1
|
Zhang Y, Song M, Zhu Y, Li H, Zhang Y, Wang G, Chen X, Zhang W, Wang H, Wang Y, Shao R, Guo J, Yang Q. Impact of microplastic particle size on physiological and biochemical properties and rhizosphere metabolism of Zea mays L.: Comparison in different soil types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168219. [PMID: 37924875 DOI: 10.1016/j.scitotenv.2023.168219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
The effect of microplastics (MPs) on plant growth has received increasing attention. However, whether soil texture and MPs size influence the toxicological effects of MPs on plants is unknown. To address this knowledge gap, two soils with different physical structures (lime concretion black and silty loam soils) were selected to explore the potential toxicity of MPs of different particle sizes to maize growth. The results showed that, in both soils, the harm caused by small MPs on maize growth was greater than that caused by large MPs. Low MPs concentrations had no significant effect on maize growth between two soil types; however, when exposed to a concentration of 1 % large MPs, the dry biomass of maize was promoted in lime concretion black soil but inhibited in silty loam soil. All MPs-exposed treatments resulted in a high level of superoxide anions in maize roots, resulting in an increase in the root aerenchyma area and reducing the metabolic activity of maize roots. Metabolomics showed that MPs exposure affected multiple amino acid metabolic pathways, including phenylalanine and tyrosine metabolism, and inhibited lignin biosynthesis in roots. This study provides a theoretical basis for a more comprehensive assessment of the effect of MPs pollution on agricultural production.
Collapse
Affiliation(s)
- Yihan Zhang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Miaomiao Song
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Yiming Zhu
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Huan Li
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Yinglei Zhang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaofeng Wang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinping Chen
- College of Resources and Environment and Academy of Agricultural Science, Southwest University, Chongqing 400700, China
| | - Wushuai Zhang
- College of Resources and Environment and Academy of Agricultural Science, Southwest University, Chongqing 400700, China
| | - Hao Wang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongchao Wang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruixin Shao
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiameng Guo
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China..
| | - Qinghua Yang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Wang J, Song J, Qi H, Zhang H, Wang L, Zhang H, Cui C, Ji G, Muhammad S, Sun G, Xu Z, Zhang H. Overexpression of 2-Cys Peroxiredoxin alleviates the NaHCO 3 stress-induced photoinhibition and reactive oxygen species damage of tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107876. [PMID: 37413942 DOI: 10.1016/j.plaphy.2023.107876] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Plant 2-cysteine peroxiredoxin (2-Cys Prx) is a mercaptan peroxidase localized in chloroplasts and has unique catalytic properties. To explore the salt stress tolerance mechanisms of 2-Cys Prx in plants, we analyzed the effects of overexpressing the 2-CysPrx gene on the physiological and biochemical metabolic processes of tobacco under NaHCO3 stress through joint physiological and transcriptomic analysis. These parameters included growth phenotype, chlorophyll, photosynthesis, and antioxidant system. After NaHCO3 stress treatment, a total of 5360 differentially expressed genes (DEGs) were identified in 2-Cysprx overexpressed (OE) plants, and the number of DEGs was significantly lower than 14558 in wild-type (WT) plants. KEGG enrichment analysis showed that DEGs were mainly enriched in photosynthetic pathways, photosynthetic antenna proteins, and porphyrin and chlorophyll metabolism. Overexpressing 2-CysPrx significantly reduced the growth inhibition of tobacco induced by NaHCO3 stress, alleviating the down-regulation of the DEGs related to chlorophyll synthesis, photosynthetic electron transport and the Calvin cycle and the up-regulation of those related to chlorophyll degradation. In addition, it also interacted with other redox systems such as thioredoxins (Trxs) and the NADPH-dependent Trx reductase C (NTRC), and mediated the positive regulation of the activities of antioxidant enzymes such as peroxidase (POD) and catalase (CAT) and the expression of related genes, thereby reducing the accumulation of superoxide anion (O2·-), hydrogen peroxide (H2O2) and malondialdehyde (MDA). In conclusion, 2-CysPrx overexpression could alleviate the NaHCO3 stress-induced photoinhibition and oxidative damage by regulating chlorophyll metabolism, promoting photosynthesis and participating in the regulation of antioxidant enzymes, and thus improve the ability of plants to resist salt stress damage.
