1
|
Das R, Kretzschmar T, Mieog JC. Importance of Media Composition and Explant Type in Cannabis sativa Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:2544. [PMID: 39339519 PMCID: PMC11434680 DOI: 10.3390/plants13182544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Producing uniform Cannabis sativa (Cannabis) for medicinal/recreational flower production through sexual propagation has been problematic, leading to dominance of clonal propagation from "mother plants" in the cannabinoid industry, which also faces significant limitations. Cannabis tissue culture (TC) methods have been developed to overcome these challenges, but the long-term health and maintenance of Cannabis explants in TC have been largely overlooked in previous studies. The current study focused on the development of an efficient and optimized micropropagation protocol covering the entire process, with a specific focus on the health and performance in the multiplication stage. Multiplication media were formulated hormone-free to avoid longer-term vitrification issues, resulting in single-main-shoot cultures rather than multiple-shoot cultures. This instigated the use of stage II explant types different from the standard shoot tips previously used for multiple shoot cultures. Multiplication media were further improved from the basal salt composition via nitrogen and calcium additives. The optimized protocol was used on eight diverse Cannabis cultivars to test its applicability across various genetic backgrounds. Results indicated that the protocol was effective for conservation purposes across all cultivars and achieved good long-term multiplication rates for some but not all. The outcomes of this study mark a significant stride towards an efficient Cannabis TC methodology ready for more comprehensive industrial applications.
Collapse
Affiliation(s)
- Rekhamani Das
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (T.K.); (J.C.M.)
| | | | | |
Collapse
|
2
|
Ingvardsen CR, Brinch-Pedersen H. Challenges and potentials of new breeding techniques in Cannabis sativa. FRONTIERS IN PLANT SCIENCE 2023; 14:1154332. [PMID: 37360738 PMCID: PMC10285108 DOI: 10.3389/fpls.2023.1154332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Cannabis sativa L. is an ancient crop used for fiber and seed production and not least for its content of cannabinoids used for medicine and as an intoxicant drug. Due to the psychedelic effect of one of the compounds, tetrahydrocannabinol (THC), many countries had regulations or bands on Cannabis growing, also as fiber or seed crop. Recently, as many of these regulations are getting less tight, the interest for the many uses of this crop is increasing. Cannabis is dioecious and highly heterogenic, making traditional breeding costly and time consuming. Further, it might be difficult to introduce new traits without changing the cannabinoid profile. Genome editing using new breeding techniques might solve these problems. The successful use of genome editing requires sequence information on suitable target genes, a genome editing tool to be introduced into plant tissue and the ability to regenerate plants from transformed cells. This review summarizes the current status of Cannabis breeding, uncovers potentials and challenges of Cannabis in an era of new breeding techniques and finally suggests future focus areas that may help to improve our overall understanding of Cannabis and realize the potentials of the plant.
Collapse
|
3
|
Reichel P, Munz S, Hartung J, Kotiranta S, Graeff-Hönninger S. Impacts of Different Light Spectra on CBD, CBDA and Terpene Concentrations in Relation to the Flower Positions of Different Cannabis Sativa L. Strains. PLANTS (BASEL, SWITZERLAND) 2022; 11:2695. [PMID: 36297719 PMCID: PMC9612076 DOI: 10.3390/plants11202695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cannabis is one of the oldest cultivated plants, but plant breeding and cultivation are restricted by country-specific regulations. The plant has gained interest due to its medically important secondary metabolites, cannabinoids and terpenes. Besides biotic and abiotic stress factors, secondary metabolism can be manipulated by changing light quality and intensity. In this study, three morphologically different cannabis strains were grown in a greenhouse experiment under three different light spectra with three real light repetitions. The chosen light sources were as follows: a CHD Agro 400 ceramic metal-halide lamp with a sun-like broad spectrum and an R:FR ratio of 2.8, and two LED lamps, a Solray (SOL) and an AP67, with R:FR ratios of 13.49 and 4, respectively. The results of the study indicated that the considered light spectra significantly influenced CBDA and terpene concentrations in the plants. In addition to the different light spectra, the distributions of secondary metabolites were influenced by flower positions. The distributions varied between strains and indicated interactions between morphology and the chosen light spectra. Thus, the results demonstrate that secondary metabolism can be artificially manipulated by the choice of light spectrum, illuminant and intensity. Furthermore, the data imply that, besides the cannabis strain selected, flower position can have an impact on the medicinal potencies and concentrations of secondary metabolites.
