1
|
Dermail A, Mitchell M, Foster T, Fakude M, Chen YR, Suriharn K, Frei UK, Lübberstedt T. Haploid identification in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1378421. [PMID: 38708398 PMCID: PMC11067884 DOI: 10.3389/fpls.2024.1378421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Doubled haploid (DH) line production through in vivo maternal haploid induction is widely adopted in maize breeding programs. The established protocol for DH production includes four steps namely in vivo maternal haploid induction, haploid identification, genome doubling of haploid, and self-fertilization of doubled haploids. Since modern haploid inducers still produce relatively small portion of haploids among undesirable hybrid kernels, haploid identification is typically laborious, costly, and time-consuming, making this step the second foremost in the DH technique. This manuscript reviews numerous methods for haploid identification from different approaches including the innate differences in haploids and diploids, biomarkers integrated in haploid inducers, and automated seed sorting. The phenotypic differentiation, genetic basis, advantages, and limitations of each biomarker system are highlighted. Several approaches of automated seed sorting from different research groups are also discussed regarding the platform or instrument used, sorting time, accuracy, advantages, limitations, and challenges before they go through commercialization. The past haploid selection was focusing on finding the distinguishable marker systems with the key to effectiveness. The current haploid selection is adopting multiple reliable biomarker systems with the key to efficiency while seeking the possibility for automation. Fully automated high-throughput haploid sorting would be promising in near future with the key to robustness with retaining the feasible level of accuracy. The system that can meet between three major constraints (time, workforce, and budget) and the sorting scale would be the best option.
Collapse
Affiliation(s)
- Abil Dermail
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Mariah Mitchell
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Tyler Foster
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Mercy Fakude
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Yu-Ru Chen
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Khundej Suriharn
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | | | | |
Collapse
|
2
|
Khammona K, Dermail A, Suriharn K, Lübberstedt T, Wanchana S, Thunnom B, Poncheewin W, Toojinda T, Ruanjaichon V, Arikit S. Accelerating haploid induction rate and haploid validation through marker-assisted selection for qhir1 and qhir8 in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1337463. [PMID: 38504887 PMCID: PMC10948437 DOI: 10.3389/fpls.2024.1337463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Doubled haploid (DH) technology becomes more routinely applied in maize hybrid breeding. However, some issues in haploid induction and identification persist, requiring resolution to optimize DH production. Our objective was to implement simultaneous marker-assisted selection (MAS) for qhir1 (MTL/ZmPLA1/NLD) and qhir8 (ZmDMP) using TaqMan assay in F2 generation of four BHI306-derived tropical × temperate inducer families. We also aimed to assess their haploid induction rate (HIR) in the F3 generation as a phenotypic response to MAS. We highlighted remarkable increases in HIR of each inducer family. Genotypes carrying qhir1 and qhir8 exhibited 1 - 3-fold higher haploid frequency than those carrying only qhir1. Additionally, the qhir1 marker was employed for verifying putative haploid seedlings at 7 days after planting. Flow cytometric analysis served as the gold standard test to assess the accuracy of the R1-nj and the qhir1 marker. The qhir1 marker showed high accuracy and may be integrated in multiple haploid identifications at early seedling stage succeeding pre-haploid sorting via R1-nj marker.
