1
|
Li Y, Zheng S, Wang T, Liu M, Kozlowski G, Yi L, Song Y. New insights on the phylogeny, evolutionary history, and ecological adaptation mechanism in cycle-cup oaks based on chloroplast genomes. Ecol Evol 2024; 14:e70318. [PMID: 39290669 PMCID: PMC11407850 DOI: 10.1002/ece3.70318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Cycle-cup oaks (Quercus section Cyclobalanopsis) are one of the principal components of forests in the tropical and subtropical climates of East and Southeast Asia. They have experienced relatively recent increases in the diversification rate, driven by changing climates and the Himalayan orogeny. However, the evolutionary history and adaptive mechanisms at the chloroplast genome level in cycle-cup oaks remain largely unknown. Therefore, we studied this problem by conducting chloroplast genomics on 50 of the ca. 90 species. Comparative genomics and other analyses showed that Quercus section Cyclobalanopsis had a highly conserved chloroplast genome structure. Highly divergent regions, such as the ndhF and ycf1 gene regions and the petN-psbM and rpoB-trnC-GCA intergenic spacer regions, provided potential molecular markers for subsequent analysis. The chloroplast phylogenomic tree indicated that Quercus section Cyclobalanopsis was not monophyletic, which mixed with the other two sections of subgenus Cerris. The reconstruction of ancestral aera inferred that Palaeotropics was the most likely ancestral range of Quercus section Cyclobalanopsis, and then dispersed to Sino-Japan and Sino-Himalaya. Positive selection analysis showed that the photosystem genes had the lowest ω values among the seven functional gene groups. And nine protein-coding genes containing sites for positive selection: ndhA, ndhD, ndhF, ndhH, rbcL, rpl32, accD, ycf1, and ycf2. This series of analyses together revealed the phylogeny, evolutionary history, and ecological adaptation mechanism of the chloroplast genome of Quercus section Cyclobalanopsis in the long river of earth history. These chloroplast genome data provide valuable information for deep insights into phylogenetic relationships and intraspecific diversity in Quercus.
Collapse
Affiliation(s)
- Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Si‐Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
| | - Tian‐Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
| | - Mei‐Hua Liu
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- Department of Biology and Botanic GardenUniversity of FribourgFribourgSwitzerland
- Natural History Museum FribourgFribourgSwitzerland
| | - Li‐Ta Yi
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Yi‐Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| |
Collapse
|
2
|
Wang X, Zhang Z, Shi Y, Man J, Huang Y, Zhang X, Liu S, He G, An K, Amu L, Chen W, Liu Z, Wang X, Wei S. Population identification and genetic diversity analysis of Fritillaria ussuriensis (Fritillaria) based on chloroplast genes atpF and petB. J Appl Genet 2024; 65:453-462. [PMID: 38684618 DOI: 10.1007/s13353-024-00874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The chloroplast genomes of five Fritillaria ussuriensis materials from different production areas were comparatively analyzed, atpF and petB were screened as specific DNA barcodes, and the population identification and genetic diversity of F. ussuriensis were analyzed based on them. The F. ussuriensis chloroplast genome showed a total length of 151 515-151 548 bp with a typical tetrad structure and encoded 130 genes. atpF and petB were used to amplify 183 samples from 13 populations, and they could identify 6 and 9 haplotypes, respectively. Joint analysis of the two sequences revealed 18 haplotypes, named H1-H18, with the most widely distributed and most abundant being H4. Ten haplotypes were unique for 7 populations that they could be used to distinguish from others. Haplotype diversity and nucleotide diversity were 0.99 and 2.09 × 10-3, respectively, indicating the genetic diversity was relatively rich. The results of the intermediary adjacency network showed that H5 was the oldest haplotype, and stellate radiation was centered around it, indicating that population expansion occurred in genuine production areas. This study lays a theoretical foundation for the population identification, genetic evolution, and breed selection of F. ussuriensis.
Collapse
Affiliation(s)
- Xin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Zhifei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Yue Shi
- School of Life and Science, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
- Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 102488, People's Republic of China
| | - Jinhui Man
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Yuying Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Xiaoqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Shanhu Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Gaojie He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Kelu An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Laha Amu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Wenqin Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Ziqi Liu
- Heilongjiang BCT Chinese Traditional Medicine Co.Ltd, Heilongjiang, 150600, People's Republic of China
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine,, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
- Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 102488, People's Republic of China.
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
- Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 102488, People's Republic of China.
| |
Collapse
|
3
|
Zhang T, Chen X, Yan W, Li M, Huang W, Liu Q, Li Y, Guo C, Shu Y. Comparative Analysis of Chloroplast Pan-Genomes and Transcriptomics Reveals Cold Adaptation in Medicago sativa. Int J Mol Sci 2024; 25:1776. [PMID: 38339052 PMCID: PMC10855486 DOI: 10.3390/ijms25031776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Alfalfa (Medicago sativa) is a perennial forage legume that is widely distributed all over the world; therefore, it has an extremely complex genetic background. Though population structure and phylogenetic studies have been conducted on a large group of alfalfa nuclear genomes, information about the chloroplast genomes is still lacking. Chloroplast genomes are generally considered to be conservative and play an important role in population diversity analysis and species adaptation in plants. Here, 231 complete alfalfa chloroplast genomes were successfully assembled from 359 alfalfa resequencing data, on the basis of which the alfalfa chloroplast pan-genome was constructed. We investigated the genetic variations of the alfalfa chloroplast genome through comparative genomic, genetic diversity, phylogenetic, population genetic structure, and haplotype analysis. Meanwhile, the expression of alfalfa chloroplast genes under cold stress was explored through transcriptome analysis. As a result, chloroplast genomes of 231 alfalfa lack an IR region, and the size of the chloroplast genome ranges from 125,192 bp to 126,105 bp. Using population structure, haplotypes, and construction of a phylogenetic tree, it was found that alfalfa populations could be divided into four groups, and multiple highly variable regions were found in the alfalfa chloroplast genome. Transcriptome analysis showed that tRNA genes were significantly up-regulated in the cold-sensitive varieties, while rps7, rpl32, and ndhB were down-regulated, and the editing efficiency of ycf1, ycf2, and ndhF was decreased in the cold-tolerant varieties, which may be due to the fact that chloroplasts store nutrients through photosynthesis to resist cold. The huge number of genetic variants in this study provide powerful resources for molecular markers.