Collapse
Affiliation(s)
- Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hongling Qi
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Hongjiao Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Lu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Salman Muhammad
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhiru Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Shomali A, Das S, Arif N, Sarraf M, Zahra N, Yadav V, Aliniaeifard S, Chauhan DK, Hasanuzzaman M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223158. [PMID: 36432887 PMCID: PMC9699315 DOI: 10.3390/plants11223158] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 05/27/2023]
Abstract
Flavonoids are characterized as the low molecular weight polyphenolic compounds universally distributed in planta. They are a chemically varied group of secondary metabolites with a broad range of biological activity. The increasing amount of evidence has demonstrated the various physiological functions of flavonoids in stress response. In this paper, we provide a brief introduction to flavonoids' biochemistry and biosynthesis. Then, we review the recent findings on the alternation of flavonoid content under different stress conditions to come up with an overall picture of the mechanism of involvement of flavonoids in plants' response to various abiotic stresses. The participation of flavonoids in antioxidant systems, flavonoid-mediated response to different abiotic stresses, the involvement of flavonoids in stress signaling networks, and the physiological response of plants under stress conditions are discussed in this review. Moreover, molecular and genetic approaches to tailoring flavonoid biosynthesis and regulation under abiotic stress are addressed in this review.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
- Faculty of Environmental Studies, Dehli School of Journalism, University of Delhi, Delhi 110007, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Noreen Zahra
- Department of Botany, Government College for Women University, Faisalabad 38000, Pakistan
| | - Vaishali Yadav
- Department of Botany, Multanimal Modi College Modinagar, Ghaziabad 201204, India
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| |
Collapse
|
4
|
Enhancement of healthful novel sugar contents in genetically engineered sugarcane juice integrated with molecularly characterized ThSyGII (CEMB-SIG2). Sci Rep 2022; 12:18621. [PMID: 36329173 PMCID: PMC9633787 DOI: 10.1038/s41598-022-23130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Enhancement of sugar contents and yielding healthful sugar products from sugarcane demand high profile scientific strategies. Previous efforts to foster manipulation in metabolic pathways or triggering sugar production through combating abiotic stresses fail to yield high sugar recovery in Saccharum officinarum L. Novel sucrose isomers trehalulose (TH) and isomaltulose (IM) are naturally manufactured in microbial sources. In pursuance of novel scientific methodology, codon optimized sucrose isomerase gene, Trehalulose synthase gene II(CEMB-SIG2) cloned under dual combined stem specific constitutive promoters in pCAMBIA1301 expression vector integrated with Vacuole targeted signal peptide (VTS) to concentrate gene product into the vacuole. The resultant mRNA expression obtained by Real Time PCR validated extremely increased transgene expression in sugarcane culms than leaf tissues. Overall sugar estimation from transgenic sugarcane lines was executed through refractometer. HPLC based quantifications of Trehalulose (TH) alongside different internodes of transgenic sugarcane confirmed the enhancement of boosted sugar concentrations in mature sugarcane culms. Trehalulose synthase gene II receptive sugarcane lines indicated the unprecedented impressions of duly combined constitutive stem regulated promoters. Transgenic sugarcane lines produce highest sugar recovery percentages, 14.9% as compared to control lines (8.5%). The increased sugar recovery percentage in transgenic sugarcane validated the utmost performance and expression of ThSyGII gene .High Profile Liquid chromatography based sugar contents estimation of Trehalulose (TH) and Isomaltulose (IM) yielded unprecedented improvement in the whole sugar recovery percentage as compared to control lines..