Collapse
Affiliation(s)
- Kanogporn Khammona
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Abil Dermail
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Khundej Suriharn
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | | | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Burin Thunnom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasin Poncheewin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
- Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand
| |
Collapse
|
3
|
Chen YR, Lübberstedt T, Frei UK. Development of doubled haploid inducer lines facilitates selection of superior haploid inducers in maize. FRONTIERS IN PLANT SCIENCE 2024; 14:1320660. [PMID: 38250445 PMCID: PMC10796511 DOI: 10.3389/fpls.2023.1320660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Haploid inducers are key components of doubled haploid (DH) technology in maize. Robust agronomic performance and better haploid induction ability of inducers are persistently sought through genetic improvement. We herein developed C1-I inducers enabling large-scale in vivo haploid induction of inducers and discovered superior inducers from the DH progenies. The haploid induction rate (HIR) of C1-I inducers ranged between 5.8% and 12.0%. Overall, the success rate of DH production was 13% on average across the 23 different inducer crosses. The anthesis-silking interval and days to flowering of inducer F1s are significantly correlated with the success rate of DH production (r = -0.48 and 0.47, respectively). Transgressive segregants in DH inducers (DHIs) were found for the traits (days to flowering, HIR, plant height, and total primary branch length). Moreover, the best HIR in DHIs exceeded 23%. Parental genome contributions to DHI progenies ranged between 0.40 and 0.55, respectively, in 25 and 75 percentage quantiles, and the mean and median were 0.48. The allele frequency of the four traits from inducer parents to DHI progenies did not correspond with the phenotypic difference between superior and inferior individuals in the DH populations by genome-wide Fst analysis. This study demonstrated that the recombinant DHIs can be accessed on a large scale and used as materials to facilitate the genetic improvement of maternal haploid inducers by in vivo DH technology.
Collapse
Affiliation(s)
- Yu-Ru Chen
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung, Taiwan
| | | | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Kaur H, Kyum M, Sandhu S, Singh G, Sharma P. Protocol optimization and assessment of genotypic response for inbred line development through doubled haploid production in maize. BMC PLANT BIOLOGY 2023; 23:219. [PMID: 37098500 PMCID: PMC10131367 DOI: 10.1186/s12870-023-04228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Doubled haploid technology offers the fastest route of inbred line development by rapidly fixing the desirable combinations in a single year. However, the differential response of haploid induction to genetic background of maternal lines accompanied with low induction rate and high mortality rate due to artificial chromosomal doubling of haploid seedlings creates hindrance in doubled haploid production on a commercial scale under tropical conditions. To speed up the hybrid breeding programme in sub-tropical maize, efforts are reported here to optimize the protocol for efficient production of fixed lines using haploid inducers. The second-generation haploid inducers i.e. CIM2GTAILs obtained from CIMMYT, Mexico were used for haploid induction in 13 F1s of diverse backgrounds. For standardization of chromosomal doubling protocol, various concentrations of colchicine and two seedling growth stages were used to determine the extent of chromosomal doubling and survival rate of doubled haploid plants. RESULTS A high mean haploid induction rate is obtained from CIM2GTAIL P2 (10%) as compared to CIM2GTAIL P1 (7.46%). Out of four treatments, CIMMYT reported protocol of chromosome doubling in tropical maize comprising combination of 0.07% colchicine and 0.1% DMSO at V2 stage is highly effective for acquiring doubled haploid plants in sub-tropical adapted maize with high survival rate of 52.7%. However, increasing the colchicine concentration from 0.07 to 0.1% led to high mortality rate. CONCLUSION According to the findings, the haploid induction rate, survival rate and overall success rate varied depending upon the genotype of the inducer and the source population along with the concentrations of chemical used. The optimized protocol developed using CIMMYT haploid inducer CIM2GTAIL P2 for efficient doubled haploid production will not only fasten the breeding programme but will also reduce the production cost of doubled haploid with great efficiency in sub-tropical maize.