Collapse
Affiliation(s)
- Tianxiang Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (T.Z.); (M.L.); (C.G.)
| | - Xiuhua Chen
- International Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Wei Yan
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (W.Y.); (Q.L.)
| | - Manman Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (T.Z.); (M.L.); (C.G.)
| | - Wangqi Huang
- National Engineering Research Center for Ornamental Horticulture, Yunnan Flower Breeding Key Laboratory, Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Qian Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (W.Y.); (Q.L.)
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (W.Y.); (Q.L.)
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (T.Z.); (M.L.); (C.G.)
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (T.Z.); (M.L.); (C.G.)
| |
Collapse
|
4
|
Yan R, Gu L, Qu L, Wang X, Hu G. New Insights into Phylogenetic Relationship of Hydrocotyle (Araliaceae) Based on Plastid Genomes. Int J Mol Sci 2023; 24:16629. [PMID: 38068952 PMCID: PMC10706649 DOI: 10.3390/ijms242316629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Hydrocotyle, belonging to the Hydrocotyloideae of Araliaceae, consists of 95 perennial and 35 annual species. Due to the lack of stable diagnostic morphological characteristics and high-resolution molecular markers, the phylogenetic relationships of Hydrocotyle need to be further investigated. In this study, we newly sequenced and assembled 13 whole plastid genomes of Hydrocotyle and performed comparative plastid genomic analyses with four previously published Hydrocotyle plastomes and phylogenomic analyses within Araliaceae. The plastid genomes of Hydrocotyle exhibited typical quadripartite structures with lengths from 152,659 bp to 153,669 bp, comprising a large single-copy (LSC) region (83,958-84,792 bp), a small single-copy (SSC) region (18,585-18,768 bp), and a pair of inverted repeats (IRs) (25,058-25,145 bp). Each plastome encoded 113 unique genes, containing 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Comparative analyses showed that the IR boundaries of Hydrocotyle plastomes were highly similar, and the coding and IR regions exhibited more conserved than non-coding and single-copy (SC) regions. A total of 2932 simple sequence repeats and 520 long sequence repeats were identified, with specificity in the number and distribution of repeat sequences. Six hypervariable regions were screened from the SC region, including four intergenic spacers (IGS) (ycf3-trnS, trnS-rps4, petA-psbJ, and ndhF-rpl32) and two coding genes (rpl16 and ycf1). Three protein-coding genes (atpE, rpl16, and ycf2) were subjected to positive selection only in a few species, implying that most protein-coding genes were relatively conserved during the plastid evolutionary process. Plastid phylogenomic analyses supported the treatment of Hydrocotyle from Apiaceae to Araliaceae, and topologies with a high resolution indicated that plastome data can be further used in the comprehensive phylogenetic research of Hydrocotyle. The diagnostic characteristics currently used in Hydrocotyle may not accurately reflect the phylogenetic relationships of this genus, and new taxonomic characteristics may need to be evaluated and selected in combination with more comprehensive molecular phylogenetic results.
Collapse
Affiliation(s)
- Rongrong Yan
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Li Gu
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Lu Qu
- Institute of Medicinal Plant Development Yunnan Branch, Chinese Academy of Medical Sciences, Jinghong 666100, China;
| | - Xiaoyu Wang
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Guoxiong Hu
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Weng L, Jiang Y, Wang Y, Zhang X, Zhou P, Wu M, Li H, Sun H, Chen S. Chloroplast genome characteristics and phylogeny of the sinodielsia clade (apiaceae: apioideae). BMC PLANT BIOLOGY 2023; 23:284. [PMID: 37246219 DOI: 10.1186/s12870-023-04271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/07/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The Sinodielsia clade of the subfamily Apioideae (Apiacieae) was established in 2008, and it is composed of 37 species from 17 genera. Its circumscription is still poorly delimited and unstable, and interspecific relationships in the clade lack comprehensive analysis. Chloroplast (cp.) genomes provide valuable and informative data sources for evolutionary biology and have been widely used in studies on plant phylogeny. To infer the phylogenetic history of the Sinodielsia clade, we assembled complete cp. genomes of 39 species and then performed phylogenetic analysis based on these cp. genome sequence data combined with 66 published cp. genomes from 16 genera relative to the Sinodielsia clade. RESULTS These 39 newly assembled genomes had a typical quadripartite structure with two inverted repeat regions (IRs: 17,599-31,486 bp) separated by a large single-copy region (LSC: 82,048-94,046 bp) and a small single-copy region (SSC: 16,343-17,917 bp). The phylogenetic analysis showed that 19 species were clustered into the Sinodielsia clade, and they were divided into two subclades. Six mutation hotspot regions were detected from the whole cp. genomes among the Sinodielsia clade, namely, rbcL-accD, ycf4-cemA, petA-psbJ, ycf1-ndhF, ndhF-rpl32 and ycf1, and it was found that ndhF-rpl32 and ycf1 were highly variable in the 105 sampled cp. genomes. CONCLUSION The Sinodielsia clade was subdivided into two subclades relevant to geographical distributions, except for cultivated and introduced species. Six mutation hotspot regions, especially ndhF-rpl32 and ycf1, could be used as potential DNA markers in the identification and phylogenetic analyses of the Sinodielsia clade and Apioideae. Our study provided new insights into the phylogeny of the Sinodielsia clade and valuable information on cp. genome evolution in Apioideae.
