1
|
Worthy SJ, Miller A, Ashlock SR, Ceviker E, Maloof JN, Strauss SY, Schmitt J, Gremer JR. Germination responses to changing rainfall timing reveal potential climate vulnerability in a clade of wildflowers. Ecology 2024; 105:e4423. [PMID: 39344085 DOI: 10.1002/ecy.4423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 10/01/2024]
Abstract
The seasonal timing of life history transitions is often critical to fitness, and many organisms rely upon environmental cues to match life cycle events with favorable conditions. In plants, the timing of seed germination is mediated by seasonal cues such as rainfall and temperature. Variation in cue responses among species can reflect evolutionary processes and adaptation to local climate and can affect vulnerability to changing conditions. Indeed, climate change is altering the timing of precipitation, and germination responses to such change can have consequences for individual fitness, population dynamics, and species distributions. Here, we assessed responses to the seasonal timing of germination-triggering rains for eleven species spanning the Streptanthus/Caulanthus clade (Brassicaceae). To do so, we experimentally manipulated the onset date of rainfall events, measured effects on germination fraction, and evaluated whether responses were constrained by evolutionary relationships across the phylogeny. We then explored the possible consequences of these responses to contemporary shifts in precipitation timing. Germination fractions decreased with later onset of rains and cooler temperatures for all but three Caulanthus species. Species' germination responses to the timing of rainfall and seasonal temperatures were phylogenetically constrained, with Caulanthus species appearing less responsive. Further, four species are likely already experiencing significant decreases in germination fractions with observed climate change, which has shifted the timing of rainfall towards the cooler, winter months in California. Overall, our findings emphasize the sensitivity of germination to seasonal conditions, underscore the importance of interacting environmental cues, and highlight vulnerability to shifting precipitation patterns with climate change, particularly in more northern, mesic species.
Collapse
Affiliation(s)
- Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Arquel Miller
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Sarah R Ashlock
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Eda Ceviker
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Julin N Maloof
- Department of Plant Biology, University of California, Davis, California, USA
| | - Sharon Y Strauss
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Center for Population Biology, University of California, Davis, California, USA
| | - Johanna Schmitt
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Center for Population Biology, University of California, Davis, California, USA
| | - Jennifer R Gremer
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Center for Population Biology, University of California, Davis, California, USA
| |
Collapse
|
2
|
Filipe JC, Ahrens CC, Byrne M, Hardy G, Rymer PD. Germination temperature sensitivity differs between co-occurring tree species and climate origins resulting in contrasting vulnerability to global warming. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:146-162. [PMID: 37362420 PMCID: PMC10290426 DOI: 10.1002/pei3.10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 06/28/2023]
Abstract
Climate change is shifting temperatures from historical patterns, globally impacting forest composition and resilience. Seed germination is temperature-sensitive, making the persistence of populations and colonization of available habitats vulnerable to warming. This study assessed germination response to temperature in foundation trees in south-western Australia's Mediterranean-type climate forests (Eucalyptus marginata (jarrah) and Corymbia calophylla (marri)) to estimate the thermal niche and vulnerability among populations. Seeds from the species' entire distribution were collected from 12 co-occurring populations. Germination thermal niche was investigated using a thermal gradient plate (5-40°C). Five constant temperatures between 9 and 33°C were used to test how the germination niche (1) differs between species, (2) varies among populations, and (3) relates to the climate of origin. Germination response differed among species; jarrah had a lower optimal temperature and thermal limit than marri (T o 15.3°C, 21.2°C; ED50 23.4°C, 31°C, respectively). The thermal limit for germination differed among populations within both species, yet only marri showed evidence for adaptation to thermal origins. While marri has the capacity for germination at higher thermal temperatures, jarrah is more vulnerable to global warming exceeding safety margins. This discrepancy is predicted to alter species distributions and forest composition in the future.