Collapse
Affiliation(s)
- Harjot Kaur
- Maize Section, Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Mohammed Kyum
- Department of Agronomy, University of Florida, Gainesville, FL, 32608, USA
| | - Surinder Sandhu
- Maize Section, Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Gagandeep Singh
- Maize Section, Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Priti Sharma
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
5
|
Dermail A, Lübberstedt T, Suwarno WB, Chankaew S, Lertrat K, Ruanjaichon V, Suriharn K. Combining ability of tropical × temperate maize inducers for haploid induction rate, R1-nj seed set, and agronomic traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1154905. [PMID: 37113598 PMCID: PMC10126284 DOI: 10.3389/fpls.2023.1154905] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In vivo maternal haploid induction in isolation fields is proposed to bypass the workload and resource constraints existing in haploid induction nurseries. A better understanding of combining ability and gene action conditioning traits related to hybrid inducers is necessary to set the breeding strategy including to what extent parent-based hybrid prediction is feasible. This study aimed to evaluate the following in tropical savanna in the rainy and dry seasons for haploid induction rate (HIR), R1-nj seed set, and agronomic traits: 1) combining ability, line per se, and hybrid performance of three genetic pools; 2) genetic parameters, the modes of gene action, and heterosis; and 3) the relationships of inbred-general combining ability (GCA) and inbred-hybrid performance. Fifty-six diallel crosses derived from eight maize genotypes were evaluated in the rainy season of 2021 and the dry season of 2021/2022. Reciprocal cross effects including the maternal effect barely contributed to the genotypic variance for each trait observed. HIR, R1-nj seed set, flowering dates, and ear position were highly heritable and additive inherited, while ear length showed dominant inheritance. The equal importance of additive and dominance effects was found for yield-related traits. Temperate inducer BHI306 was the best general combiner for the HIR and R1-nj seed set, followed by two tropical inducers, KHI47 and KHI54. The ranges of heterosis were trait-dependent and slightly influenced by the environment, where hybrids in the rainy season consistently had higher heterosis than those in the dry season for each trait observed. Both hybrid groups derived from tropical × tropical and tropical × temperate inducers showed taller plants, larger ear size, and higher seed sets than the corresponding parents. However, their HIRs were still below the standard check of BHI306. The implications of genetic information, combining ability, and inbred-GCA and inbred-hybrid relationships on breeding strategies are discussed.
Collapse
Affiliation(s)
- Abil Dermail
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | | | - Willy Bayuardi Suwarno
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| | - Sompong Chankaew
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Kamol Lertrat
- Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Khundej Suriharn
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
6
|
Gain N, Chhabra R, Chandra S, Zunjare RU, Dutta S, Chand G, Sarika K, Devi EL, Kumar A, Madhavan J, Muthusamy V, Hossain F. Variation in anthocyanin pigmentation by R1-navajo gene, development and validation of breeder-friendly markers specific to C1-Inhibitor locus for in-vivo haploid production in maize. Mol Biol Rep 2023; 50:2221-2229. [PMID: 36564657 DOI: 10.1007/s11033-022-08214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND In-vivo maternal haploids serve as the basis of doubled haploid (DH) breeding in maize. R1-navajo (R1-nj) gene governing anthocyanin colouration in the endosperm and embryo is widely used to identify haploid seeds. However, the expression of R1-nj depends on genetic-background of source-germplasm used for deriving DH-lines. Further, presence of C1-Inhibitor (C1-I) gene suppresses the expression of R1-nj, thus makes the selection of haploids difficult. METHODS In the present study, 178 subtropically-adapted maize inbreds were crossed with two R1-nj donors 'that do not have haploid induction genes'. Of these, 76.4% inbreds developed purple colour in endosperm, while 23.6% did not show any colouration. In case of scutellum, 62.9% inbreds possessed colour and 37.1% were colourless. The anthocyanin intensity varied greatly, with 19.66% and 42.98% inbreds displayed the least intensity, while 16.85% and 0.84% inbreds showed the highest intensity in endosperm and scutellum, respectively. Two C1-I specific breeder-friendly markers (MGU-CI-InDel8 and MGU-C1-SNP1) covering (i) 8 bp InDel and (ii) A to G SNP, respectively, were developed. MGU-CI-InDel8 and MGU-C1-SNP1 markers predicted presence of C1-I allele with 92.9% and 84.7% effectiveness, respectively. However, when both markers were considered together, they provided 100% effectiveness. CONCLUSIONS These markers of C1-I gene would help in saving valuable resources and time during haploid induction in maize. The information generated here assume great significance in DH breeding of maize.