Collapse
Affiliation(s)
- Long Weng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yunhui Jiang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yong Wang
- Yunnan Institute of Forest Inventory and Planning, Kunming, 650051, China
| | - Xuemei Zhang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ping Zhou
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Mei Wu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hongzhe Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shaotian Chen
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
6
|
Teng L, Guo X, Ma Y, Xu L, Wei J, Xiao P. A comprehensive review on traditional and modern research of the genus Bupleurum (Bupleurum L., Apiaceae) in recent 10 years. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116129. [PMID: 36638855 DOI: 10.1016/j.jep.2022.116129] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Bupleurum (family Apiaceae), comprising approximately 248 accepted species, is widely distributed and used in China, Japan, India, Central Asia, North Africa and some European countries as traditional herbal medicines. Certain species have been reported to have significant therapeutic effects in fever, inflammatory disorders, cancer, gastric ulcer, virus infection and other diseases. AIM OF THE REVIEW we performed a comprehensive review of the ten-year research progress in phytochemistry, pharmacology, toxicity, along with bibliometrics research of the genus Bupleurum, aiming to identify knowledge gaps for future research. MATERIALS AND METHODS All the literatures are retrieved from library and electronic sources including Web of Science, PubMed, Elsevier, Google Scholar, CNKI and Baidu Scholar. These papers cover studies of the traditional use, phytochemistry, pharmacology, and toxicology of the genus Bupleurum. RESULTS There is a long history of using the genus Bupleurum in traditional herbal medicine that dated back to over 2000 years ago. Twenty-five species and 8 varieties with 3 variants within this genus have been reported to be effective to treat fever, pain, liver disease, inflammation, thoracolumbar pain, irregular menstruation and rectal prolapse. The main phytochemicals found in these plants are triterpene saponins, volatile oil, flavonoid, lignans, and polysaccharides. Many of these compounds have also been shown to have anti-inflammatory, anti-tumor, antimicrobial, immunoregulation, neuroregulation, hepatoprotective and antidiabetic activities. Meanwhile, improper usage of Bupleurum may induce cytotoxic effects, and polyacetylenes may be the main poisonous compounds. CONCLUSIONS This article summarized recent findings about Bupleurum research from many different aspects. While a small number of Bupleurum species have been investigated through modern pharmacology methods, there are still major knowledge gaps due to inadequate studies and ambiguous findings. Future research could focus on more specific phytochemistry studies combined with mechanistic analysis to provide better guidance to utilize Bupleurum as medicinal resources.
Collapse
Affiliation(s)
- Lili Teng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Xinwei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Yuzhi Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| |
Collapse
|
7
|
Tian R, Aou X, Song B, Li Z, He X, Zhou S. Plastid Phylogenomic Analyses Reveal a Cryptic Species of Ligusticopsis (Apiaceae, Angiosperms). Int J Mol Sci 2023; 24:ijms24087419. [PMID: 37108580 PMCID: PMC10138589 DOI: 10.3390/ijms24087419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ligusticopsis litangensis is identified and described as a cryptic species from Sichuan Province, China. Although the distribution of this cryptic species overlaps with that of Ligusticopsis capillacea and Ligusticopsis dielsiana, the morphological boundaries between them are explicit and have obviously distinguishable characters. The main distinguishing features of the cryptic species are as follows: long conical multi-branched roots, very short pedicels in compound umbels, unequal rays, oblong-globose fruits, 1-2 vittae per furrow and 3-4 vittae on the commissure. The above-mentioned features differ somewhat from other species within the genus Ligusticopsis, but generally coincide with the morphological boundaries defined for the genus Ligusticopsis. To determine the taxonomic position of L. litangensis, we sequenced and assembled the plastomes of L. litangensis and compared them with the plastomes of 11 other species of the genus Ligusticopsis. Notably, both phylogenetic analyses based on ITS sequences and the complete chloroplast genome robustly supported that three accessions of L. litangensis are monophyletic clade and then nested in Ligusticopsis genus. Moreover, the plastid genomes of 12 Ligusticopsis species, including the new species, were highly conserved in terms of gene order, gene content, codon bias, IR boundaries and SSR content. Overall, the integration of morphological, comparative genomic and phylogenetic evidence indicates that Ligusticopsis litangensis actually represents a new species.
Collapse
Affiliation(s)
- Rongming Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xueyimu Aou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Boni Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zixuan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xingjin He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Songdong Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Xu Y, Liu Y, Yu Z, Jia X. Complete Chloroplast Genome Sequence of the Long Blooming Cultivar Camellia 'Xiari Qixin': Genome Features, Comparative and Phylogenetic Analysis. Genes (Basel) 2023; 14:460. [PMID: 36833387 PMCID: PMC9956581 DOI: 10.3390/genes14020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The camellia flower is a famous woody plant with a long-cultivated history and high ornamental value. It is extensively planted and utilized around the world and owns a massive germplasm resource. Camellia 'Xiari Qixin' belongs to one of the typical cultivars in the four seasons camellia hybrids series. Due to its long flowering period, this kind of cultivar is identified as a precious resource of camellia flowers. In this study, the complete chloroplast genome sequence of C. 'Xiari Qixin' was first reported. Its whole chloroplast genome is 157,039 bp in length with an overall GC content of 37.30%, composed of a large single copy region (LSC, 86,674 bp), a small single copy region (SSC, 18,281 bp), and a pair of inverted repeat regions (IRs, 26,042 bp each). A total of 134 genes were predicted in this genome, including 8 ribosomal RNA genes, 37 transfer RNA genes, and 89 protein-coding genes. In addition, 50 simple sequence repeats (SSRs) and 36 long repeat sequences were detected. By comparing C. 'Xiari Qixin' and seven Camellia species on the chloroplast genome, seven mutation hotspot regions were identified, including psbK, trnS (GCU)-trnG(GCC), trnG(GCC), petN-psbM, trnF(GAA)-ndhJ, trnP(UGG)-psaJ, and ycf1. Phylogenetic analysis of 30 chloroplast genomes showed that the genetic relationship between C. 'Xiari Qixin' and Camellia azalea is quite close in evolution. These results could not only provide a valuable database for determining the maternal origin of Camellia cultivars, but also contribute to the exploration of the phylogenetic relationship and utilization of germplasm resources for Camellia.