Collapse
Affiliation(s)
- Philipp Reichel
- Agronomy, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Sebastian Munz
- Agronomy, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jens Hartung
- Biostatistics, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Stiina Kotiranta
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | | |
Collapse
|
4
|
Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HD-ZIP IV) Gene Family in Cannabis sativa L. PLANTS 2022; 11:plants11101307. [PMID: 35631732 PMCID: PMC9144208 DOI: 10.3390/plants11101307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/19/2022]
Abstract
The plant-specific homeodomain zipper family (HD-ZIP) of transcription factors plays central roles in regulating plant development and environmental resistance. HD-ZIP transcription factors IV (HDZ IV) have been involved primarily in the regulation of epidermal structure development, such as stomata and trichomes. In our study, we identified nine HDZ IV-encoding genes in Cannabis sativa L. by conducting a computational analysis of cannabis genome resources. Our analysis suggests that these genes putatively encode proteins that have all the conserved domains of HDZ IV transcription factors. The phylogenetic analysis of HDZ IV gene family members of cannabis, rice (Oryza sativa), and Arabidopsis further implies that they might have followed distinct evolutionary paths after divergence from a common ancestor. All the identified cannabis HDZ IV gene promoter sequences have multiple regulation motifs, such as light- and hormone-responsive elements. Furthermore, experimental evidence shows that different HDZ IV genes have different expression patterns in root, stem, leaf, and flower tissues. Four genes were primarily expressed in flowers, and the expression of CsHDG5 (XP_030501222.1) was also correlated with flower maturity. Fifty-nine genes were predicted as targets of HDZ IV transcription factors. Some of these genes play central roles in pathogen response, flower development, and brassinosteroid signaling. A subcellular localization assay indicated that one gene of this family is localized in the Arabidopsis protoplast nucleus. Taken together, our work lays fundamental groundwork to illuminate the function of cannabis HDZ IV genes and their possible future uses in increasing cannabis trichome morphogenesis and secondary metabolite production.
Collapse
|
5
|
Naim-Feil E, Breen EJ, Pembleton LW, Spooner LE, Spangenberg GC, Cogan NOI. Empirical Evaluation of Inflorescences' Morphological Attributes for Yield Optimization of Medicinal Cannabis Cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:858519. [PMID: 35519806 PMCID: PMC9063709 DOI: 10.3389/fpls.2022.858519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
In recent decades with the reacknowledgment of the medicinal properties of Cannabis sativa L. (cannabis) plants, there is an increased demand for high performing cultivars that can deliver quality products for various applications. However, scientific knowledge that can facilitate the generation of advanced cannabis cultivars is scarce. In order to improve cannabis breeding and optimize cultivation techniques, the current study aimed to examine the morphological attributes of cannabis inflorescences using novel image analysis practices. The investigated plant population comprises 478 plants ascribed to 119 genotypes of high-THC or blended THC-CBD ratio that was cultivated under a controlled environment facility. Following harvest, all plants were manually processed and an image of the trimmed and refined inflorescences extracted from each plant was captured. Image analysis was then performed using in-house custom-made software which extracted 8 morphological features (such as size, shape and perimeter) for each of the 127,000 extracted inflorescences. Our findings suggest that environmental factors play an important role in the determination of inflorescences' morphology. Therefore, further studies that focus on genotype X environment interactions are required in order to generate inflorescences with desired characteristics. An examination of the intra-plant inflorescences weight distribution revealed that processing 75% of the plant's largest inflorescences will gain 90% of its overall yield weight. Therefore, for the optimization of post-harvest tasks, it is suggested to evaluate if the benefits from extracting and processing the plant's smaller inflorescences outweigh its operational costs. To advance selection efficacy for breeding purposes, a prediction equation for forecasting the plant's production biomass through width measurements of specific inflorescences, formed under the current experimental methodology, was generated. Thus, it is anticipated that findings from the current study will contribute to the field of medicinal cannabis by improving targeted breeding programs, advancing crop productivity and enhancing the efficacy of post-harvest procedures.