Collapse
Affiliation(s)
- Nisrita Gain
- ICAR-Indian Agricultural Research Institute, New Delhi, India.,Amity Institute of Biotechnology, AMITY University, Noida, India
| | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shivani Chandra
- Amity Institute of Biotechnology, AMITY University, Noida, India
| | | | - Suman Dutta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gulab Chand
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Konsam Sarika
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, India
| | - Elangbam L Devi
- ICAR Research Complex for NEH Region, Sikkim Centre, Gangtok, India
| | - Aruna Kumar
- Amity Institute of Biotechnology, AMITY University, Noida, India
| | | | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
7
|
Trentin HU, Yavuz R, Dermail A, Frei UK, Dutta S, Lübberstedt T. A Comparison between Inbred and Hybrid Maize Haploid Inducers. PLANTS (BASEL, SWITZERLAND) 2023; 12:1095. [PMID: 36903955 PMCID: PMC10005713 DOI: 10.3390/plants12051095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The effectiveness of haploid induction systems is regarded not only for high haploid induction rate (HIR) but also resource savings. Isolation fields are proposed for hybrid induction. However, efficient haploid production depends on inducer traits such as high HIR, abundant pollen production, and tall plants. Seven hybrid inducers and their respective parents were evaluated over three years for HIR, seeds set in cross-pollinations, plant and ear height, tassel size, and tassel branching. Mid-parent heterosis was estimated to quantify how much inducer traits improve in hybrids in comparison to their parents. Heterosis benefits hybrid inducers for plant height, ear height, and tassel size. Two hybrid inducers, BH201/LH82-Ped126 and BH201/LH82-Ped128, are promising for haploid induction in isolation fields. Hybrid inducers offer convenience and resource-effectiveness for haploid induction by means of improving plant vigor without compromising HIR.
Collapse
Affiliation(s)
| | - Recep Yavuz
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Abil Dermail
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
8
|
Wang Y, Tang Q, Kang Y, Wang X, Zhang H, Li X. Analysis of the Utilization and Prospects of CRISPR-Cas Technology in the Annotation of Gene Function and Creation New Germplasm in Maize Based on Patent Data. Cells 2022; 11:cells11213471. [PMID: 36359866 PMCID: PMC9657720 DOI: 10.3390/cells11213471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Maize (Zea mays L.) is a food crop with the largest planting area and the highest yield in the world, and it plays a vital role in ensuring global food security. Conventional breeding methods are costly, time-consuming, and ineffective in maize breeding. In recent years, CRISPR-Cas editing technology has been used to quickly generate new varieties with high yield and improved grain quality and stress resistance by precisely modifying key genes involved in specific traits, thus becoming a new engine for promoting crop breeding and the competitiveness of seed industries. Using CRISPR-Cas, a range of new maize materials with high yield, improved grain quality, ideal plant type and flowering period, male sterility, and stress resistance have been created. Moreover, many patents have been filed worldwide, reflecting the huge practical application prospects and commercial value. Based on the existing patent data, we analyzed the development process, current status, and prospects of CRISPR-Cas technology in dissecting gene function and creating new germplasm in maize, providing information for future basic research and commercial production.
Collapse
Affiliation(s)
- Youhua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiaoling Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuli Kang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (H.Z.); (X.L.)
| | - Xinhai Li
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (H.Z.); (X.L.)
| |
Collapse
|
9
|
Sintanaparadee P, Dermail A, Lübberstedt T, Lertrat K, Chankaew S, Ruanjaichon V, Phakamas N, Suriharn K. Seasonal Variation of Tropical Savanna Altered Agronomic Adaptation of Stock-6-Derived Inducer Lines. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212902. [PMID: 36365355 PMCID: PMC9655422 DOI: 10.3390/plants11212902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 05/14/2023]
Abstract
Tropicalization is one of the major objectives in breeding haploid inducers to address the poor adaptation of temperate haploid inducers in doubled haploid production in tropical maize. Gaining a better understanding of weather profiles in targeted agroecology is important. This study aimed to investigate the seasonal variation of tropical savanna climate and its impact on agronomic traits and haploid induction rate (HIR) of Stock-6-derived haploid inducer lines. A total of 14 haploid inducers were evaluated across two typical growing seasons between 2020 and 2021. Weather data were collected on daily minimum and maximum temperatures, relative humidity, precipitation, and solar radiation whereas phenotypic data were recorded on plant phenology, tassel attributes, plant stature, ear components, inducer seed rate (ISR), and HIR. The effects of season, genotype, and genotype by season were significant for all traits except season factor on ISR. Seasonal variation existed where the dry season was more suitable for haploid induction and inducer maintenance, as haploid inducers revealed better agronomic performance and seed set, delayed flowering dates, and higher HIR. Since the crossover performance of haploid inducers over seasons was detected, further implications on genotype selection in each season are discussed.
