1
|
Jahan R, Raina A, Malik S, Khan S. Gamma rays and sodium azide induced variations in bio-physiological and agronomical traits in linseed ( Linum usitatissimum L.). Heliyon 2024; 10:e31329. [PMID: 38845881 PMCID: PMC11153108 DOI: 10.1016/j.heliyon.2024.e31329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Linseed is a valuable oilseed crop with huge therapeutic importance due to its high content of omega-3 fatty acids in the form of Alpha-linolenic acid (ALA). It is a self-pollinated crop with a low-yielding potential that restricts its improvement endeavors. To overcome low-yielding potential, individual and combination treatments of gamma rays and sodium azide were employed in widely grown linseed varieties. The results revealed a dose-dependent decline in seed germination, seedling height, pollen fertility, chlorophyll, and carotenoid contents and a dose-independent decline in carbonic anhydrase activity. Bio-physiological parameters decreased substantially in combination treatments compared to individual treatments of gamma rays and sodium azide. In contrast, lower doses of gamma rays, sodium azide, and their combinations effectively increased mean values of yield and yield-attributing traits in a few putative mutants. Such putative mutants represent a valuable genetic resource that could be used in future breeding programs for the genetic improvement of linseed and related medicinal plants.
Collapse
Affiliation(s)
- Roshan Jahan
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
- Botany Section, Women's College, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Saima Malik
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Samiullah Khan
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
2
|
Dossa EN, Shimelis H, Mrema E, Shayanowako ATI, Laing M. Genetic resources and breeding of maize for Striga resistance: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1163785. [PMID: 37235028 PMCID: PMC10206272 DOI: 10.3389/fpls.2023.1163785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/07/2023] [Indexed: 05/28/2023]
Abstract
The potential yield of maize (Zea mays L.) and other major crops is curtailed by several biotic, abiotic, and socio-economic constraints. Parasitic weeds, Striga spp., are major constraints to cereal and legume crop production in sub-Saharan Africa (SSA). Yield losses reaching 100% are reported in maize under severe Striga infestation. Breeding for Striga resistance has been shown to be the most economical, feasible, and sustainable approach for resource-poor farmers and for being environmentally friendly. Knowledge of the genetic and genomic resources and components of Striga resistance is vital to guide genetic analysis and precision breeding of maize varieties with desirable product profiles under Striga infestation. This review aims to present the genetic and genomic resources, research progress, and opportunities in the genetic analysis of Striga resistance and yield components in maize for breeding. The paper outlines the vital genetic resources of maize for Striga resistance, including landraces, wild relatives, mutants, and synthetic varieties, followed by breeding technologies and genomic resources. Integrating conventional breeding, mutation breeding, and genomic-assisted breeding [i.e., marker-assisted selection, quantitative trait loci (QTL) analysis, next-generation sequencing, and genome editing] will enhance genetic gains in Striga resistance breeding programs. This review may guide new variety designs for Striga-resistance and desirable product profiles in maize.
Collapse
Affiliation(s)
- Emeline Nanou Dossa
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Hussein Shimelis
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Emmanuel Mrema
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Tanzania Agricultural Research Institute, Tumbi Center, Tabora, Tanzania
| | | | - Mark Laing
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
3
|
Chen L, Duan L, Sun M, Yang Z, Li H, Hu K, Yang H, Liu L. Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. FRONTIERS IN PLANT SCIENCE 2023; 13:1052569. [PMID: 36684716 PMCID: PMC9846265 DOI: 10.3389/fpls.2022.1052569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Ethyl methanesulfonate (EMS)-induced mutagenesis is a powerful tool to generate genetic resource for identifying untapped genes and characterizing the function of genes to understand the molecular basis of important agronomic traits. This review focuses on application of contemporary EMS mutagenesis in the field of plant development and abiotic stress tolerance research, with particular focuses on reviewing the mutation types, mutagenesis site, mutagen concentration, mutagenesis duration, the identification and characterization of mutations responsible for altered stress tolerance responses. The application of EMS mutation breeding combined with genetic engineering in the future plant breeding and fundamental research was also discussed. The collective information in this review will provide good insight on how EMS mutagenesis is efficiently applied to improve abiotic stress tolerance of crops with the utilization of Next-generation sequencing (NGS) for mutation identification.