Collapse
Affiliation(s)
- Erez Naim-Feil
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| | - Edmond J. Breen
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, Australia
| | - Luke W. Pembleton
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, Australia
| | - Laura E. Spooner
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| | - Noel O. I. Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
7
|
Park SH, Pauli CS, Gostin EL, Staples SK, Seifried D, Kinney C, Vanden Heuvel BD. Effects of short-term environmental stresses on the onset of cannabinoid production in young immature flowers of industrial hemp (Cannabis sativa L.). J Cannabis Res 2022; 4:1. [PMID: 34980266 PMCID: PMC8725245 DOI: 10.1186/s42238-021-00111-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUNDS Cannabis sativa L. produces at least 120 cannabinoids. Although genetic variation is the main factor in cannabinoid production, the effects of short-term environmental stresses in the early flowering stage remains largely unknown. METHODS To investigate the effects of short-term environmental stresses on the onset of cannabinoid production in young immature flowers, a hemp variety, Green-Thunder (5-8% CBD/mg of dry weight), was treated with mechanical damage, insect herbivory, extreme heat, or drought stress for 5-7 days during the first 2 weeks of flowering. Three hemp tissues, including flowers, leaves, and stems, were collected from hemp grown under these stress conditions at multiple time points during the first 2 weeks after transition to the short photoperiod and analyzed using high pressure liquid chromatography to quantify phytocannabinoids including cannabigerolic acid (CBGA), cannabigerol (CBG), cannabidiolic acid (CBDA), cannabidiol (CBD), Δ-tetrahydrocannabinolic acid (THCA), Δ-tetrahydrocannabinol (THC), and cannabinol (CBN). RESULTS The 5 days of mechanical wounding did not affect the production of any of the cannabinoids during the initial stage of flowering. However, after 5 days of herbivore treatment, there was a significant difference in concentration between day 1 and day 6 of CBGA (control: 308 μg/g; treatment - 24 μg/g), CBG (control: 69 μg/g; treatment: 52 μg/g), and CBD (control: 755 μg/g; treatment: 194 μg/g) between the control and treatment plants. The 7 days of heat treatment at 45-50 oC significantly reduced the production of CBGA during this observed window (control: 206 μg/g; treatment: 182 μg/g) and CBG (control: 21 μg/g; treatment: - 112 μg/g). Notably, the largest change was observed after 7 days of drought stress, when plants showed a 40% greater accumulation of CBG (control: 336 μg/g; treatment: 622 μg/g), and a significant decrease (70-80%) in CBD (control: 1182 μg/g; treatment: 297 μg/g) and THC amounts (control: 3927 μg/g; treatment: 580 μg/g). CONCLUSIONS Although this observation is limited in the early flowering stage, the common field stresses are adequate to induce changes in the cannabinoid profiles, particularly drought stress being the most impactful stress for hemp flower initiation with the altering the cannabinoid production by decreasing CBD and THC accumulation while increasing CBG by 40%.
Collapse
Affiliation(s)
- Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, 2200 Bonforte Blvd., Pueblo, CO, 81001, USA.