Collapse
Affiliation(s)
| | | | | | - Xiaocheng Jia
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
9
|
Wang Z, Cao L, Liu J, He X. Comparative analysis of the complete plastomes of nine Pimpinella species (Apiaceae) from China. PeerJ 2023; 11:e14773. [PMID: 36874977 PMCID: PMC9983424 DOI: 10.7717/peerj.14773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/03/2023] [Indexed: 03/06/2023] Open
Abstract
Pimpinella L. is one of the large genera in the Apiaceae family. In a previous study, the molecular phylogenies of Pimpinella were explored using nuclear ribosomal DNA internal transcribed spacers (ITS) and several chloroplast DNA segments. There have been few studies conducted on chloroplast genomes in Pimpinella, which has limited systematic understanding of this genus. We assembled the complete chloroplast genomes of nine Pimpinella species from China using data generated from next generation sequencing (NGS). The chloroplast (cp) DNA used were standard double-stranded molecules, ranging from 146,432 base pairs (bp) (P. valleculosa) to 165,666 bp (P. purpurea) in length. The circular DNA contained a large single-copy (LSC) region, small single-copy (SSC) region, and pair of inverted repeats (IRs). The cp DNA of the nine species contained 82-93 protein-coding genes, 36-37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes, respectively. Four species (P. smithii, P. valleculosa, P. rhomboidea, and P. purpurea) exhibited striking distinctions in genome size, gene number, IR boundary, and sequence identity. We confirmed the non-monophyly of the Pimpinella species on the basis of the nine newly identified plastomes. The distant relationship between the above-mentioned four Pimpinella species and Pimpinelleae was indicated with high support values. Our study provides a foundation for future in-depth phylogenetic and taxonomic studies of genus Pimpinella.
Collapse
Affiliation(s)
- Zhixin Wang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, Hunan, China
| | - Limin Cao
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, Hunan, China
| | - Jianhui Liu
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, Hunan, China
| | - Xingjin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Wang P, Bai J, Li X, Liu T, Yan Y, Yang Y, Li H. Phylogenetic relationship and comparative analysis of the main Bupleuri Radix species in China. PeerJ 2023; 11:e15157. [PMID: 37077311 PMCID: PMC10108860 DOI: 10.7717/peerj.15157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/10/2023] [Indexed: 04/21/2023] Open
Abstract
Background Bupleuri Radix (Chaihu) is a famous traditional Chinese medicine derived from Bupleurum, Apiaceae. The origin of cultivated Chaihu germplasm in China is unclear, which has led to unstable Chaihu quality. In this study, we reconstructed the phylogeny of the main Chaihu germplasm species in China and identified potential molecular markers to authenticate its origin. Methods Three Bupleurum species (eight individuals), B. bicaule, B. chinense, and B. scorzonerifolium, were selected for genome skimming. Published genomes from B. falcatum and B. marginatum var. stenophyllum were used for comparative analysis. Results Sequences of the complete plastid genomes were conserved with 113 identical genes ranging from 155,540 to 155,866 bp in length. Phylogenetic reconstruction based on complete plastid genomes resolved intrageneric relationships of the five Bupleurum species with high support. Conflicts between the plastid and nuclear phylogenies were observed, which were mainly ascribed to introgressive hybridization. Comparative analysis showed that noncoding regions of the plastomes had most of the variable sequences. Eight regions (atpF-atpH, petN-psbM, rps16-psbK, petA-psbJ, ndhC-trnV/UAC and ycf1) had high divergence values in Bupleurum species and could be promising DNA barcodes for Chaihu authentication. A total of seven polymorphic cpSSRs and 438 polymorphic nSSRs were detected across the five Chaihu germplasms. Three photosynthesis-related genes were under positive selection, of which accD reflected the adaptation fingerprint of B. chinense to different ecological habitats. Our study provides valuable genetic information for phylogenetic investigation, germplasm authentication, and molecular breeding of Chaihu species.
Collapse
Affiliation(s)
- Ping Wang
- Xianyang Normal University, Xianyang, China
| | - Jiqing Bai
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xue Li
- Xianyang Food and Drug Administration, Xianyang, China
| | | | - Yumeng Yan
- Xianyang Normal University, Xianyang, China
| | | | - Huaizhu Li
- Xianyang Normal University, Xianyang, China
| |
Collapse
|
11
|
Song B, Liu C, Xie D, Xiao Y, Tian R, Li Z, Zhou S, He X. Plastid Phylogenomic Analyses Reveal the Taxonomic Position of Peucedanum franchetii. PLANTS (BASEL, SWITZERLAND) 2022; 12:97. [PMID: 36616226 PMCID: PMC9824613 DOI: 10.3390/plants12010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Peucedanum franchetii is a famous folk medicinal plant in China. However, the taxonomy of the P. franchetii has not been sufficiently resolved. Due to similar morphological features between P. franchetii and Ligusticopsis members, the World Flora Online (WFO) Plant List suggested that this species transformed into the genus Ligusticopsis and merged with Ligusticopsis likiangensis. However, both species are obviously diverse in leaf shape, bracts, and bracteoles. To check the taxonomic position of P. franchetii, we newly sequenced and assembled the plastome of P. franchetii and compared it with nine other plastomes of the genus Ligusticopsis. Ten plastomes were highly conserved and similar in gene order, codon bias, RNA editing sites, IR borders, and SSRs. Nevertheless, 10 mutation hotspot regions (infA, rps8, matK, ndhF, rps15, psbA-trnH, rps2-rpoC2, psbA-trnK, ycf2-trnL, and ccsA-ndhD) were still detected. In addition, both phylogenetic analyses based on plastome data and ITS sequences robustly supported that P. franchetii was not clustered with members of Peucedanum but nested in Ligusticopsis. P. franchetii was sister to L. likiangensis in the ITS topology but clustered with L. capillacea in the plastome tree. These findings implied that P. franchetii should be transferred to genus Ligusticopsis and not merged with L. likiangensis, but as an independent species, which was further verified by morphological evidences. Therefore, transferring P. franchetii under the genus Ligusticopsis as an independent species was reasonable, and a new combination was presented.