Collapse
Affiliation(s)
- Paepan Sintanaparadee
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Abil Dermail
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Kamol Lertrat
- Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Chankaew
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
- Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nittaya Phakamas
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Khundej Suriharn
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
- Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-43-202-696
| |
Collapse
|
10
|
Sidhu GS, Conner JA, Ozias-Akins P. Controlled Induction of Parthenogenesis in Transgenic Rice via Post-translational Activation of PsASGR-BBML. FRONTIERS IN PLANT SCIENCE 2022; 13:925467. [PMID: 35873991 PMCID: PMC9305695 DOI: 10.3389/fpls.2022.925467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Modern plant breeding programs rely heavily on the generation of homozygous lines, with the traditional process requiring the inbreeding of a heterozygous cross for five to six generations. Doubled haploid (DH) technology, a process of generating haploid plants from an initial heterozygote, followed by chromosome doubling, reduces the process to two generations. Currently established in vitro methods of haploid induction include androgenesis and gynogenesis, while in vivo methods are based on uni-parental genome elimination. Parthenogenesis, embryogenesis from unfertilized egg cells, presents another potential method of haploid induction. PsASGR-BABY BOOM-like, an AP2 transcription factor, induces parthenogenesis in a natural apomictic species, Pennisetum squamulatum (Cenchrus squamulatus) and PsASGR-BBML transgenes promote parthenogenesis in several crop plants, including rice, maize, and pearl millet. The dominant nature of PsASGR-BBML transgenes impedes their use in DH technology. Using a glucocorticoid-based post-translational regulation system and watering with a 100 μM DEX solution before anthesis, PsASGR-BBML can be regulated at the flowering stage to promote parthenogenesis. Conditional expression presents a novel opportunity to use parthenogenetic genes in DH production technology and to elucidate the molecular mechanism underlying parthenogenetic embryogenesis.
Collapse
Affiliation(s)
- Gurjot Singh Sidhu
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
| | - Joann A. Conner
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| | - Peggy Ozias-Akins
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| |
Collapse
|
11
|
Marin-Montes IM, Rodríguez-Pérez JE, Robledo-Paz A, de la Cruz-Torres E, Peña-Lomelí A, Sahagún-Castellanos J. Haploid Induction in Tomato ( Solanum lycopersicum L.) via Gynogenesis. PLANTS (BASEL, SWITZERLAND) 2022; 11:1595. [PMID: 35736746 PMCID: PMC9230027 DOI: 10.3390/plants11121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
The generation of new hybrid varieties of tomato (Solanum lycopersicum L.) is the most widely used breeding method for this species and requires at least seven self-fertilization cycles to generate stable parent lines. The development of doubled haploids aims at obtaining completely homozygous lines in a single generation, although, to date, routine commercial application has not been possible in this species. In contrast, obtaining doubled haploid lines via gynogenesis has been successfully implemented in recalcitrant crops such as melon, cucumber, pumpkin, loquat and walnut. This review provides an overview of the requirements and advantages of gynogenesis as an inducer of haploidy in different agricultural crops, with the purpose of assessing the potential for its application in tomato breeding. Successful cases of gynogenesis variants involving in vitro culture of unfertilized ovules, use of 60Co-irradiated pollen, in vivo haploid inducers and wide hybridization are presented, suggesting that these methodologies could be implemented in tomato breeding programs to obtain doubled haploids.
