1
|
Im H, Nguyen HT, Jeong D, Jang A. Wastewater treatment optimization utilizing polyvinyl alcohol cryogel immobilized microalgae for nutrient removal. CHEMOSPHERE 2024; 366:143426. [PMID: 39341394 DOI: 10.1016/j.chemosphere.2024.143426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
This study investigated the use of polyvinyl alcohol (PVA) cryogels to immobilize microalgae for wastewater treatment. Chlorella sorokiniana was successfully entrapped in PVA cryogels via repeated freeze/thaw cycles. The nutrient removal efficiency of these cryogels was tested in a continuously stirred photobioreactor under varying conditions, both with and without the addition of an organic carbon source (sodium acetate). The presence of organic carbon significantly enhanced nutrient removal. Specifically, PVA cryogels with immobilized C. sorokiniana achieved 100% nitrogen removal and 97.2% phosphorus removal under mixotrophic conditions. Furthermore, the maximum nutrient removal capacities of the PVA cryogels were found to be 0.033 mg-N/cube·day for nitrogen and 0.0047 mg-P/cube·day for phosphorus. As the inorganic carbon (bicarbonate) concentration increased from 5 to 100 mg/L, the N/P ratio rose from 6 to 8, with a higher N/P ratio of 10 observed when nitrate nitrogen was used as the nitrogen source, compared to ammonia nitrogen, at 100 mg/L bicarbonate. This study offers an effective method for using microalgae immobilized in PVA cryogels for wastewater treatment. The findings highlight the potential for PVA cryogels to significantly improve nutrient removal efficiency, particularly in the presence of organic carbon sources, thereby enhancing bioreactor performance. High nitrogen and phosphorus removal efficiencies can help reduce eutrophication in water bodies, protect aquatic ecosystems, and enable nutrient recovery and reuse, supporting a circular economy in wastewater treatment practices.
Collapse
Affiliation(s)
- Hongrae Im
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Hoang Tam Nguyen
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Dawoon Jeong
- Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon-si, 34057, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
2
|
Zhu H, Ye Z, Xu Z, Wei L. Transcriptomic Analysis Reveals the Effect of Urea on Metabolism of Nannochloropsis oceanica. Life (Basel) 2024; 14:797. [PMID: 39063552 PMCID: PMC11278182 DOI: 10.3390/life14070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The eukaryotic microalga Nannochloropsis oceanica represents a promising bioresource for the production of biofuels and pharmaceuticals. Urea, a crucial nutrient for the photosynthetic N. oceanica, stimulates the accumulation of substances such as lipids, which influence growth and physiology. However, the specific mechanisms by which N. oceanica responds and adapts to urea addition remain unknown. High-throughput mRNA sequencing and differential gene expression analysis under control and urea-added conditions revealed significant metabolic changes. This involved the differential expression of 2104 genes, with 1354 being upregulated and 750 downregulated, resulting in the reprogramming of crucial pathways such as carbon and nitrogen metabolism, photosynthesis, and lipid metabolism. The results specifically showed that genes associated with photosynthesis in N. oceanica were significantly downregulated, particularly those related to light-harvesting proteins. Interestingly, urea absorption and transport may depend not only on specialized transport channels such as urease but also on alternative transport channels such as the ABC transporter family and the CLC protein family. In addition, urea caused specific changes in carbon and lipid metabolism. Genes associated with the Calvin cycle and carbon concentration mechanisms were significantly upregulated. In lipid metabolism, the expression of genes associated with lipases and polyunsaturated fatty acid synthesis was highly activated. Furthermore, the expression of several genes involved in the tricarboxylic acid cycle and folate metabolism was enhanced, making important contributions to energy supply and the synthesis and modification of genes and macromolecules. Our observations indicate that N. oceanica actively and dynamically regulates the redistribution of carbon and nitrogen after urea addition, providing references for further research on the effects of urea on N. oceanica.