Collapse
Affiliation(s)
- João C. Filipe
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation SciencePerthWestern AustraliaAustralia
- Centre for Terrestrial Ecosystem Science and SustainabilityHarry Butler InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Collin C. Ahrens
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
- School of Biotechnology & Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Research Centre for Ecosystem ResilienceRoyal Botanic Gardens and Domain TrustSydneyNew South WalesAustralia
- Cesar AustraliaBrunswickVictoriaAustralia
| | - Margaret Byrne
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation SciencePerthWestern AustraliaAustralia
| | - Giles Hardy
- Centre for Terrestrial Ecosystem Science and SustainabilityHarry Butler InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Paul D. Rymer
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| |
Collapse
|
3
|
Collette JC, Sommerville KD, Lyons MB, Offord CA, Errington G, Newby ZJ, von Richter L, Emery NJ. Stepping up to the thermogradient plate: a data framework for predicting seed germination under climate change. ANNALS OF BOTANY 2022; 129:787-794. [PMID: 35212713 PMCID: PMC9292609 DOI: 10.1093/aob/mcac026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/24/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Seed germination is strongly influenced by environmental temperatures. With global temperatures predicted to rise, the timing of germination for thousands of plant species could change, leading to potential decreases in fitness and ecosystem-wide impacts. The thermogradient plate (TGP) is a powerful but underutilized research tool that tests germination under a broad range of constant and alternating temperatures, giving researchers the ability to predict germination characteristics using current and future climates. Previously, limitations surrounding experimental design and data analysis methods have discouraged its use in seed biology research. METHODS Here, we have developed a freely available R script that uses TGP data to analyse seed germination responses to temperature. We illustrate this analysis framework using three example species: Wollemia nobilis, Callitris baileyi and Alectryon subdentatus. The script generates >40 germination indices including germination rates and final germination across each cell of the TGP. These indices are then used to populate generalized additive models and predict germination under current and future monthly maximum and minimum temperatures anywhere on the globe. KEY RESULTS In our study species, modelled data were highly correlated with observed data, allowing confident predictions of monthly germination patterns for current and future climates. Wollemia nobilis germinated across a broad range of temperatures and was relatively unaffected by predicted future temperatures. In contrast, C. baileyi and A. subdentatus showed strong seasonal temperature responses, and the timing for peak germination was predicted to shift seasonally under future temperatures. CONCLUSIONS Our experimental workflow is a leap forward in the analysis of TGP experiments, increasing its many potential benefits, thereby improving research predictions and providing substantial information to inform management and conservation of plant species globally.
Collapse
Affiliation(s)
| | - Karen D Sommerville
- The Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, NSW 2567, Australia
| | - Mitchell B Lyons
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, Sydney NSW 2052, Australia
| | - Catherine A Offord
- The Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, NSW 2567, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, Sydney NSW 2052, Australia
| | - Graeme Errington
- The Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, NSW 2567, Australia
| | - Zoe-Joy Newby
- The Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, NSW 2567, Australia
| | - Lotte von Richter
- The Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, NSW 2567, Australia
| | - Nathan J Emery
- The Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, NSW 2567, Australia
| |
Collapse
|
4
|
Lewandrowski W, Stevens JC, Webber BL, L. Dalziell E, Trudgen MS, Bateman AM, Erickson TE. Global change impacts on arid zone ecosystems: Seedling establishment processes are threatened by temperature and water stress. Ecol Evol 2021; 11:8071-8084. [PMID: 34188872 PMCID: PMC8216921 DOI: 10.1002/ece3.7638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/31/2021] [Accepted: 04/17/2021] [Indexed: 11/24/2022] Open
Abstract
Recruitment for many arid-zone plant species is expected to be impacted by the projected increase in soil temperature and prolonged droughts associated with global climate change. As seed dormancy is considered a strategy to avoid unfavorable conditions, understanding the mechanisms underpinning vulnerability to these factors is critical for plant recruitment in intact communities, as well as for restoration efforts in arid ecosystems. This study determined the effects of temperature and water stress on recruitment processes in six grass species in the genus Triodia R.Br. from the Australian arid zone. Experiments in controlled environments were conducted on dormant and less-dormant seeds at constant temperatures of 25°C, 30°C, 35°C, and 40°C, under well-watered (Ψsoil = -0.15 MPa) and water-limited (Ψsoil = -0.35 MPa) conditions. Success at three key recruitment stages-seed germination, emergence, and survival-and final seed viability of ungerminated seeds was assessed. For all species, less-dormant seeds germinated to higher proportions under all conditions; however, subsequent seedling emergence and survival were higher in the more dormant seed treatment. An increase in temperature (35-40°C) under water-limited conditions caused 95%-100% recruitment failure, regardless of the dormancy state. Ungerminated seeds maintained viability in dry soil; however, when exposed to warm (30-40°C) and well-watered conditions, loss of viability was greater from the less-dormant seeds across all species. This work demonstrates that the transition from seed to established seedling is highly vulnerable to microclimatic constraints and represents a critical filter for plant recruitment in the arid zone. As we demonstrate temperature and water stress-driven mortality between seeds and established seedlings, understanding how these factors influence recruitment in other arid-zone species should be a high priority consideration for management actions to mitigate the impacts of global change on ecosystem resilience. The knowledge gained from these outcomes must be actively incorporated into restoration initiatives.