Collapse
|
5
|
D’Alessandro R, Docimo T, Graziani G, D’Amelia V, De Palma M, Cappetta E, Tucci M. Abiotic Stresses Elicitation Potentiates the Productiveness of Cardoon Calli as Bio-Factories for Specialized Metabolites Production. Antioxidants (Basel) 2022; 11:antiox11061041. [PMID: 35739938 PMCID: PMC9219710 DOI: 10.3390/antiox11061041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
Cultivated cardoon (Cynara cardunculus L. var altilis) is a Mediterranean traditional food crop. It is adapted to xerothermic conditions and also grows in marginal lands, producing a large biomass rich in phenolic bioactive metabolites and has therefore received attention for pharmaceutical, cosmetic and innovative materials applications. Cardoon cell cultures can be used for the biotechnological production of valuable molecules in accordance with the principles of cellular agriculture. In the current study, we developed an elicitation strategy on leaf-derived cardoon calli for boosting the production of bioactive extracts for cosmetics. We tested elicitation conditions that trigger hyper-accumulation of bioactive phenolic metabolites without compromising calli growth through the application of chilling and salt stresses. We monitored changes in growth, polyphenol accumulation, and antioxidant capability, along with transcriptional variations of key chlorogenic acid and flavonoids biosynthetic genes. At moderate stress intensity and duration (14 days at 50–100 mM NaCl) salt exerted the best eliciting effect by stimulating total phenols and antioxidant power without impairing growth. Hydroalcoholic extracts from elicited cardoon calli with optimal growth and bioactive metabolite accumulation were demonstrated to lack cytotoxicity by MTT assay and were able to stimulate pro-collagen and aquaporin production in dermal cells. In conclusion, we propose a “natural” elicitation system that can be easily and safely employed to boost bioactive metabolite accumulation in cardoon cell cultures and also in pilot-scale cell culture production.
Collapse
Affiliation(s)
- Rosa D’Alessandro
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (R.D.); (V.D.); (M.D.P.); (E.C.); (M.T.)
| | - Teresa Docimo
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (R.D.); (V.D.); (M.D.P.); (E.C.); (M.T.)
- Correspondence: ; Tel.: +39-081-253-9223
| | - Giulia Graziani
- Department of Pharmaceutical Science, University of Naples Federico II, Via Montesano, 80131 Napoli, Italy;
| | - Vincenzo D’Amelia
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (R.D.); (V.D.); (M.D.P.); (E.C.); (M.T.)
| | - Monica De Palma
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (R.D.); (V.D.); (M.D.P.); (E.C.); (M.T.)
| | - Elisa Cappetta
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (R.D.); (V.D.); (M.D.P.); (E.C.); (M.T.)
| | - Marina Tucci
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (R.D.); (V.D.); (M.D.P.); (E.C.); (M.T.)
| |
Collapse
|
6
|
Yuan JQ, Sun DW, Lu Q, Yang L, Wang HW, Fu XX. Responses of Physiology, Photosynthesis, and Related Genes to Saline Stress in Cornus hongkongensis subsp. tonkinensis (W. P. Fang) Q. Y. Xiang. PLANTS 2022; 11:plants11070940. [PMID: 35406920 PMCID: PMC9002922 DOI: 10.3390/plants11070940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Cornus hongkongensis subsp. tonkinensis (W. P. Fang) Q. Y. Xiang is a native evergreen species with high ornamental value for abundant variations in leaf, bract, fruit, and tree gesture. To broaden its cultivation in coastal saline soil, salt damage and survival rate, physiological responses, photosynthetic performance, and related genes were evaluated for annual seedlings exposed to 0.3% salt (ST) concentrations for 60 days. Syndromes of salt damage were aggravated, and the survival rate decreased with prolonged stress duration; all stressed seedlings displayed salt damage, and 58.3% survived. Under short-term saline stress (5 d), marked increases in malondialdehyde (MDA), relative electrical conductivity (REC), and decreases in superoxide dismutase (SOD), photosynthetic rate (Pn), stomatal conductance (gs), and internal carbon dioxide concentration (Ci) were recorded. The stable leaf water use efficiency (WUE) and chlorophyll content were positive physiological responses to ensure photosynthetic performance. Meanwhile, the expression levels of genes related to photosystem II (psbA) and photorespiration (SGAT and GGAT) were upregulated, indicating the role of photorespiration in protecting photosynthesis from photoinhibition. After 30 days of stress (≥30 d), there was a significant increase in MDA, REC, soluble sugar (SS), soluble protein (SP), and Ci, whereas descending patterns in Pn, gs, WUE, the maximal photochemical efficiency of photosystem II (Fv/Fm), and potential activities of PSII (Fv/F0) occurred in salt-stressed seedlings, compared with CK. Meanwhile, the expression levels of related genes significantly dropped, such as psbA, LFNR, GGAT, GLYK, and PGK, indicating photoinhibition and worse photosynthetic performance. Our results suggest that the moderate salt tolerance of C. hongkongensis subsp. tonkinensis mostly lies in a better photosynthetic system influenced by active photorespiration. Hence, these results provide a framework for better understanding the photosynthetic responses of C. hongkongensis subsp. tonkinensis to salt stress.