Collapse
Affiliation(s)
- Ivan Maryn Marin-Montes
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (I.M.M.-M.); (J.E.R.-P.); (A.P.-L.)
| | - Juan Enrique Rodríguez-Pérez
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (I.M.M.-M.); (J.E.R.-P.); (A.P.-L.)
| | - Alejandrina Robledo-Paz
- Posgrado en Recursos Genéticos y Productividad, Colegio de Postgraduados, Montecillo 56230, Mexico;
| | | | - Aureliano Peña-Lomelí
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (I.M.M.-M.); (J.E.R.-P.); (A.P.-L.)
| | - Jaime Sahagún-Castellanos
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (I.M.M.-M.); (J.E.R.-P.); (A.P.-L.)
| |
Collapse
|
12
|
Chumakov MI, Mazilov SI. Genetic Control of Maize Gynogenesis. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Trampe B, Batîru G, Pereira da Silva A, Frei UK, Lübberstedt T. QTL Mapping for Haploid Inducibility Using Genotyping by Sequencing in Maize. PLANTS (BASEL, SWITZERLAND) 2022; 11:878. [PMID: 35406857 PMCID: PMC9002859 DOI: 10.3390/plants11070878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Doubled haploid (DH) technology in maize takes advantage of in vivo haploid induction (HI) triggered by pollination of donors of interest with inducer genotypes. However, the ability of different donors to be induced-inducibility (IND), varies among germplasm and the underlying molecular mechanisms are still unclear. In this study, the phenotypic variation for IND in a mapping population of temperate inbred lines was evaluated to identify regions in the maize genome associated with IND. A total of 247 F2:3 families derived from a biparental cross of two elite inbred lines, A427 and CR1Ht, were grown in three different locations and Inclusive Composite Interval Mapping (ICIM) was used to identify quantitative trait loci (QTL) for IND. In total, four QTL were detected, explaining 37.4% of the phenotypic variance. No stable QTL was found across locations. The joint analysis revealed QTL × location interactions, suggesting minor QTL control IND, which are affected by the environment.
Collapse
Affiliation(s)
| | - Grigorii Batîru
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (G.B.); (U.K.F.)
| | | | - Ursula Karoline Frei
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (G.B.); (U.K.F.)
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (G.B.); (U.K.F.)
| |
Collapse
|
14
|
Aboobucker SI, Jubery TZ, Frei UK, Chen YR, Foster T, Ganapathysubramanian B, Lübberstedt T. Protocols for In Vivo Doubled Haploid (DH) Technology in Maize Breeding: From Haploid Inducer Development to Haploid Genome Doubling. Methods Mol Biol 2022; 2484:213-235. [PMID: 35461455 DOI: 10.1007/978-1-0716-2253-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Doubled haploid (DH) technology reduces the time required to obtain homozygous genotypes and accelerates plant breeding among other advantages. It is established in major crop species such as wheat, barley, maize, and canola. DH lines can be produced by both in vitro and in vivo methods and the latter is focused here. The major steps involved in in vivo DH technology are haploid induction, haploid selection/identification, and haploid genome doubling. Herein, we elaborate on the various steps of DH technology in maize breeding from haploid induction to haploid genome doubling to produce DH lines. Detailed protocols on the following topics are discussed: in vivo haploid inducer line development, haploid selection using seed and root color markers and automated seed sorting based on embryo oil content using QSorter, artificial genome doubling, and the identification of genotypes with spontaneous haploid genome doubling (SHGD) ability.
Collapse
Affiliation(s)
| | - Talukder Z Jubery
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Yu-Ru Chen
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Tyler Foster
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | | | | |
Collapse
|
15
|
Dermail A, Chankaew S, Lertrat K, Lübberstedt T, Suriharn K. Selection Gain of Maize Haploid Inducers for the Tropical Savanna Environments. PLANTS 2021; 10:plants10122812. [PMID: 34961284 PMCID: PMC8706992 DOI: 10.3390/plants10122812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/02/2022]
Abstract
Lacking elite haploid inducers performing high haploid induction rate (HIR) and agronomic performance is one of fundamental factors hindering the rapid adoption of doubled haploid technology in maize hybrid breeding, especially under tropical savanna climate. Breeding haploid inducers for specific agro-ecology, thus, is indispensable yet challenging. We used temperate inducer Stock6 as genetic source for haploid induction ability and eight tropical maize genotypes as principal donors for agronomic adaptation. Three cycles of modified ear-to-row with 5% intra-family selection were applied in a population set of 78 putative haploid inducer families emphasized on agronomic performance, R1-nj anthocyanin intensity, and inducer seed set. Genetic gains, variance components, and heritability on given traits were estimated. Hierarchical clustering based on five selection criteria was performed to investigate the phenotypic diversity of putative families. Cycle effect was predominant for all observed traits. Realized genetic gain was positive for HIR (0.40% per cycle) and inducer seed set (30.10% or 47.30 seeds per ear per cycle). In this study, we reported the first haploid inducers for regions under tropical savanna climate. Three inducer families, KHI-42, KHI-54, and KHI-64, were promising as they possessed HIR about 7.8% or 14 haploid seeds per tester ear and inducer seed rate about 95.0% or 208 inducer seeds per ear. The breeding method was effective for enhancing the seed set and the expression of R1-nj anthocyanin marker of inducers, yet it showed a low effectiveness to improve haploid induction rate. Introgression of temperate inducer Stock6 into tropical gene pool followed by phenotypic selections through modified ear-to-row selection on inducer seed set and R1-nj marker did not compromise the agronomic traits of tropical inducer families. Implications and further strategies for optimizing genetic gain on HIR are discussed.