Collapse
Affiliation(s)
- Wolfgang Lewandrowski
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings ParkWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Jason C. Stevens
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings ParkWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Bruce L. Webber
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- CSIRO Health and BiosecurityFloreatWestern AustraliaAustralia
- Western Australian Biodiversity Science InstitutePerthWestern AustraliaAustralia
| | - Emma L. Dalziell
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings ParkWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Melinda S. Trudgen
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- CSIRO Health and BiosecurityFloreatWestern AustraliaAustralia
| | - Amber M. Bateman
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings ParkWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Todd E. Erickson
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings ParkWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
5
|
Hamann E, Denney D, Day S, Lombardi E, Jameel MI, MacTavish R, Anderson JT. Review: Plant eco-evolutionary responses to climate change: Emerging directions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110737. [PMID: 33568289 DOI: 10.1016/j.plantsci.2020.110737] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 05/14/2023]
Abstract
Contemporary climate change is exposing plant populations to novel combinations of temperatures, drought stress, [CO2] and other abiotic and biotic conditions. These changes are rapidly disrupting the evolutionary dynamics of plants. Despite the multifactorial nature of climate change, most studies typically manipulate only one climatic factor. In this opinion piece, we explore how climate change factors interact with each other and with biotic pressures to alter evolutionary processes. We evaluate the ramifications of climate change across life history stages,and examine how mating system variation influences population persistence under rapid environmental change. Furthermore, we discuss how spatial and temporal mismatches between plants and their mutualists and antagonists could affect adaptive responses to climate change. For example, plant-virus interactions vary from highly pathogenic to mildly facilitative, and are partly mediated by temperature, moisture availability and [CO2]. Will host plants exposed to novel, stressful abiotic conditions be more susceptible to viral pathogens? Finally, we propose novel experimental approaches that could illuminate how plants will cope with unprecedented global change, such as resurrection studies combined with experimental evolution, genomics or epigenetics.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Derek Denney
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Samantha Day
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth Lombardi
- Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Venn SE, Gallagher RV, Nicotra AB. Germination at Extreme Temperatures: Implications for Alpine Shrub Encroachment. PLANTS (BASEL, SWITZERLAND) 2021; 10:327. [PMID: 33572051 PMCID: PMC7915672 DOI: 10.3390/plants10020327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 11/28/2022]
Abstract
Worldwide, shrub cover is increasing across alpine and tundra landscapes in response to warming ambient temperatures and declines in snowpack. With a changing climate, shrub encroachment may rely on recruitment from seed occurring outside of the optimum temperature range. We used a temperature gradient plate in order to determine the germination niche of 14 alpine shrub species. We then related the range in laboratory germination temperatures of each species to long-term average temperature conditions at: (1) the location of the seed accession site and (2) across each species geographic distribution. Seven of the species failed to germinate sufficiently to be included in the analyses. For the other species, the germination niche was broad, spanning a range in temperatures of up to 17 °C, despite very low germination rates in some species. Temperatures associated with the highest germination percentages were all above the range of temperatures present at each specific seed accession site. Optimum germination temperatures were consistently within or higher than the range of maximum temperatures modelled across the species' geographic distribution. Our results indicate that while some shrub species germinate well at high temperatures, others are apparently constrained by an inherent seed dormancy. Shrub encroachment in alpine areas will likely depend on conditions that affect seed germination at the microsite-scale, despite overall conditions becoming more suitable for shrubs at high elevations.