Collapse
|
12
|
Comparative Analysis of the Complete Chloroplast Genomes in Allium Section Bromatorrhiza Species (Amaryllidaceae): Phylogenetic Relationship and Adaptive Evolution. Genes (Basel) 2022; 13:genes13071279. [PMID: 35886061 PMCID: PMC9324613 DOI: 10.3390/genes13071279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/03/2022] Open
Abstract
With the development of molecular sequencing approaches, many taxonomic and phylogenetic problems of the genus Allium L. have been solved; however, the phylogenetic relationships of some subgenera or sections, such as section Bromatorrhiza, remain unresolved, which has greatly impeded our full understanding of the species relationships among the major clades of Allium. In this study, the complete chloroplast (cp) genomes of nine species in the Allium sect. Bromatorrhiza were determined using the Illumina paired-end sequencing, the NOVOPlasty de novo assembly strategy, and the PGA annotation method. The results showed that the cp genome exhibited high conservation and revealed a typical circular tetrad structure. Among the sect. Bromatorrhiza species, the gene content, SSRs, codon usage, and RNA editing site were similar. The genome structure and IR regions’ fluctuation were investigated while genes, CDSs, and non-coding regions were extracted for phylogeny reconstruction. Evolutionary rates (Ka/Ks values) were calculated, and positive selection analysis was further performed using the branch-site model. Five hypervariable regions were identified as candidate molecular markers for species authentication. A clear relationship among the sect. Bromatorrhiza species were detected based on concatenated genes and CDSs, respectively, which suggested that sect. Bromatorrhiza is monophyly. In addition, there were three genes with higher Ka/Ks values (rps2, ycf1, and ycf2), and four genes (rpoC2, atpF, atpI, and rpl14) were further revealed to own positive selected sites. These results provide new insights into the plastome component, phylogeny, and evolution of Allium species.
Collapse
|
13
|
Sheikh-Assadi M, Naderi R, Kafi M, Fatahi R, Salami SA, Shariati V. Complete chloroplast genome of Lilium ledebourii (Baker) Boiss and its comparative analysis: lights into selective pressure and adaptive evolution. Sci Rep 2022; 12:9375. [PMID: 35672390 PMCID: PMC9174193 DOI: 10.1038/s41598-022-13449-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/24/2022] [Indexed: 01/02/2023] Open
Abstract
Lilium ledebourii (Baker) Boiss is a rare species, which exhibits valuable traits. However, before its genetic diversity and evolutionary were uncovered, its wild resources were jeopardized. Moreover, some ambiguities in phylogenetic relationships of this genus remain unresolved. Therefore, obtaining the whole chloroplast sequences of L. ledebourii and its comparative analysis along with other Lilium species is crucial and pivotal to understanding the evolution of this genus as well as the genetic populations. A multi-scale genome-level analysis, especially selection pressure, was conducted. Detailed third‑generation sequencing and analysis revealed a whole chloroplast genome of 151,884 bp, with an ordinary quadripartite and protected structure comprising 37.0% GC. Overall, 113 different genes were recognized in the chloroplast genome, consisting of 30 distinct tRNA genes, four distinct ribosomal RNAs genes, and 79 unique protein-encoding genes. Here, 3234 SSRs and 2053 complex repeats were identified, and a comprehensive analysis was performed for IR expansion and contraction, and codon usage bias. Moreover, genome-wide sliding window analysis revealed the variability of rpl32-trnL-ccsA, petD-rpoA, ycf1, psbI-trnS-trnG, rps15-ycf1, trnR, trnT-trnL, and trnP-psaJ-rpl33 were higher among the 48 Lilium cp genomes, displaying higher variability of nucleotide in SC regions. Following 1128 pairwise comparisons, ndhB, psbJ, psbZ, and ycf2 exhibit zero synonymous substitution, revealing divergence or genetic restriction. Furthermore, out of 78 protein-coding genes, we found that accD and rpl36 under positive selection: however, at the entire-chloroplast protein scale, the Lilium species have gone through a purifying selection. Also, a new phylogenetic tree for Lilium was rebuilt, and we believe that the Lilium classification is clearer than before. The genetic resources provided here will aid future studies in species identification, population genetics, and Lilium conservation.
Collapse
Affiliation(s)
- Morteza Sheikh-Assadi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran.
| | - Roohangiz Naderi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran.
| | - Mohsen Kafi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Reza Fatahi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Seyed Alireza Salami
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Vahid Shariati
- NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
14
|
Complete Chloroplast Genome of Cnidium monnieri (Apiaceae) and Comparisons with Other Tribe Selineae Species. DIVERSITY 2022. [DOI: 10.3390/d14050323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cnidium monnieri is an economically important traditional Chinese medicinal plant. In this study, the complete chloroplast (cp) genome of C. monnieri was determined using the Illumina paired-end sequencing, the GetOrganelle de novo assembly strategy, as well as the GeSeq annotation method. Our results showed that the cp genome was 147,371 bp in length with 37.4% GC content and included a large single-copy region (94,361 bp) and a small single-copy region (17,552 bp) separated by a pair of inverted repeat regions (17,729 bp). A total of 129 genes were contained in the cp genome, including 85 protein-coding genes, 36 tRNA genes, and eight rRNA genes. We also investigated codon usage, RNA editing, repeat sequences, simple sequence repeats (SSRs), IR boundaries, and pairwise Ka/Ks ratios. Four hypervariable regions (trnD-trnY-trnE-trnT, ycf2, ndhF-rpl32-trnL, and ycf1) were identified as candidate molecular markers for species authentication. The phylogenetic analyses supported non-monophyly of Cnidium and C. monnieri located in tribe Selineae based on the cp genome sequences and internal transcribed spacer (ITS) sequences. The incongruence of the phylogenetic position of C. monnieri between ITS and cpDNA phylogenies suggested that C. monnieri might have experienced complex evolutions with hybrid and incomplete lineage sorting. All in all, the results presented herein will provide plentiful chloroplast genomic resources for studies of the taxonomy, phylogeny, and species authentication of C. monnieri. Our study is also conducive to elucidating the phylogenetic relationships and taxonomic position of Cnidium.
