1
|
Jovanović M, Vunduk J, Mitić-Ćulafić D, Svirčev E, Vojvodić P, Tomić N, Ismi LN, Tenji D. New Perspectives on the Old Uses of Traditional Medicinal and Edible Herbs: Extract and Spent Material of Persicaria hydropiper (L.) Delarbre. Nutrients 2024; 16:3368. [PMID: 39408335 PMCID: PMC11478433 DOI: 10.3390/nu16193368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives:Persicaria hydropiper (L.) Delarbre, commonly known as water pepper, possesses multifunctional potential. Our research focuses on its complex phenolic composition, bioactivity, safety evaluation and utilization in a sustainable manner. Moreover, a survey was conducted among the Serbian population to gain insight into the attitude towards traditional wild-growing herbs (i.e., P. hydropiper), the level of familiarity with their zero-waste culture, and to assess eating behaviors. Methods: A survey was conducted with 168 participants to assess attitudes towards traditional herbs, zero-waste culture, and eating behaviors, while cytotoxicity, in vivo toxicity, chemical analysis of secondary metabolites, and probiotic viability assays were performed to evaluate the effects of the PH extract. Results: Notably, P. hydropiper extract (PH) exhibits a diverse phenolic profile, including quinic acid (3.68 ± 0.37 mg/g DW), gallic acid (1.16 ± 0.10 mg/g DW), quercetin (2.34 ± 0.70 mg/g DW) and kaempferol-3-O-glucoside (4.18 ± 0.17 mg/g DW). These bioactive compounds have been linked to anticancer effects. The tested extract demonstrated a cytotoxic effect on the human neuroblastoma cell line, opening questions for the further exploration of its mechanisms for potential therapeutic applications. Based on the toxicity assessment in the Artemia salina model, the PH could be characterized with good safety, especially for the lower concentrations (LC50 = 0.83 mg/mL, 24 h). The utilization of the spent PH material supports the viability of psychobiotic strains (up to 9.26 ± 0.54 log CFU/mL). Based on the conducted survey, 63.7% (n = 107) of respondents mainly prefer traditional instead of imported herbs. The respondents were skeptical about zero-waste edibles; 51.2% (n = 86) would not try them, and a bit more than half were not familiar with zero-waste culture (57.7%; n = 97). Only 8.3% (n = 14) followed a flexitarian diet as a dietary pattern. Conclusions: The use of underutilized traditional plants and their spent material could potentially contribute to the acceptance of a zero-waste culture in Serbia. Reinventing the use of neglected traditional plants and addressing ways for spent material valorization could contribute to the acceptance of a zero-waste strategy and encourage healthier eating behavior.
Collapse
Affiliation(s)
- Marina Jovanović
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Belgrade, Serbia;
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Belgrade, Serbia;
| | - Dragana Mitić-Ćulafić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (D.M.-Ć.); (L.N.I.)
| | - Emilija Svirčev
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (E.S.); (D.T.)
| | - Petar Vojvodić
- Private Psychiatric Practice Psihocentrala Belgrade, Crnogorska 2, 11000 Belgrade, Serbia;
| | - Nina Tomić
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade, Serbia;
| | - Laksmi Nurul Ismi
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (D.M.-Ć.); (L.N.I.)
| | - Dina Tenji
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (E.S.); (D.T.)
| |
Collapse
|
2
|
Chandana CR, Kalita S, Patgiri P, Kumar Kaman P. Green synthesis of silver nano-insecticide from Polygonum hydropipper (Polygonaceae). Nat Prod Res 2024:1-10. [PMID: 39311084 DOI: 10.1080/14786419.2024.2405015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
Developing eco-friendly and cost-effective green synthesis of metallic nanoparticles using an array of natural resources has garnered significant interest in recent years for their diverse sustainable applications, including agriculture. In our present investigation for green synthesis of silver nanoparticles (AgNPs), phytochemicals present on the Polygonum hydropipper (Family: Polygonaceae) leaf extract acted as a reducing and stabilising agent owing to their active phytoconstituents. Biosynthesis of AgNPs was confirmed using various physio-chemical methods including UV-Vis spectrophotometry, Dynamic Light Scattering (DLS) analysis, Zeta potential, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The Fourier Transform Infra-red Spectrograph (FTIR) analysis revealed strong peaks in the range of 638-3246.3 cm-1, confirming the presence of various functional groups viz., O-H, C-H, C = C and O = C = O on the biosynthesized compound. The methodology employed in our study for the biosynthesis of AgNPs utilising P. hydropiper leaf extract exhibits significant potential for future technological advancements.