Collapse
Affiliation(s)
- Abil Dermail
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (A.D.); (S.C.)
| | - Sompong Chankaew
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (A.D.); (S.C.)
- Plant Breeding Research Center for Sustainable Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Kamol Lertrat
- Plant Breeding Research Center for Sustainable Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
| | | | - Khundej Suriharn
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (A.D.); (S.C.)
- Plant Breeding Research Center for Sustainable Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence:
| |
Collapse
|
16
|
Yassitepe JEDCT, da Silva VCH, Hernandes-Lopes J, Dante RA, Gerhardt IR, Fernandes FR, da Silva PA, Vieira LR, Bonatti V, Arruda P. Maize Transformation: From Plant Material to the Release of Genetically Modified and Edited Varieties. FRONTIERS IN PLANT SCIENCE 2021; 12:766702. [PMID: 34721493 PMCID: PMC8553389 DOI: 10.3389/fpls.2021.766702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
Over the past decades, advances in plant biotechnology have allowed the development of genetically modified maize varieties that have significantly impacted agricultural management and improved the grain yield worldwide. To date, genetically modified varieties represent 30% of the world's maize cultivated area and incorporate traits such as herbicide, insect and disease resistance, abiotic stress tolerance, high yield, and improved nutritional quality. Maize transformation, which is a prerequisite for genetically modified maize development, is no longer a major bottleneck. Protocols using morphogenic regulators have evolved significantly towards increasing transformation frequency and genotype independence. Emerging technologies using either stable or transient expression and tissue culture-independent methods, such as direct genome editing using RNA-guided endonuclease system as an in vivo desired-target mutator, simultaneous double haploid production and editing/haploid-inducer-mediated genome editing, and pollen transformation, are expected to lead significant progress in maize biotechnology. This review summarises the significant advances in maize transformation protocols, technologies, and applications and discusses the current status, including a pipeline for trait development and regulatory issues related to current and future genetically modified and genetically edited maize varieties.