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd., Pueblo, CO, 81001, USA.
| | - Christopher S Pauli
- Institute of Cannabis Research, Colorado State University-Pueblo, 2200 Bonforte Blvd., Pueblo, CO, 81001, USA
| | - Eric L Gostin
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd., Pueblo, CO, 81001, USA
| | - S Kyle Staples
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd., Pueblo, CO, 81001, USA
| | - Dustin Seifried
- Department of Chemistry, Colorado State University-Pueblo, 2200 Bonforte Blvd., Pueblo, CO, 81001, USA
| | - Chad Kinney
- Institute of Cannabis Research, Colorado State University-Pueblo, 2200 Bonforte Blvd., Pueblo, CO, 81001, USA
- Department of Chemistry, Colorado State University-Pueblo, 2200 Bonforte Blvd., Pueblo, CO, 81001, USA
| | - Brian D Vanden Heuvel
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd., Pueblo, CO, 81001, USA
| |
Collapse
|
8
|
Selection and validation of reference genes for normalization of qRT-PCR data to study the cannabinoid pathway genes in industrial hemp. PLoS One 2021; 16:e0260660. [PMID: 34928958 PMCID: PMC8687539 DOI: 10.1371/journal.pone.0260660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/13/2021] [Indexed: 11/19/2022] Open
Abstract
There has been significant interest in researching the pharmaceutical applications of Industrial hemp since its legalization three years ago. The crop is mostly dioecious and known for its production of phytocannabinoids, flavonoids, and terpenes. Although many scientific reports have showed gene expression analysis of hemp through OMICs approaches, unreliable reference genes for normalization of qRT-PCR data make it difficult to validate the OMICs data. Four software packages: geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the differential gene expression patterns of 13 candidate reference genes under osmotic, heavy metal, hormonal, and UV stresses. EF-1α ranked as the most stable reference gene across all stresses, TUB was the most stable under osmotic stress, and TATA was the most stable under both heavy metal stress and hormonal stimuli. The expression patterns of two cannabinoid pathway genes, AAE1 and CBDAS, were used to validate the reliability of the selected reference genes. This work provides useful information for gene expression characterization in hemp and future research in the synthesis, transport, and accumulation of secondary metabolites.
Collapse
|
9
|
Potential of Impedance Flow Cytometry to Assess the Viability and Quantity of Cannabis sativa L. Pollen. PLANTS 2021; 10:plants10122739. [PMID: 34961212 PMCID: PMC8704011 DOI: 10.3390/plants10122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Over the last decade, efforts to breed new Cannabis sativa L. cultivars with high Cannabidiol (CBD) and other non-psychoactive cannabinoids with low tetrahydrocannabinol (THC) levels have increased. In this context, the identification of the viability and quantity of pollen, which represents the fitness of male gametophytes, to accomplish successful pollination is of high importance. The present study aims to evaluate the potential of impedance flow cytometry (IFC) for the assessment of pollen viability (PV) and total number of pollen cells (TPC) in two phytocannabinoid-rich cannabis genotypes, KANADA (KAN) and A4 treated with two different chemical solutions, silver thiosulfate solution (STS) and gibberellic acid (GA3). Pollen was collected over a period of 8 to 24 days after flowering (DAF) in a greenhouse experiment. Impedance flow cytometry (IFC) technology was used with Cannabis sativa to assess the viability and quantity of pollen. The results showed that the number of flowers per plant was highest at 24 DAF for both genotypes, A4 (317.78) and KAN (189.74). TPC induced by STS was significantly higher compared to GA3 over the collection period of 8 to 24 DAF with the highest mean TPC of 1.54 × 105 at 14 DAF. STS showed significantly higher viability of pollen compared to GA3 in genotype KAN, with the highest PV of 78.18% 11 DAF. Genotype A4 also showed significantly higher PV with STS at 8 (45.66%), 14 (77.88%), 18 (79.37%), and 24 (51.92%) DAF compared to GA3. Furthermore, counting the numbers of flowers did not provide insights into the quality and quantity of pollen; the results showed that PV was highest at 18 DAF with A4; however, the number of flowers per plant was 150.33 at 18 DAF and was thus not the maximum of produced flowers within the experiment. IFC technology successfully estimated the TPC and differentiated between viable and non-viable cells over a period of 8 to 24 DAF in tested genotypes of Cannabis sativa. IFC seems to be an efficient and reliable method to estimate PV, opening new chances for plant breeding and plant production processes in cannabis.