Collapse
Affiliation(s)
- Han Zhu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Hainan Observation and Research Station of Dongzhaigang Mangrove Wetland Ecosystem, Haikou 571129, China
- International Science and Technology Cooperation Laboratory for Marine Microalgae Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| | - Zhenli Ye
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zhengru Xu
- College of Foreign Language, Hainan Normal University, Haikou 571157, China
| | - Li Wei
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Hainan Observation and Research Station of Dongzhaigang Mangrove Wetland Ecosystem, Haikou 571129, China
- International Science and Technology Cooperation Laboratory for Marine Microalgae Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
3
|
Bulynina SS, Ziganshina EE, Ziganshin AM. Growth Efficiency of Chlorella sorokiniana in Synthetic Media and Unsterilized Domestic Wastewater. BIOTECH 2023; 12:53. [PMID: 37606440 PMCID: PMC10443301 DOI: 10.3390/biotech12030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Incorporating a variety of microalgae into wastewater treatment is considered an economically viable and environmentally sound strategy. The present work assessed the growth characteristics of Chlorella sorokiniana during cultivation in balanced synthetic media and domestic wastewater. Increasing the NH4+-N concentration to 360 mg L-1 and adding extra PO43--P and SO42--S (up to 80 and 36 mg L-1, respectively) contributed to an increase in the total biomass levels (5.7-5.9 g L-1) during the cultivation of C. sorokiniana in synthetic media. Under these conditions, the maximum concentrations of chlorophylls and carotenoids were 180 ± 7.5 and 26 ± 1.4 mg L-1, respectively. Furthermore, when studying three types of domestic wastewaters, it was noted that only one wastewater contributed to the productive growth of C. sorokiniana, but all wastewaters stimulated an increased accumulation of protein. Finally, the alga, when growing in optimal unsterilized wastewater, showed a maximum specific growth rate of 0.73 day-1, a biomass productivity of 0.21 g L-1 day-1, and 100% NH4+-N removal. These results demonstrate that the tested alga actively adapts to changes in the composition of the growth medium and accumulates high levels of protein in systems with poor-quality water.
Collapse
Affiliation(s)
| | | | - Ayrat M. Ziganshin
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (S.S.B.); (E.E.Z.)
| |
Collapse
|
4
|
Kuo CM, Yang YC, Zhang WX, Wu JX, Chen YT, Lin CH, Lin MW, Lin CS. A Low-Cost Fertilizer Medium Supplemented with Urea for the Lutein Production of Chlorella sp. and the Ability of the Lutein to Protect Cells against Blue Light Irradiation. Bioengineering (Basel) 2023; 10:bioengineering10050594. [PMID: 37237664 DOI: 10.3390/bioengineering10050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to investigate the use of organic fertilizers instead of modified f/2 medium for Chlorella sp. cultivation, and the extracted lutein of the microalga to protect mammal cells against blue-light irradiation. The biomass productivity and lutein content of Chlorella sp. cultured in 20 g/L fertilizer medium for 6 days were 1.04 g/L/d and 4.41 mg/g, respectively. These values are approximately 1.3- and 1.4-fold higher than those achieved with the modified f/2 medium, respectively. The cost of medium per gram of microalgal biomass reduced by about 97%. The microalgal lutein content was further increased to 6.03 mg/g in 20 g/L fertilizer medium when supplemented with 20 mM urea, and the cost of medium per gram lutein reduced by about 96%. When doses of ≥1 μM microalgal lutein were used to protect mammal NIH/3T3 cells, there was a significant reduction in the levels of reactive oxygen species (ROS) produced by the cells in the following blue-light irradiation treatments. The results show that microalgal lutein produced by fertilizers with urea supplements has the potential to develop anti-blue-light oxidation products and reduce the economic challenges of microalgal biomass applied to carbon biofixation and biofuel production.
Collapse
Affiliation(s)
- Chiu-Mei Kuo
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Yi-Chun Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
| | - Wen-Xin Zhang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jia-Xun Wu
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Yu-Tso Chen
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| |
Collapse
|
5
|
Assessment of Chlorella sorokiniana Growth in Anaerobic Digester Effluent. PLANTS 2021; 10:plants10030478. [PMID: 33802500 PMCID: PMC7999815 DOI: 10.3390/plants10030478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Microalgae are considered a potential source of valuable compounds for multiple purposes and are potential agents for bioremediation of aquatic environments contaminated with different pollutants. This work evaluates the use of agricultural waste, unsterilized and anaerobically digested, to produce biomass from a strain of Chlorella sorokiniana. Furthermore, the presence of bacteria in these wastes was investigated based on the bacterial 16S rRNA gene sequencing. The results showed a specific growth rate ranging between 0.82 and 1.45 day−1, while the final biomass yield in different digestate-containing treatments (bacterial-contaminated cultures) ranged between 0.33 and 0.50 g L−1 day−1. Besides, substantial amounts of ammonium, phosphate, and sulfate were consumed by C. sorokiniana during the experimental period. The predominant bacteria that grew in the presence of C. sorokiniana in the effluent-containing treatments belonged to the genera Chryseobacterium, Flavobacterium, Sphingomonas, Brevundimonas, Hydrogenophaga, Sphingobacterium, and Pseudomonas. Therefore, this microalga can tolerate and grow in the presence of other microorganisms. Finally, these results show that anaerobically digested agricultural waste materials are a good substitute for growth media for green microalgae; however, phosphate and sulfate levels must also be controlled in the media to maintain adequate growth of microalgae.
Collapse
|