Collapse
Affiliation(s)
- Jia-Qiu Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.-Q.Y.); (D.-W.S.); (Q.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Da-Wei Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.-Q.Y.); (D.-W.S.); (Q.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.-Q.Y.); (D.-W.S.); (Q.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Yang
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai 200336, China;
| | | | - Xiang-Xiang Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.-Q.Y.); (D.-W.S.); (Q.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-025-8542-7403
| |
Collapse
|
7
|
Phenolic Composition and Biological Properties of Cynara cardunculus L. var. altilis Petioles: Influence of the Maturity Stage. Antioxidants (Basel) 2021; 10:antiox10121907. [PMID: 34943010 PMCID: PMC8750300 DOI: 10.3390/antiox10121907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022] Open
Abstract
Hydroethanolic extracts of cardoon petioles collected at sixteen growth stages (P1-P16) were characterized in terms of their phenolic composition and bioactive potential (antioxidant, cytotoxic, anti-inflammatory, and antimicrobial activities). Fifteen phenolic compounds were tentatively identified (i.e., ten phenolic acids and five flavonoid glycosides); the main compounds were 5-O-caffeoylquinic and 1,5-di-O-caffeoylquinic acids. Samples collected at early maturity (P1-P4) presented a weak positive correlation between the higher content in polyphenols (P3: 101-mg/g extract) and better inhibition capacity against thiobarbituric acid reactive substance formation (TBARS; P3: IC50 = 5.0 µg/mL). Samples at intermediate maturation stages (P9) presented higher cytotoxic and anti-inflammatory potential. Moreover, immature petioles showed greater antihemolytic (OxHLIA; P4: IC50 = 65 and 180 µg/mL for Δt of 60 and 120 min, respectively) and antibacterial activity. The antifungal activity varied depending on the maturation stage and the fungi strain. In conclusion, the maturation stage may greatly affect the polyphenols composition and content and the bioactive potential of cardoon petioles.
Collapse
|
8
|
Paolo D, Locatelli F, Cominelli E, Pirona R, Pozzo S, Graziani G, Ritieni A, De Palma M, Docimo T, Tucci M, Sparvoli F. Towards a Cardoon ( Cynara cardunculus var. altilis)-Based Biorefinery: A Case Study of Improved Cell Cultures via Genetic Modulation of the Phenylpropanoid Pathway. Int J Mol Sci 2021; 22:ijms222111978. [PMID: 34769407 PMCID: PMC8584892 DOI: 10.3390/ijms222111978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Cultivated cardoon (Cynara cardunculus var. altilis L.) is a promising candidate species for the development of plant cell cultures suitable for large-scale biomass production and recovery of nutraceuticals. We set up a protocol for Agrobacterium tumefaciens-mediated transformation, which can be used for the improvement of cardoon cell cultures in a frame of biorefinery. As high lignin content determines lower saccharification yields for the biomass, we opted for a biotechnological approach, with the purpose of reducing lignin content; we generated transgenic lines overexpressing the Arabidopsis thaliana MYB4 transcription factor, a known repressor of lignin/flavonoid biosynthesis. Here, we report a comprehensive characterization, including metabolic and transcriptomic analyses of AtMYB4 overexpression cardoon lines, in comparison to wild type, underlining favorable traits for their use in biorefinery. Among these, the improved accessibility of the lignocellulosic biomass to degrading enzymes due to depletion of lignin content, the unexpected increased growth rates, and the valuable nutraceutical profiles, in particular for hydroxycinnamic/caffeoylquinic and fatty acids profiles.
Collapse
Affiliation(s)
- Dario Paolo
- National Research Council—Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Edoardo Bassini 15, 20133 Milano, Italy; (F.L.); (E.C.); (R.P.); (S.P.)