Collapse
|
15
|
Wang X, Han Q. A Closer Examination of the 'Abundant-Center' for Ectomycorrhizal Fungal Community Associated With Picea crassifolia in China. FRONTIERS IN PLANT SCIENCE 2022; 13:759801. [PMID: 35283884 PMCID: PMC8908202 DOI: 10.3389/fpls.2022.759801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A long-standing hypothesis in biogeography predicts that a species' abundance is highest at the center of its geographical range and decreases toward its edges. In this study, we test the abundant-center hypothesis of ectomycorrhizal (ECM) fungal communities associated with Picea crassifolia, an endemic species widely distributed in northwest China. We analyzed the taxonomic richness and the relative abundance of ECM fungi in four main distribution areas, from center to edges. In total, 234 species of ECM fungi were detected, and of these, 137 species were shared among all four sites. Inocybe, Sebacina, Tomentella, and Cortinarius were the dominant genera. ECM fungal richness and biodiversity were highest at the central and lower at peripheral sites. Our results indicated that ECM fungal species richness was consistent with the abundant-center hypothesis, while the relative abundances of individual fungal genera shifted inconsistently across the plant's range.
Collapse
Affiliation(s)
- Xiaobing Wang
- School of Civil Engineering and Architecture, Xinxiang University, Xinxiang, China
| | - Qisheng Han
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|
16
|
Huang R, Xie X, Chen A, Li F, Tian E, Chao Z. The chloroplast genomes of four Bupleurum (Apiaceae) species endemic to Southwestern China, a diversity center of the genus, as well as their evolutionary implications and phylogenetic inferences. BMC Genomics 2021; 22:714. [PMID: 34600494 PMCID: PMC8487540 DOI: 10.1186/s12864-021-08008-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 09/13/2021] [Indexed: 11/28/2022] Open
Abstract
Background As one of the largest genera in Apiaceae, Bupleurum L. is well known for its high medicinal value. The genus has frequently attracted the attention of evolutionary biologist and taxonomist for its distinctive characteristics in the Apiaceae family. Although some chloroplast genomes data have been now available, the changes in the structure of chloroplast genomes and selective pressure in the genus have not been fully understood. In addition, few of the species are endemic to Southwest China, a distribution and diversity center of Chinese Bupleurum. Endemic species are key components of biodiversity and ecosystems, and investigation of the chloroplast genomes features of endemic species in Bupleurum will be helpful to develop a better understanding of evolutionary process and phylogeny of the genus. In this study, we analyzed the sequences of whole chloroplast genomes of 4 Southwest China endemic Bupleurum species in comparison with the published data of 17 Bupleurum species to determine the evolutionary characteristics of the genus and the phylogenetic relationships of Asian Bupleurum. Results The complete chloroplast genome sequences of the 4 endemic Bupleurum species are 155,025 bp to 155,323 bp in length including a SSC and a LSC region separated by a pair of IRs. Comparative analysis revealed an identical chloroplast gene content across the 21 Bupleurum species, including a total of 114 unique genes (30 tRNA genes, 4 rRNA genes and 80 protein-coding genes). Chloroplast genomes of the 21 Bupleurum species showed no rearrangements and a high sequence identity (96.4–99.2%). They also shared a similar tendency of SDRs and SSRs, but differed in number (59–83). In spite of their high conservation, they contained some mutational hotspots, which can be potentially exploited as high-resolution DNA barcodes for species discrimination. Selective pressure analysis showed that four genes were under positive selection. Phylogenetic analysis revealed that the 21 Bupleurum formed two major clades, which are likely to correspond to their geographical distribution. Conclusions The chloroplast genome data of the four endemic Bupleurum species provide important insights into the characteristics and evolution of chloroplast genomes of this genu, and the phylogeny of Bupleurum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08008-z.
Collapse
Affiliation(s)
- Rong Huang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xuena Xie
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Aimin Chen
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fang Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Enwei Tian
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhi Chao
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China. .,Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Xie X, Huang R, Li F, Tian E, Li C, Chao Z. Phylogenetic position of Bupleurum sikangense inferred from the complete chloroplast genome sequence. Gene 2021; 798:145801. [PMID: 34175392 DOI: 10.1016/j.gene.2021.145801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Bupleurum sikangense is an endemic species to China distributed in Xizang (Tibet), which has high saikosaponin content and potential medicinal value. Morphologically, it extremely resembles B. commelynoideum. In order to get a better understanding of the relationship between B. sikangense and B. commelynoideum, and on the phylogenetic status of the two species in the genus, the complete chloroplast (cp) genomes of them were sequenced. The genome organization, repeat sequences, codon usage, RNA-editing sites, and variation of their cp genomes revealed high similarity between the species. Some highly variable regions like trnK-UUU_rps16, rps16_trnQ-UUG, ndhC_trnV-UAC, petA_psbJ, accD_psaI, and petL_psbE were identified, providing potential molecular markers for differentiating the two species. Phylogenetic analysis indicated that B. commelynoideum has a closer relationship to B. chinese than that to B. sikangense. Overall, this study will not only improve our knowledge about cp genomes of these two species, and but also provide data for further research on species identification, safe medical application, conservation genetics, etc., of Bupleurum plants.