Collapse
Affiliation(s)
- Liuzhu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Liu Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Minghui Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhuo Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Hongyu Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Keming Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
4
|
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci 2022; 23:12053. [PMID: 36233352 PMCID: PMC9570234 DOI: 10.3390/ijms231912053] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Collapse
Affiliation(s)
- Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Anareli Quintero-Jiménez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| | - Gabriel Iturriaga
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| |
Collapse
|
5
|
Guha Mallick R, Pramanik S, Pandit MK, Gupta AK, Roy S, Jambhulkar S, Sarker A, Nath R, Bhattacharyya S. Radiosensitivity of seedling traits to varying gamma doses, optimum dose determination and variation in determined doses due to different time of sowings after irradiation and methods of irradiation in faba bean genotypes. Int J Radiat Biol 2022; 99:534-550. [PMID: 35938753 DOI: 10.1080/09553002.2022.2107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PURPOSE Three experiments were conducted to assess the effect of different doses of gamma radiation on various seedling traits; determine the optimum doses of gamma radiation for different faba bean genotypes; find out the variation in optimum doses with respect to the different times of sowings after irradiation and methods of irradiation. MATERIALS AND METHODS Five faba bean genotypes viz., L-2013-060, L-2013-092, Anandnagar Local, Gazipur Local and Bangla Gangachar were used in these experiments. In Experiment I, seeds of five experimental genotypes were exposed to different doses (100 Gy 200 Gy, 300 Gy, 400 Gy, 500 Gy, 600 Gy, 700 Gy and 800 Gy) of gamma radiation and were sown immediately after irradiation. In Experiment II, seeds of Bangla Gangachar and L-2013-060 were exposed to varying doses (100-800 Gy) of gamma radiation and were sown at seven sowings starting from 0 h to 24 h at 4-h intervals after irradiation. In Experiment III, L-2013-092 genotypes was exposed to different doses (100 -800 Gy) of gamma radiation with two different methods of irradiation. RESULTS In Experiment I, the lethal dose 50 (LD50) values have arrived at 140 Gy, 669 Gy, 575 Gy, 386 Gy and 158 Gy for L-2013-060, L-2013-092, Anandnagar Local, Gazipur Local and Bangla Gangachar, respectively. The growth reduction 50 (GR50) doses for different seedling traits ranged from 130 Gy to 320 Gy for L-2013-060, 250 Gy to 480 Gy for L-2013-092, 130 Gy to 370 Gy for Anandnagar Local, 200 Gy to 350 Gy for Gazipur Local and 250 Gy to 400 Gy for Bangla Gangachar. In Experiment II, the values for LD50 of the genotypes Bangla Gangachar and L-2013-060 were significantly singular for different time intervals of sowing. The values of GR50 for most of the seedling traits were found to increase with the delay in sowing after irradiation from 4 to 24 h when compared with the immediately sown seed lots. In Experiment III, LD50 for L-2013-092 was 337 Gy with Method 1 and 669 Gy with Method 2. In Method 1, most of the growth parameters attained GR50 doses lower than Method 2. The first method was found to increase the radiosensitivity of L-2013-092. CONCLUSION Every experimental genotype used in these three experiments showed dose-dependent retardation of different seedling traits. These optimized doses may be employed to establish mutant populations for exploiting the novel traits of faba bean. The time of sowing after irradiation and method of irradiation was found to be essential for confirming optimum doses.
Collapse
Affiliation(s)
| | | | | | - Akhilesh Kumar Gupta
- Department of Agricultural Statistics, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Subhrajit Roy
- Department of Vegetable Science, Faculty of Horticulture, Nadia, India
| | - Sanjay Jambhulkar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, India
| | - Ashutosh Sarker
- ICARDA - South Asia and China Regional Programme, New Delhi, India
| | - Rajib Nath
- Department of Agronomy, Faculty of Agriculture, Nadia, India
| | | |
Collapse
|
6
|
Francis N, Rajasekaran R, Krishnamoorthy I, Muthurajan R, Thiyagarajan C, Alagarswamy S. Gamma irradiation to induce beneficial mutants in proso millet ( Panicum miliaceum L.): an underutilized food crop. Int J Radiat Biol 2022; 98:1277-1288. [PMID: 34982661 DOI: 10.1080/09553002.2022.2024292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Proso millet is a potential crop for food, nutritional security, and sustainable agriculture, particularly in the context of climate change. It is one of the traditional millet crops in cultivation in Tamil Nadu and India. Self-pollinated nature of this crop makes evolutionary process a terminal one and creating variability to broaden the genetic base is important. The objective of the study was to optimize mutagenic dose of gamma mutagen, document types of mutations and identify mutants for high grain yield (GY) and fodder yield (FY), hence to determine the feasibility of gamma mutagenesis in proso millet crop improvement. MATERIALS AND METHODS A mutation breeding program with 10 doses of gamma irradiation, i.e. 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 Gy were imposed on seeds of variety ATL 1, a popular variety in India. Roll paper method, tray method and field evaluation were carried out to determine the LD50 and GR50 doses. Based on viable mutation frequency in M2 generation, mutagenic effectiveness and efficiency was estimated. Targeted selection for yield and yield contributing traits was carried out in M2, M3 and M4 generation to identify high yielding mutants. RESULTS The LD50 and GR50 doses of gamma were estimated to be 418 Gy and 542 Gy, respectively. Based on results from probit analysis, mutagenic effectiveness, mutagenic efficiency and mutation spectrum, the optimum treatment dose of gamma was concluded to be 400 Gy. High frequency, i.e. 10.96% of phenotypic mutants was identified in the M2 generation. The broad range of mutants identified in M2 generation had mutations for plant height, plant habit, panicle shape, compactness, and length, days to 50% flowering (DFF), lodging resistance, tillering, leaf phenotype, apiculus color, culm branching, stem and leaf hairiness, sheath pigmentation, seed color and shape and seed coat attachment. Eight high yielding mutant families were isolated in M4 generation. The mean single plant GY and FY of these mutants ranged between 25 to 51 g and 40 to 68 g respectively while in control it was 15 g and 30 g, respectively. CONCLUSIONS The wide spectrum and high frequency of mutations both for qualitative and quantitative traits suggest mutation induction as a promising method for creating novel variations in proso millet. The high yielding mutants identified can be utilized for varietal development both for grain and fodder purpose after further stability and quality evaluations in the advanced generations.
Collapse
Affiliation(s)
- Neethu Francis
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ravikesavan Rajasekaran
- Department of Millets, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Iyanar Krishnamoorthy
- Department of Millets, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Chitdeshwari Thiyagarajan
- Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, India
| | - Senthil Alagarswamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|