Collapse
Affiliation(s)
- C R Chandana
- Department of Entomology, Assam Agricultural University, Jorhat, India
- Department of Entomology, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Surajit Kalita
- Department of Entomology, Assam Agricultural University, Jorhat, India
| | - Pulin Patgiri
- Department of Entomology, Assam Agricultural University, Jorhat, India
| | | |
Collapse
|
3
|
Idoudi S, Tourrette A, Bouajila J, Romdhane M, Elfalleh W. The genus Polygonum: An updated comprehensive review of its ethnomedicinal, phytochemical, pharmacological activities, toxicology, and phytopharmaceutical formulation. Heliyon 2024; 10:e28947. [PMID: 38638945 PMCID: PMC11024578 DOI: 10.1016/j.heliyon.2024.e28947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Polygonum is a plant genus that includes annual and perennial species and is found at various temperatures, from northern temperate regions to tropical and subtropical areas. The genus Polygonum has been used for centuries for various disorders, including hypertension, intestinal and stomach pain, dysuria, jaundice, toothaches, skin allergies, hemorrhoids, cardiac disorders, kidney stones, hemostasis, hyperglycemia, and others. Various databases, including Google Scholar, Scifinder, ScienceDirect, PubMed, Scopus, ResearchGate, and Web of Science, were utilized to collect pertinent scientific literature data. According to bibliographic studies, the Polygonum genus possesses various compounds from different families, including phenolic acids (gallic acid, caffeic acid, quinic acid, p-coumaric acid, ferulic acid, protocatechuic acid, chlorogenic acid, and many other compounds), flavonoids (quercetin, catechin, epicatechin, quercitrin, kaempferol, myricetin, etc.), tannins, stilbenes (polydatin and resveratrol), terpenes (α-pinene, β-caryophyllene and β-caryophyllene oxide, bisabolene, β-farnesene, etc.), fatty acids (decanoic acid, lauric acid, linoleic acid, oleic acid, palmitic acid, stearic acid, dodecanoic acid), polysaccharides, and others. Various chemical and biological activities (in vitro and in vivo), such as antioxidant, antimicrobial, anticancer, antitumor, anti-inflammatory, antidiabetic, antiparasitic, hepatoprotective, neuropharmacological, gastroprotective, diuretic, antipyretic, and others, have been described in several biological studies involving this species. An updated summary of Polygonum species and their ethnomedicinal, phytochemical, toxicological, pharmacological, and phytopharmaceutical formulations is necessary. Considering the numerous potentialities of the Polygonum species and their wide-ranging use, it is extremely essential to provide knowledge by compiling the accessible literature to identify the topics of intense investigation and the main gaps to better design future studies. The objective of this review is to give readers a better understanding, greater comprehension, and in-depth knowledge of the genus Polygonum's traditional applications, phytochemistry, pharmacology, toxicological features, and galenic formulation. Several species of this genus have been detailed in this review, including those that were frequently used in traditional medicine (P. minus, P. aviculare, P. hydropiper, P. cuspidatum, and P. multiflorum) and many of the genus' therapeutic species, like P. equisetiforme, which do not get enough attention.
Collapse
Affiliation(s)
- Sourour Idoudi
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes, 6072, Tunisia
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 35 Chemin des Maraichers, 31062, Toulouse, Cedex 9, France
| | - Audrey Tourrette
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 35 Chemin des Maraichers, 31062, Toulouse, Cedex 9, France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062, Toulouse, France
| | - Mehrez Romdhane
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes, 6072, Tunisia
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes, 6072, Tunisia
| |
Collapse
|
4
|
Saleem M, Shazmeen N, Nazir M, Riaz N, Zengin G, Ataullah HM, Qurat-Ul-Ain, Nisar F, Mukhtar M, Tousif MI. Investigation on the Phytochemical Composition, Antioxidant and Enzyme Inhibition Potential of Polygonum Plebeium R.Br: A Comprehensive Approach to Disclose New Nutraceutical and Functional Food Ingredients. Chem Biodivers 2021; 18:e2100706. [PMID: 34636484 DOI: 10.1002/cbdv.202100706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/11/2021] [Indexed: 01/25/2023]
Abstract
The present work describes medicinal potential and secondary metabolic picture of the methanol extract (PP-M) of Polygonum plebeium R.Br. and its fractions; hexane (PP-H), ethyl acetate (PP-E) and water (PP-W). In total bioactive component estimation, highest contents of phenolic (89.38±0.27 mgGAE/g extract) and flavonoid (51.21±0.43 mgQE/g extract) were observed in PP-E, and the same fraction exhibited the highest antioxidant potential in DPPH (324.80±4.09 mgTE/g extract), ABTS (563.18±11.39 mgTE/g extract), CUPRAC (411.33±15.49 mgTE/g extract) and FRAC (369.54±1.70 mgTE/g extract) assays. In Phosphomolybdenum activity assay, PP-H and PP-E showed nearly similar potential, however, PP-H was the most active (13.54±0.24 mgEDTAE/g extract) in metal chelating activity assay. PP-W was the stronger inhibitor (4.03±0.05 mgGALAE/g extract) of the enzyme AChE, while PP-H was potent inhibitor of BChE (5.62±0.27 mg GALAE/g extract). Interestingly, PP-E was inactive against BChE. Against tyrosinase activity, PP-E was again the most active fraction with inhibitory value of 71.89±1.44 mg KAE/g extract, followed by the activity of PP-M and PP-W. Antidiabetic potential was almost equally distributed among PP-M, PP-H and PP-E. For mapping the chemodiversity of P. plebeium, PP-M was analyzed through UHPLC/MS, which led to the identification of more than 50 compounds. Flavonoids were the main components derived from isovitexin, kaempferol and luteolin however, gallic acid, protocatechuic acid, gingerols and lyoniresinol 9'-sulfate were among important bioactive phenols. These findings prompted to conclude that Polygonum plebeium can be a significant source to offer new ingredient for nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Muhammad Saleem