Collapse
|
10
|
Pepe M, Hesami M, Small F, Jones AMP. Comparative Analysis of Machine Learning and Evolutionary Optimization Algorithms for Precision Micropropagation of Cannabis sativa: Prediction and Validation of in vitro Shoot Growth and Development Based on the Optimization of Light and Carbohydrate Sources. FRONTIERS IN PLANT SCIENCE 2021; 12:757869. [PMID: 34745189 PMCID: PMC8566924 DOI: 10.3389/fpls.2021.757869] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/30/2021] [Indexed: 05/03/2023]
Abstract
Micropropagation techniques offer opportunity to proliferate, maintain, and study dynamic plant responses in highly controlled environments without confounding external influences, forming the basis for many biotechnological applications. With medicinal and recreational interests for Cannabis sativa L. growing, research related to the optimization of in vitro practices is needed to improve current methods while boosting our understanding of the underlying physiological processes. Unfortunately, due to the exorbitantly large array of factors influencing tissue culture, existing approaches to optimize in vitro methods are tedious and time-consuming. Therefore, there is great potential to use new computational methodologies for analyzing data to develop improved protocols more efficiently. Here, we first tested the effects of light qualities using assorted combinations of Red, Blue, Far Red, and White spanning 0-100 μmol/m2/s in combination with sucrose concentrations ranging from 1 to 6% (w/v), totaling 66 treatments, on in vitro shoot growth, root development, number of nodes, shoot emergence, and canopy surface area. Collected data were then assessed using multilayer perceptron (MLP), generalized regression neural network (GRNN), and adaptive neuro-fuzzy inference system (ANFIS) to model and predict in vitro Cannabis growth and development. Based on the results, GRNN had better performance than MLP or ANFIS and was consequently selected to link different optimization algorithms [genetic algorithm (GA), biogeography-based optimization (BBO), interior search algorithm (ISA), and symbiotic organisms search (SOS)] for prediction of optimal light levels (quality/intensity) and sucrose concentration for various applications. Predictions of in vitro conditions to refine growth responses were subsequently tested in a validation experiment and data showed no significant differences between predicted optimized values and observed data. Thus, this study demonstrates the potential of machine learning and optimization algorithms to predict the most favorable light combinations and sucrose levels to elicit specific developmental responses. Based on these, recommendations of light and carbohydrate levels to promote specific developmental outcomes for in vitro Cannabis are suggested. Ultimately, this work showcases the importance of light quality and carbohydrate supply in directing plant development as well as the power of machine learning approaches to investigate complex interactions in plant tissue culture.
