomic Meta-Analysis Revealed Conserved Key Genes and Regulatory Networks Involved in Drought Tolerance in Cereal Crops. Int J Mol Sci 2021; 22:13062. [PMID: 34884864 PMCID: PMC8657901 DOI: 10.3390/ijms222313062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Drought affects plant growth and development, causing severe yield losses, especially in cereal crops. The identification of genes involved in drought tolerance is crucial for the development of drought-tolerant crops. The aim of this study was to identify genes that are conserved key players for conferring drought tolerance in cereals. By comparing the transcriptomic changes between tolerant and susceptible genotypes in four Gramineae species, we identified 69 conserved drought tolerant-related (CDT) genes that are potentially involved in the drought tolerance of all of the analysed species. The CDT genes are principally involved in stress response, photosynthesis, chlorophyll biogenesis, secondary metabolism, jasmonic acid signalling, and cellular transport. Twenty CDT genes are not yet characterized and can be novel candidates for drought tolerance. The k-means clustering analysis of expression data highlighted the prominent roles of photosynthesis and leaf senescence-related mechanisms in differentiating the drought response between tolerant and sensitive genotypes. In addition, we identified specific transcription factors that could regulate the expression of photosynthesis and leaf senescence-related genes. Our analysis suggests that the balance between the induction of leaf senescence and maintenance of photosynthesis during drought plays a major role in tolerance. Fine-tuning of CDT gene expression modulation by specific transcription factors can be the key to improving drought tolerance in cereals.
Collapse
Affiliation(s)
- Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Alfonso Corti 12, 20133 Milan, Italy
| | - Giovanna Frugis
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, 00015 Monterotondo, Italy;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Jubina Benny
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90133 Palermo, Italy;
| | - Donatella Paffetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy;
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy;
| |
Collapse
|
7
|
The Regulation of CIN-like TCP Transcription Factors. Int J Mol Sci 2020; 21:ijms21124498. [PMID: 32599902 PMCID: PMC7349945 DOI: 10.3390/ijms21124498] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/07/2023] Open
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 1 and 2 (TCP) family proteins are the plant-specific transcription factors extensively participating in diverse developmental processes by integrating external cues with internal signals. The roles of CINCINNATA (CIN)-like TCPs are conserved in control of the morphology and size of leaves, petal development, trichome formation and plant flowering. The tight regulation of CIN-like TCP activity at transcriptional and post-transcriptional levels are central for plant developmental plasticity in response to the ever-changing environmental conditions. In this review, we summarize recent progresses with regard to the function and regulation of CIN-like TCPs. CIN-like TCPs are regulated by abiotic and biotic cues including light, temperature and pathogens. They are also finely controlled by microRNA319 (miRNA319), chromatin remodeling complexes and auxin homeostasis. The protein degradation plays critical roles in tightly controlling the activity of CIN-like TCPs as well.
Collapse
|