- Institute of Chemistry, Baghdad-up-Jadeed Campus, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Natasha Shazmeen
- Institute of Chemistry, Baghdad-up-Jadeed Campus, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Mamona Nazir
- Department of Chemistry, Government Sadiq College Women University Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Naheed Riaz
- Institute of Chemistry, Baghdad-up-Jadeed Campus, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Gokhan Zengin
- Selcuk University, Science Faculty, Department of Biology, Konya, Turkey
| | | | - Qurat-Ul-Ain
- Institute of Chemistry, Baghdad-up-Jadeed Campus, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Farrukh Nisar
- Department of Biochemistry, Cholistan University of Veterinary and Animal Sciences Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Mahreen Mukhtar
- Institute of Chemistry, Baghdad-up-Jadeed Campus, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, Dera Ghazi Khan Campus, University of Education Lahore, 32200, Dera Ghazi Khan, Pakistan
| |
Collapse
|
5
|
Seimandi G, Álvarez N, Stegmayer MI, Fernández L, Ruiz V, Favaro MA, Derita M. An Update on Phytochemicals and Pharmacological Activities of the Genus Persicaria and Polygonum. Molecules 2021; 26:5956. [PMID: 34641500 PMCID: PMC8512787 DOI: 10.3390/molecules26195956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022] Open
Abstract
The discovery of new pharmaceutical identities, particularly anti-infective agents, represents an urgent need due to the increase in immunocompromised patients and the ineffectiveness/toxicity of the drugs currently used. The scientific community has recognized in the last decades the importance of the plant kingdom as a huge source of novel molecules which could act against different type of infections or illness. However, the great diversity of plant species makes it difficult to select them with probabilities of success, adding to the fact that existing information is difficult to find, it is atomized or disordered. Persicaria and Polygonum constitute two of the main representatives of the Polygonaceae family, which have been extensively used in traditional medicine worldwide. Important and structurally diverse bioactive compounds have been isolated from these genera of wild plants; among them, sesquiterpenes and flavonoids should be remarked. In this article, we firstly mention all the species reported with pharmacological use and their geographical distribution. Moreover, a number of tables which summarize an update detailing the type of natural product (extract or isolated compound), applied doses, displayed bioassays and the results obtained for the main bioactivities of these genera cited in the literature during the past 40 years. Antimicrobial, antioxidant, analgesic and anti-inflammatory, antinociceptive, anticancer, antiviral, antiparasitic, anti-diabetic, antipyretic, hepatoprotective, diuretic, gastroprotective and neuropharmacological activities were explored and reviewed in this work, concluding that both genera could be the source for upcoming molecules to treat different human diseases.
Collapse
Affiliation(s)
- Gisela Seimandi
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - Norma Álvarez
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - María Inés Stegmayer
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - Laura Fernández
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - Verónica Ruiz
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - María Alejandra Favaro
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - Marcos Derita
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
| |
Collapse
|
6
|
Cappelli G, Mariani F. A Systematic Review on the Antimicrobial Properties of Mediterranean Wild Edible Plants: We Still Know Too Little about Them, but What We Do Know Makes Persistent Investigation Worthwhile. Foods 2021; 10:foods10092217. [PMID: 34574327 PMCID: PMC8471169 DOI: 10.3390/foods10092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022] Open
Abstract
(1) Introduction: Bacterial resistance to antibiotics is estimated to be the cause of a major number of deaths by 2050 if we do not find strategies to slow down the rise of drug resistance. Reviews on Mediterranean wild edible plants (MWEPs) with antimicrobial properties are scarce in the main databases (PubMed, Scopus, and WoS). Hence, we proceeded to conduct a new review of the studies on MWEPs. (2) Methods: We used ‘wild edible plant’ and ‘antimicrobial’ as keywords. Within this group, exclusion criteria were reviews, studies concerning non-Mediterranean plants or non-edible plants, studies on topics other than plants or containing no description of antimicrobial properties, or off-topic studies. (3) Results: Finally, out of the one hundred and ninety-two studies we had started with, we reviewed thirty-eight (19.8%) studies concerning the antimicrobial properties of seventy-four MWEPs species belonging to twenty-five Families. Fifty-seven (77%) species out of seventy-four proved to be antimicrobial, with a stringent threshold selection. (4) Conclusions: Studies are still very heterogeneous. We still know too little about MWEPs’ properties; however, what we already know strongly recommends carrying on investigation.
Collapse
|