Collapse
Affiliation(s)
- Juliana Erika de Carvalho Teixeira Yassitepe
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Viviane Cristina Heinzen da Silva
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - José Hernandes-Lopes
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ricardo Augusto Dante
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Isabel Rodrigues Gerhardt
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Fernanda Rausch Fernandes
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Priscila Alves da Silva
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Leticia Rios Vieira
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Vanessa Bonatti
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
17
|
Zenda T, Liu S, Dong A, Duan H. Advances in Cereal Crop Genomics for Resilience under Climate Change. Life (Basel) 2021; 11:502. [PMID: 34072447 PMCID: PMC8228855 DOI: 10.3390/life11060502] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Adapting to climate change, providing sufficient human food and nutritional needs, and securing sufficient energy supplies will call for a radical transformation from the current conventional adaptation approaches to more broad-based and transformative alternatives. This entails diversifying the agricultural system and boosting productivity of major cereal crops through development of climate-resilient cultivars that can sustainably maintain higher yields under climate change conditions, expanding our focus to crop wild relatives, and better exploitation of underutilized crop species. This is facilitated by the recent developments in plant genomics, such as advances in genome sequencing, assembly, and annotation, as well as gene editing technologies, which have increased the availability of high-quality reference genomes for various model and non-model plant species. This has necessitated genomics-assisted breeding of crops, including underutilized species, consequently broadening genetic variation of the available germplasm; improving the discovery of novel alleles controlling important agronomic traits; and enhancing creation of new crop cultivars with improved tolerance to biotic and abiotic stresses and superior nutritive quality. Here, therefore, we summarize these recent developments in plant genomics and their application, with particular reference to cereal crops (including underutilized species). Particularly, we discuss genome sequencing approaches, quantitative trait loci (QTL) mapping and genome-wide association (GWAS) studies, directed mutagenesis, plant non-coding RNAs, precise gene editing technologies such as CRISPR-Cas9, and complementation of crop genotyping by crop phenotyping. We then conclude by providing an outlook that, as we step into the future, high-throughput phenotyping, pan-genomics, transposable elements analysis, and machine learning hold much promise for crop improvements related to climate resilience and nutritional superiority.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura P. Bag 1020, Zimbabwe
| | - Songtao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (S.L.); (A.D.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
18
|
Verzegnazzi AL, Dos Santos IG, Krause MD, Hufford M, Frei UK, Campbell J, Almeida VC, Zuffo LT, Boerman N, Lübberstedt T. Major locus for spontaneous haploid genome doubling detected by a case-control GWAS in exotic maize germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1423-1434. [PMID: 33543310 DOI: 10.1007/s00122-021-03780-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
A major locus for spontaneous haploid genome doubling was detected by a case-control GWAS in an exotic maize germplasm. The combination of double haploid breeding method with this locus leads to segregation distortion on genomic regions of chromosome five. Temperate maize (Zea mays L.) breeding programs often rely on limited genetic diversity, which can be expanded by incorporating exotic germplasm. The aims of this study were to perform characterization of inbred lines derived from the tropical BS39 population using different breeding methods, to identify genomic regions showing segregation distortion in lines derived by the DH process using spontaneous haploid genome doubling (SHGD), and use case-control association mapping to identify loci controlling SHGD. Four different sets were used: BS39_DH and BS39_SSD were derived from the BS39 population by DH and single-seed descendent (SSD) methods, and BS39 × A427_DH and BS39 × A427_SSD from the cross between BS39 and A427. A total of 663 inbred lines were genotyped. The analyses of gene diversity and genetic differentiation for the DH sets provided evidence of the presence of a SHGD locus near the centromere of chromosome 5. The case-control GWAS for the DH set also pinpointed this locus. Haplotype sharing analysis showed almost 100% exclusive contribution of the A427 genome in the same region on chromosome 5 of BS39 × A427_DH, presumably due to an allele in this region affecting SHGD. This locus enables DH line production in exotic populations without colchicine or other artificial haploid genome doubling.
Collapse
Affiliation(s)
| | | | | | - Matthew Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | | | - Vinícius Costa Almeida
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leandro Tonello Zuffo
- Department of Plant Sciences, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
19
|
Wang N, Gent JI, Dawe RK. Haploid induction by a maize cenh3 null mutant. SCIENCE ADVANCES 2021; 7:7/4/eabe2299. [PMID: 33523932 PMCID: PMC7817090 DOI: 10.1126/sciadv.abe2299] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/05/2020] [Indexed: 05/03/2023]
Abstract
The production of haploids is an important first step in creating many new plant varieties. One approach used in Arabidopsis involves crossing plants expressing different forms of centromeric histone H3 (CENP-A/CENH3) and subsequent loss of genome with weaker centromeres. However, the method has been ineffective in crop plants. Here, we describe a greatly simplified method based on crossing maize lines that are heterozygous for a cenh3 null mutation. Crossing +/cenh3 to wild-type plants in both directions yielded haploid progeny. Genome elimination was determined by the cenh3 genotype of the gametophyte, suggesting that centromere failure is caused by CENH3 dilution during the postmeiotic cell divisions that precede gamete formation. The cenh3 haploid inducer works as a vigorous hybrid and can be transferred to other lines in a single cross, making it versatile for a variety of applications.
Collapse
Affiliation(s)
- Na Wang
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|