Collapse
Affiliation(s)
- Marco Pepe
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| | - Mohsen Hesami
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| | - Finlay Small
- Department of Research and Development, Entourage Health Corp., Guelph, ON, Canada
| | - Andrew Maxwell Phineas Jones
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Reichel P, Munz S, Hartung J, Präger A, Kotiranta S, Burgel L, Schober T, Graeff-Hönninger S. Impact of Three Different Light Spectra on the Yield, Morphology and Growth Trajectory of Three Different Cannabis sativa L. Strains. PLANTS (BASEL, SWITZERLAND) 2021; 10:1866. [PMID: 34579399 PMCID: PMC8472666 DOI: 10.3390/plants10091866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
Cannabis is one of the oldest cultivated plants, but plant breeding and cultivation are restricted by country specific regulations. Plant growth, morphology and metabolism can be manipulated by changing light quality and intensity. Three morphologically different strains were grown under three different light spectra with three real light repetitions. Light dispersion was included into the statistical evaluation. The light spectra considered had an influence on the morphology of the plant, especially the height. Here, the shade avoidance induced by the lower R:FR ratio under the ceramic metal halide lamp (CHD) was of particular interest. The sugar leaves seemed to be of elementary importance in the last growth phase for yield composition. Furthermore, the last four weeks of flowering were crucial to influence the yield composition of Cannabis sativa L. through light spectra. The dry flower yield was significantly higher under both LED treatments compared to the conventional CHD light source. Our results indicate that the plant morphology can be artificially manipulated by the choice of light treatment to create shorter plants with more lateral branches which seem to be beneficial for yield development. Furthermore, the choice of cultivar has to be taken into account when interpreting results of light studies, as Cannabis sativa L. subspecies and thus bred strains highly differ in their phenotypic characteristics.
Collapse
Affiliation(s)
- Philipp Reichel
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (A.P.); (L.B.); (T.S.); (S.G.-H.)
| | - Sebastian Munz
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (A.P.); (L.B.); (T.S.); (S.G.-H.)
| | - Jens Hartung
- Biostatistics, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Achim Präger
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (A.P.); (L.B.); (T.S.); (S.G.-H.)
| | - Stiina Kotiranta
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland;
| | - Lisa Burgel
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (A.P.); (L.B.); (T.S.); (S.G.-H.)
| | - Torsten Schober
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (A.P.); (L.B.); (T.S.); (S.G.-H.)
| | - Simone Graeff-Hönninger
- Cropping Systems and Modelling, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (A.P.); (L.B.); (T.S.); (S.G.-H.)
| |
Collapse
|
12
|
Impact of Different Growing Substrates on Growth, Yield and Cannabinoid Content of Two Cannabis sativa L. Genotypes in a Pot Culture. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The impacts of different growing substrate compositions, consisting of peat (PM), peat substituted with 30% green fibre (G30) and coco coir fibre (CC) growth media, were investigated in regard to the plant height, biomass and floral yield, biomass nitrogen (N) content, root growth, and cannabidiol content (CBD/A) of two phytocannabinoid-rich cannabis genotypes in an indoor pot cultivation system. Genotypes and substrate treatment combinations were randomly allocated to 36 plants according to a Latin square design. The results showed a higher total plant height for PM (39.96 cm), followed by G30 (35.28 cm), and the lowest in CC (31.54 cm). The N content of leaves indicated the highest values for plants grown in G30 (52.24 g kg DW−1), followed by PM (46.75 g kg DW−1) and a significantly lower content for CC (37.00 g kg DW−1). Root length density (RLD) increased by 40% (PM) and 50% (G30), compared to CC treatments, with no significant differences in root dry weight. Both genotypes, Kanada (KAN) and 0.2x, reacted in a genotype-specific manner. KAN indicated a reduced floral yield of plants grown in G30 (4.94 g plant−1) and CC (3.84 g plant−1) compared to PM (8.56 g plant−1). 0.2x indicated stable high floral yields of 9.19 g plant−1 (G30) to 7.90 g plant−1 (CC). Leaf DW increased in PM (5.78 g plant−1) and G30 (5.66 g plant−1) compared to CC (3.30 g plant−1), while CBD/A content remained constant. Due to a higher biomass yield, the CBD/A yield of flowers (549.66 mg plant−1) and leaves (224.16 mg plant−1) revealed 0.2x as an interesting genotype for indoor pot cultivation in a peat-based substrate substituted with 30% green fibres. Overall, the demand for organic green fibres to partly replace fractionated peat showed a genotype-specific option for a homogeneous plant development, with comparable high biomass yields and stable cannabinoid contents compared to a peat containing standard substrate.
Collapse
|