Collapse
Affiliation(s)
- Xuena Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Rong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fang Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Enwei Tian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhi Chao
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China.
| |
Collapse
|
18
|
Wen J, Xie DF, Price M, Ren T, Deng YQ, Gui LJ, Guo XL, He XJ. Backbone phylogeny and evolution of Apioideae (Apiaceae): New insights from phylogenomic analyses of plastome data. Mol Phylogenet Evol 2021; 161:107183. [PMID: 33892097 DOI: 10.1016/j.ympev.2021.107183] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/05/2023]
Abstract
Traditional phylogenies inferred from chloroplast DNA fragments have not obtained a well-resolved evolutionary history for the backbone of Apioideae, the largest subfamily of Apiaceae. In this study, we applied the genome skimming approach of next-generation sequencing to address whether the lack of resolution at the tip of the Apioideae phylogenetic tree is due to limited information loci or the footprint of ancient radiation. A total of 90 complete chloroplast genomes (including 23 newly sequenced genomes and covering 20 major clades of Apioideae) were analyzed (RAxML and MrBayes) to provide a phylogenomic reconstruction of Apioideae. Dating analysis was also implemented using BEAST to estimate the origin and divergence time of the major clades. As a result, the early divergences of Apioideae have been clarified but the relationship among its distally branching clades (Group A) was only partially resolved, with short internal branches pointing to an ancient radiation scenario. Four major clades, Tordyliinae I, Pimpinelleae I, Apieae and Coriandreae, were hypothesized to have originated from chloroplast capture events induced by early hybridization according to the incongruence between chloroplast-based and nrDNA-based phylogenetic trees. Furthermore, the variable and nested distribution of junction positions of LSC (Large single copy region) and IRB (inverted repeat region B) in Group A may reflect incomplete lineage sorting within this group, which possibly contributed to the unclear phylogenetic relationships among these clades inferred from plastome data. Molecular clock analysis revealed the chloroplast capture events mainly occurred during the middle to late Miocene, providing a geological and climate context for the evolution of Apioideae.
Collapse
Affiliation(s)
- Jun Wen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Megan Price
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ting Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yi-Qi Deng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ling-Jian Gui
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xian-Lin Guo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xing-Jin He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
19
|
Huang R, Xie X, Li F, Tian E, Chao Z. Chloroplast genomes of two Mediterranean Bupleurum species and the phylogenetic relationship inferred from combined analysis with East Asian species. PLANTA 2021; 253:81. [PMID: 33765202 DOI: 10.1007/s00425-021-03602-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The chloroplast genomes of Mediterranean Bupleurum species are reported for the first time. Phylogenetic analysis supports the species as a basal clade of Bupleurum with divergence time at 35.40 Ma. Bupleurum is one of the most species-rich genus with high medicinal value in Apiaceae. Although infrageneric classifications of Bupleurum have been the subject of numerous studies, it still remains controversial. Chloroplast genome information will prove essential in advancing our understanding on phylogenetic study. Here we report cp genomes of two woody Bupleurum species (Bupleurum gibraltaricum and B. fruticosum) endemic to Mediterranean. The complete cp genomes of the two species were 157,303 and 157,391 bp in size, respectively. They encoded 114 unique genes including 30 tRNA genes, 4 rRNA genes and 80 protein coding genes. Genome structure, distributions of SDRs and SSRs, gene content exhibited similarities among Bupleurum species. High variable hotspots were detected in eight intergenic spacers and four genes. Most of genes were under purifying selection with two exceptions: atpF and clpP. The phylogenetic analysis based on 80 coding genes revealed that the genus was divided into 2 distinct clades corresponding to the 2 subgenera (subg. Penninervia, subg. Bupleurum) with divergence time at the end of collision of India with Eurasia. Most species diversified mainly during the later period of uplift of Qinghai-Tibetan Plateau. The cp genomes of the two Bupleurum species can be significant complementary to insights into the cp genome characteristics of this genus. The comparative chloroplast genomes and phylogenetic analysis advances our understanding of the evolution of cp genomes and phylogeny in Bupleurum.
Collapse
Affiliation(s)
- Rong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xuena Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fang Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Enwei Tian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhi Chao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Lee YS, Kim J, Woo S, Park JY, Park HS, Shim H, Choi HI, Kang JH, Lee TJ, Sung SH, Yang TJ, Kang KB. Assessing the genetic and chemical diversity of Taraxacum species in the Korean Peninsula. PHYTOCHEMISTRY 2021; 181:112576. [PMID: 33166748 DOI: 10.1016/j.phytochem.2020.112576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 05/12/2023]
Abstract
The genetic relationship between Taraxacum species, also known as the dandelion, is complicated because of asexual and mixed sexual apomictic reproduction. The usage of Taraxacum species in traditional medicines make their specialized metabolism important, but interspecific chemical difference has rarely been reported for the genus. In this study, we assembled the chloroplast genome and 45S rDNA of six Taraxacum species that occur in Korea (T. campylodes, T. coreanum, T. erythrospermum, T. mongolicum, T. platycarpum, and T. ussuriense), and performed a comparative analysis, which revealed their phylogenetic relationships and possible natural hybridity. We also performed a liquid chromatography-mass spectrometry-based phytochemical analysis to reveal interspecific chemical diversity. The comparative metabolomics analysis revealed that Taraxacum species could be separated into three chemotypes according to their major defensive specialized metabolites, which were the sesquiterpene lactones, the phenolic inositols, and chlorogenic acid derivatives. The CP DNA- and 45S rDNA-based phylogenetic trees showed a tangled relationship, which supports the notion of ongoing hybridization of wild Taraxacum species. The untargeted LC-MS analysis revealed that each Taraxacum plant exhibits species-specific defensive specialized metabolism. Moreover, 45S rDNA-based phylogenetic tree correlated with the hierarchical cluster relied on metabolite compositions. Given the coincidence between these analyses, we represented that 45S rDNA could well reflect overall nuclear genome variation in Taraxacum species.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinkyung Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunmin Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Jung Hwa Kang