Collapse
Affiliation(s)
- Susanna E. Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
- Research School of Biology, Australian National University, Acton, ACT 2600, Australia;
| | - Rachael V. Gallagher
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia;
| | - Adrienne B. Nicotra
- Research School of Biology, Australian National University, Acton, ACT 2600, Australia;
| |
Collapse
|
7
|
Porceddu M, Pritchard HW, Mattana E, Bacchetta G. Differential Interpretation of Mountain Temperatures by Endospermic Seeds of Three Endemic Species Impacts the Timing of In Situ Germination. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1382. [PMID: 33081420 PMCID: PMC7603068 DOI: 10.3390/plants9101382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022]
Abstract
Predicting seed germination in the field is a critical part of anticipating the impact of climate change on the timing of wild species regeneration. We combined thermal time and soil heat sum models of seed germination for three endemic Mediterranean mountain species with endospermic seeds and morphophysiological dormancy: Aquilegia barbaricina, Paeonia corsica, and Ribes sandalioticum. Seeds were buried in the soil within the respective collection sites, both underneath and outside the tree canopy, and their growth was assessed regularly and related to soil temperatures and estimates of the thermal characteristics of the seeds. The thermal thresholds for embryo growth and seed germination of A. barbaricina assessed in previous studies under controlled conditions were used to calculate soil heat sum accumulation of this species in the field. Thermal thresholds of seed germination for P. corsica and R. sandalioticum were not previously known and were estimated for the first time in this field study, based on findings of previous works carried out under controlled conditions. Critical embryo length and maximum germination for A. barbaricina were reached in April, and in December for R. sandalioticum. Seeds of P. corsica stay dormant in the ground until the following summer, and the critical embryo length and highest germination were detected from September to December. Soil heat sum models predicted earlier germination by one month for all three species under two Intergovernmental Panel on Climate Change (IPCC) scenarios, based on the assumption that the estimated thermal thresholds will remain constant through climate changes. This phenological shift may increase the risk of mortality for young seedlings. The models developed provide important means of connecting the micro-environmental niche for in situ seed germination and the macro-environmental parameters under a global warming scenario.
Collapse
Affiliation(s)
- Marco Porceddu
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale S. Ignazio da Laconi, 9-11, 09123 Cagliari, Italy;
- Centre for the Conservation of Biodiversity (CCB), Life and Environmental Sciences Department, University of Cagliari, Viale S. Ignazio da Laconi 11-13, 09123 Cagliari, Italy
| | - Hugh W. Pritchard
- Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst, Ardingly, West Sussex RH17 6TN, UK; (H.W.P.); (E.M.)
| | - Efisio Mattana
- Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst, Ardingly, West Sussex RH17 6TN, UK; (H.W.P.); (E.M.)
| | - Gianluigi Bacchetta
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale S. Ignazio da Laconi, 9-11, 09123 Cagliari, Italy;
- Centre for the Conservation of Biodiversity (CCB), Life and Environmental Sciences Department, University of Cagliari, Viale S. Ignazio da Laconi 11-13, 09123 Cagliari, Italy
| |
Collapse
|
8
|
Hernandez RR, Tanner KE, Haji S, Parker IM, Pavlik BM, Moore-O’Leary KA. Simulated Photovoltaic Solar Panels Alter the Seed Bank Survival of Two Desert Annual Plant Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1125. [PMID: 32878043 PMCID: PMC7570262 DOI: 10.3390/plants9091125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Seed bank survival underpins plant population persistence but studies on seed bank trait-environment interactions are few. Changes in environmental conditions relevant to seed banks occur in desert ecosystems owing to solar energy development. We developed a conceptual model of seed bank survival to complement methodologies using in-situ seed bank packets. Using this framework, we quantified the seed bank survival of two closely related annual desert plant species, one rare (Eriophyllum mohavense) and one common (Eriophyllum wallacei), and the seed bank-environment interactions of these two species in the Mojave Desert within a system that emulates microhabitat variation associated with solar energy development. We tracked 4860 seeds buried across 540 seed packets and found, averaged across both species, that seed bank survival was 21% and 6% for the first and second growing seasons, respectively. After two growing seasons, the rare annual had a significantly greater seed bank survival (10%) than the common annual (2%). Seed bank survival across both species was significantly greater in shade (10%) microhabitats compared to runoff (5%) and control microhabitats (3%). Our study proffers insight into this early life-stage across rare and common congeners and their environmental interactions using a novel conceptual framework for seed bank survival.
Collapse
Affiliation(s)
- Rebecca R. Hernandez
- Department of Land, Air & Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
- Wild Energy Initiative, John Muir Institute of the Environment, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Karen E. Tanner
- Ecology and Evolutionary Biology Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA; (K.E.T.); (S.H.); (I.M.P.)
| | - Sophia Haji
- Ecology and Evolutionary Biology Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA; (K.E.T.); (S.H.); (I.M.P.)
| | - Ingrid M. Parker
- Ecology and Evolutionary Biology Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA; (K.E.T.); (S.H.); (I.M.P.)
| | - Bruce M. Pavlik
- Conservation Department, Red Butte Garden and Arboretum, University of Utah, Salt Lake City, UT 84108, USA;
| | - Kara A. Moore-O’Leary
- U.S. Fish and Wildlife Service, Pacific Southwest Region, 3020 State University Drive East, Sacramento, CA 95819, USA;
| |
Collapse
|