- Correspondence: (D.P.); (F.S.); Tel.: +39-0223699407 (D.P.); +39-0223699435 (F.S.)
| | - Franca Locatelli
- National Research Council—Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Edoardo Bassini 15, 20133 Milano, Italy; (F.L.); (E.C.); (R.P.); (S.P.)
| | - Eleonora Cominelli
- National Research Council—Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Edoardo Bassini 15, 20133 Milano, Italy; (F.L.); (E.C.); (R.P.); (S.P.)
| | - Raul Pirona
- National Research Council—Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Edoardo Bassini 15, 20133 Milano, Italy; (F.L.); (E.C.); (R.P.); (S.P.)
| | - Sara Pozzo
- National Research Council—Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Edoardo Bassini 15, 20133 Milano, Italy; (F.L.); (E.C.); (R.P.); (S.P.)
| | - Giulia Graziani
- Department of Pharmacy—University of Naples Federico II (UNINA), Via Domenico Montesano 49, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Alberto Ritieni
- Department of Pharmacy—University of Naples Federico II (UNINA), Via Domenico Montesano 49, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Monica De Palma
- National Research Council—Institute of Bioscience and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy; (M.D.P.); (T.D.); (M.T.)
| | - Teresa Docimo
- National Research Council—Institute of Bioscience and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy; (M.D.P.); (T.D.); (M.T.)
| | - Marina Tucci
- National Research Council—Institute of Bioscience and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy; (M.D.P.); (T.D.); (M.T.)
| | - Francesca Sparvoli
- National Research Council—Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Edoardo Bassini 15, 20133 Milano, Italy; (F.L.); (E.C.); (R.P.); (S.P.)
- Correspondence: (D.P.); (F.S.); Tel.: +39-0223699407 (D.P.); +39-0223699435 (F.S.)
| |
Collapse
|
9
|
Leonardi C, Toscano V, Genovese C, Mosselmans JFW, Ngwenya BT, Raccuia SA. Evaluation of cadmium and arsenic effects on wild and cultivated cardoon genotypes selected for metal phytoremediation and bioenergy purposes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55102-55115. [PMID: 34128170 PMCID: PMC8494702 DOI: 10.1007/s11356-021-14705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Cynara cardunculus L. is a multipurpose crop, characterized by high production of biomass suitable for energy purposes and green chemistry. Taking advantage of its already demonstrated ability to grow in polluted environments that characterize many world marginal lands, the aim of this work was to investigate the response of different cardoon genotypes to exposure to cadmium (Cd) and arsenic (As) pollution, in order to use this crop for rehabilitation of contaminated sites and its biomass for energy production. In this study, seeds of two wild cardoon accessions harvested in rural and industrial Sicilian areas and of a selected line of domestic cardoon were used, and the grown plants were spiked with As and Cd, alone or in combination, at two different concentrations (500 and 2000 μM) and monitored for 45 days. The growth parameters showed that all the plants survived until the end of experiment, with growth stimulation in the presence of low concentrations of As and Cd, relative to metal-free controls. Biomass production was mostly allocated in the roots in As treatment and in the shoots in Cd treatment. Cd EXAFS analysis showed that tolerance to high concentrations of both metals was likely linked to complexation of Cd with oxygen-containing ligands, possibly organic acids, in both root and leaf biomass with differences in behaviour among genotypes. Under As+Cd contamination, the ability of the plants to translocate As to aboveground system increased also showing that, for both metal(loid)s, there were significant differences between genotypes studied. Moreover, the results showed that Cynara cardunculus var. sylvestris collected in an industrial area is the genotype that, among those studied, had the best phytoextraction capability for each metal(loid).
Collapse
Affiliation(s)
- Chiara Leonardi
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne, 81, 95124, Catania, Italy.
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle, 58, 95128, Catania, Italy.
| | - Valeria Toscano
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle, 58, 95128, Catania, Italy
| | - Claudia Genovese
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle, 58, 95128, Catania, Italy
| | | | | | - Salvatore Antonino Raccuia
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle, 58, 95128, Catania, Italy
| |
Collapse
|
10
|
Specialized Metabolites and Valuable Molecules in Crop and Medicinal Plants: The Evolution of Their Use and Strategies for Their Production. Genes (Basel) 2021; 12:genes12060936. [PMID: 34207427 PMCID: PMC8235196 DOI: 10.3390/genes12060936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Plants naturally produce a terrific diversity of molecules, which we exploit for promoting our overall well-being. Plants are also green factories. Indeed, they may be exploited to biosynthesize bioactive molecules, proteins, carbohydrates and biopolymers for sustainable and large-scale production. These molecules are easily converted into commodities such as pharmaceuticals, antioxidants, food, feed and biofuels for multiple industrial processes. Novel plant biotechnological, genetics and metabolic insights ensure and increase the applicability of plant-derived compounds in several industrial sectors. In particular, synergy between disciplines, including apparently distant ones such as plant physiology, pharmacology, ‘omics sciences, bioinformatics and nanotechnology paves the path to novel applications of the so-called molecular farming. We present an overview of the novel studies recently published regarding these issues in the hope to have brought out all the interesting aspects of these published studies.