- Hantaek Botanical Garden, Yongin, 17183, Republic of Korea
| | - Taek Joo Lee
- Hantaek Botanical Garden, Yongin, 17183, Republic of Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
21
|
Gou W, Jia SB, Price M, Guo XL, Zhou SD, He XJ. Complete Plastid Genome Sequencing of Eight Species from Hansenia, Haplosphaera and Sinodielsia (Apiaceae): Comparative Analyses and Phylogenetic Implications. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1523. [PMID: 33182384 PMCID: PMC7695273 DOI: 10.3390/plants9111523] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/17/2022]
Abstract
Hansenia Turcz., Haplosphaera Hand.-Mazz. and Sinodielsia H.Wolff are three Apiaceae genera endemic to the Hengduan Mountains and the Himalayas, which usually inhabit elevations greater than 2000 m. The phylogenetic relationships between and within the genera were uncertain, especially the placement of Hap. himalayensis and S. microloba. Therefore, we aimed to conduct comparative (simple sequence repeat (SSR) structure, codon usage bias, nucleotide diversity (Pi) and inverted repeat (IR) boundaries) and phylogenetic analyses of Hansenia, Haplosphaera and Sinodielsia (also compared with Chamaesium and Bupleurum) to reduce uncertainties in intergeneric and interspecific relationships. We newly assembled eight plastid genomes from Hansenia, Haplosphaera and Sinodielsia species, and analyzed them with two plastid genomes from GenBank of Hap. phaea,S. yunnanensis. Phylogenetic analyses used these ten genomes and another 22 plastid genome sequences of Apiaceae. We found that the newly assembled eight genomes ranged from 155,435 bp to 157,797 bp in length and all had a typical quadripartite structure. Fifty-five to 75 SSRs were found in Hansenia, Haplosphaera and Sinodielsia species, and the most abundant SSR was mononucleotide, which accounted for 58.47% of Hansenia, 60.21% of Haplosphaera and 48.01% of Sinodielsia. There was no evident divergence of codon usage frequency between the three genera, where codons ranged from 21,134 to 21,254. The Pi analysis showed that trnE(UUC)-trnT(GGU), trnH(GUG)-psbA and trnE(UUC)-trnT(GGU) spacer regions had the highest Pi values in the plastid genomes of Hansenia (0.01889), Haplosphaera (0.04333) and Sinodielsia (0.01222), respectively. The ndhG-ndhI spacer regions were found in all three genera to have higher diversity values (Pi values: 0.01028-0.2), and thus may provide potential DNA barcodes in phylogenetic analysis. IR boundary analysis showed that the length of rps19 and ycf1 genes entering IRs were usually stable in the same genus. Our phylogenetic tree demonstrated that Hap. himalayensis is sister to Han. weberbaueriana; meanwhile, Haplosphaera and Hansenia are nested together in the East Asia clade, and S. microloba is nested within individuals of S. yunnanensis in the Acronema clade. This study will enrich the complete plastid genome dataset of the Apiaceae genera and has provided a new insight into phylogeny reconstruction using complete plastid genomes of Hansenia, Haplosphaera and Sinodielsia.
Collapse
Affiliation(s)
- Wei Gou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (W.G.); (S.-B.J.); (X.-L.G.); (S.-D.Z.)
| | - Sheng-Bin Jia
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (W.G.); (S.-B.J.); (X.-L.G.); (S.-D.Z.)
| | - Megan Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Xian-Lin Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (W.G.); (S.-B.J.); (X.-L.G.); (S.-D.Z.)
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (W.G.); (S.-B.J.); (X.-L.G.); (S.-D.Z.)
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (W.G.); (S.-B.J.); (X.-L.G.); (S.-D.Z.)
| |
Collapse
|
22
|
Guo XL, Zheng HY, Price M, Zhou SD, He XJ. Phylogeny and Comparative Analysis of Chinese Chamaesium Species Revealed by the Complete Plastid Genome. PLANTS 2020; 9:plants9080965. [PMID: 32751647 PMCID: PMC7464574 DOI: 10.3390/plants9080965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
Chamaesium H. Wolff (Apiaceae, Apioideae) is a small genus mainly distributed in the Hengduan Mountains and the Himalayas. Ten species of Chamaesium have been described and nine species are distributed in China. Recent advances in molecular phylogenetics have revolutionized our understanding of Chinese Chamaesium taxonomy and evolution. However, an accurate phylogenetic relationship in Chamaesium based on the second-generation sequencing technology remains poorly understood. Here, we newly assembled nine plastid genomes from the nine Chinese Chamaesium species and combined these genomes with eight other species from five genera to perform a phylogenic analysis by maximum likelihood (ML) using the complete plastid genome and analyzed genome structure, GC content, species pairwise Ka/Ks ratios and the simple sequence repeat (SSR) component. We found that the nine species’ plastid genomes ranged from 152,703 bp (C. thalictrifolium) to 155,712 bp (C. mallaeanum), and contained 133 genes, 34 SSR types and 585 SSR loci. We also found 20,953–21,115 codons from 53 coding sequence (CDS) regions, 38.4–38.7% GC content of the total genome and low Ka/Ks (0.27–0.43) ratios of 53 aligned CDS. These results will facilitate our further understanding of the evolution of the genus Chamaesium.
Collapse
Affiliation(s)
- Xian-Lin Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (X.-L.G.); (H.-Y.Z.)
| | - Hong-Yi Zheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (X.-L.G.); (H.-Y.Z.)
| | - Megan Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (X.-L.G.); (H.-Y.Z.)
- Correspondence: (S.-D.Z.); (X.-J.H.)
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (X.-L.G.); (H.-Y.Z.)
- Correspondence: (S.-D.Z.); (X.-J.H.)
| |
Collapse
|
23
|
Seed Total Protein Profiling in Discrimination of Closely Related Pines: Evidence from the Pinus mugo Complex. PLANTS 2020; 9:plants9070872. [PMID: 32660038 PMCID: PMC7412326 DOI: 10.3390/plants9070872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
The Pinus mugo complex includes several dozen closely related European mountain pines. The discrimination of specific taxa within this complex is still extremely challenging, although numerous methodologies have been used to solve this problem, including morphological and anatomical analyses, cytological studies, allozyme variability, and DNA barcoding, etc. In this study, we used the seed total protein (STP) patterns to search for taxonomically interesting differences among three closely-related pine taxa from the Pinus mugo complex and five more distant species from the Pinaceae family. It was postulated that STP profiling can serve as the backup methodology for modern taxonomic research, in which more sophisticated analyses, i.e., based on the DNA barcoding approach, have been found to be useless. A quantitative analysis of the STP profiles revealed characteristic electrophoretic patterns for all the analyzed taxa from Pinaceae. STP profiling enabled the discrimination of closely-related pine taxa, even of those previously indistinguishable by chloroplast DNA barcodes. The results obtained in this study indicate that STP profiling can be very useful for solving complex taxonomic puzzles.
Collapse
|