Collapse
|
11
|
Barros NLF, Marques DN, Tadaiesky LBA, de Souza CRB. Halophytes and other molecular strategies for the generation of salt-tolerant crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:581-591. [PMID: 33773233 DOI: 10.1016/j.plaphy.2021.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/13/2021] [Indexed: 05/27/2023]
Abstract
The current increase in salinity can intensify the disparity between potential and actual crop yields, thus affecting economies and food security. One of the mitigating alternatives is plant breeding via biotechnology, where advances achieved so far are significant. Considering certain aspects when developing studies related to plant breeding can determine the success and accuracy of experimental design. Besides this strategy, halophytes with intrinsic and efficient abilities against salinity can be used as models for improving the response of crops to salinity stress. As crops are mostly glycophytes, it is crucial to point out the molecular differences between these two groups of plants, which may be the key to guiding and optimizing the transformation of glycophytes with halophytic tolerance genes. Therefore, this can broaden perspectives in the trajectory of research towards the cultivation, commercialization, and consumption of salt-tolerant crops on a large scale.
Collapse
Affiliation(s)
| | - Deyvid Novaes Marques
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, SP, CEP 13418-900, Brazil
| | - Lorene Bianca Araújo Tadaiesky
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, CEP 66075-110, Brazil; Programa de Pós-Graduação em Agronomia, Universidade Federal Rural da Amazônia, Belém, PA, CEP 66077-530, Brazil
| | | |
Collapse
|
12
|
Balestrini R, Brunetti C, Cammareri M, Caretto S, Cavallaro V, Cominelli E, De Palma M, Docimo T, Giovinazzo G, Grandillo S, Locatelli F, Lumini E, Paolo D, Patanè C, Sparvoli F, Tucci M, Zampieri E. Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field. Int J Mol Sci 2021; 22:2887. [PMID: 33809189 PMCID: PMC7999214 DOI: 10.3390/ijms22062887] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Cecilia Brunetti
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Maria Cammareri
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Sofia Caretto
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Valeria Cavallaro
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Eleonora Cominelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Monica De Palma
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Teresa Docimo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Giovanna Giovinazzo
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Silvana Grandillo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Franca Locatelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Erica Lumini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Dario Paolo
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Cristina Patanè
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Francesca Sparvoli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Marina Tucci
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Elisa Zampieri
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| |
Collapse
|
13
|
Abdel-Farid IB, Marghany MR, Rowezek MM, Sheded MG. Effect of Salinity Stress on Growth and Metabolomic Profiling of Cucumis sativus and Solanum lycopersicum. PLANTS 2020; 9:plants9111626. [PMID: 33238519 PMCID: PMC7700630 DOI: 10.3390/plants9111626] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023]
Abstract
Seeds germination and seedlings growth of Cucumis sativus and Solanum lycopersicum were monitored in in vitro and in vivo experiments after application of different concentrations of NaCl (25, 50, 100 and 200 mM). Photosynthetic pigments content and the biochemical responses of C. sativus and S. lycopersicum were assessed. Salinity stress slightly delayed the seeds germination rate and significantly reduced the percentage of germination as well as shoot length under the highest salt concentration (200 mM) in cucumber. Furthermore, root length was decreased significantly in all treatments. Whereas, in tomato, a prominent delay in seeds germination rate, the germination percentage and seedlings growth (shoot and root lengths) were significantly influenced under all concentrations of NaCl. Fresh and dry weights were reduced prominently in tomato compared to cucumber. Photosynthetic pigments content was reduced but with pronounced decreasing in tomato compared to cucumber. Secondary metabolites profiling in both plants under stress was varied from tomato to cucumber. The content of saponins, proline and total antioxidant capacity was reduced more prominently in tomato as compared to cucumber. On the other hand, the content of phenolics and flavonoids was increased in both plants with pronounced increase in tomato particularly under the highest level of salinity stress. The metabolomic profiling in stressful plants was significantly influenced by salinity stress and some bioactive secondary metabolites was enhanced in both cucumber and tomato plants. The enhancement of secondary metabolites under salinity stress may explain the tolerance and sensitivity of cucumber and tomato under salinity stress. The metabolomic evaluation combined with multivariate data analysis revealed a similar mechanism of action of plants to mediate stress, with variant level of this response in both plant species. Based on these results, the effect of salinity stress on seeds germination, seedlings growth and metabolomic content of plants was discussed in terms of tolerance and sensitivity of plants to salinity stress.
Collapse
Affiliation(s)
- Ibrahim Bayoumi Abdel-Farid
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt; (M.R.M.); (M.G.S.)
- Correspondence: ; Tel.: +966-535-040-657
| | - Marwa Radawy Marghany
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt; (M.R.M.); (M.G.S.)
| | - Mohamed Mahmoud Rowezek
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Mohamed Gabr Sheded
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt; (M.R.M.); (M.G.S.)
| |
Collapse
|
14
|
Graziani G, Docimo T, Palma MD, Sparvoli F, Izzo L, Tucci M, Ritieni A. Changes in Phenolics and Fatty Acids Composition and Related Gene Expression during the Development from Seed to Leaves of Three Cultivated Cardoon Genotypes. Antioxidants (Basel) 2020; 9:antiox9111096. [PMID: 33171628 PMCID: PMC7695130 DOI: 10.3390/antiox9111096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
Cultivated cardoon (Cynara cardunculus var. altilis) has long been used as a food and medicine remedy and nowadays is considered a functional food. Its leaf bioactive compounds are mostly represented by chlorogenic acids and coumaroyl derivatives, known for their nutritional value and bioactivity. Having antioxidant and hepatoprotective properties, these molecules are used for medicinal purposes. Apart from the phenolic compounds in green tissues, cultivated cardoon is also used for the seed oil, having a composition suitable for the human diet, but also valuable as feedstock for the production of biofuel and biodegradable bioplastics. Given the wide spectrum of valuable cardoon molecules and their numerous industrial applications, a detailed characterization of different organs and tissues for their metabolic profiles as well as an extensive transcriptional analysis of associated key biosynthetic genes were performed to provide a deeper insight into metabolites biosynthesis and accumulation sites. This study aimed to provide a comprehensive analysis of the phenylpropanoids profile through UHPLC-Q-Orbitrap HRMS analysis, of fatty acids content through GC-MS analysis, along with quantitative transcriptional analyses by qRT-PCR of hydroxycinnamoyl-quinate transferase (HQT), stearic acid desaturase (SAD), and fatty acid desaturase (FAD) genes in seeds, hypocotyls, cotyledons and leaves of the cardoon genotypes “Spagnolo”, “Bianco Avorio”, and “Gigante”. Both oil yield and total phenols accumulation in all the tissues and organs indicated higher production in “Bianco Avorio” and “Spagnolo” than in “Gigante”. Antioxidant activity evaluation by DPPH, ABTS, and FRAP assays mirrored total phenols content. Overall, this study provides a detailed analysis of tissue composition of cardoon, enabling to elucidate value-added product accumulation and distribution during plant development and hence contributing to better address and optimize the sustainable use of this natural resource. Besides, our metabolic and transcriptional screening could be useful to guide the selection of superior genotypes.
Collapse
Affiliation(s)
- Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.I.); (A.R.)
- Correspondence: (G.G.); (M.T.)
| | - Teresa Docimo
- Institute of Bioscience and Bioresources, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; (T.D.); (M.D.P.)
| | - Monica De Palma
- Institute of Bioscience and Bioresources, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; (T.D.); (M.D.P.)
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy;
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.I.); (A.R.)
| | - Marina Tucci
- Institute of Bioscience and Bioresources, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; (T.D.); (M.D.P.)
- Correspondence: (G.G.); (M.T.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.I.); (A.R.)
- Unesco Chair for Health Education and Sustainable Development, 80131 Naples, Italy
| |
Collapse
|