1
|
Ren H, Zhang X, Zhang Y, Zhang Z, Cheng M, Zhang L, Zhang X, Li C, Duan J, Zhang C, Xiang M, Liu S, Jiang C, Zeng Q, Wu J, Kang Z, Yang Z, Li C, Huang S, Han D. Identification of Two Novel QTL for Fusarium Head Blight Resistance in German Wheat Cultivar Centrum. PLANT DISEASE 2024; 108:2462-2471. [PMID: 38537145 DOI: 10.1094/pdis-01-24-0135-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Fusarium head blight (FHB) is a devastating disease that occurs in warm and humid environments. The German wheat 'Centrum' has displayed moderate to high levels of FHB resistance in the field for many years. In this study, an F6:8 recombinant inbred line (RIL) population derived from cross 'Centrum' × 'Xinong 979' was evaluated for FHB response following point inoculation in five environments. The population and parents were genotyped using the GenoBaits Wheat 16 K Panel. Stable quantitative trait loci (QTL) associated with FHB resistance in 'Centrum' were mapped on chromosome arms 2DS and 5BS. The most effective QTL, located in 2DS, was identified as a new chromosome region represented by a 1.4 Mb interval containing 17 candidate genes. Another novel QTL was mapped in chromosome arm 5BS of a 5BS to 7BS translocation chromosome. In addition, two environmentally sensitive QTL were mapped on chromosome arms 2BL from 'Centrum' and 5AS from 'Xinong 979'. Polymorphisms of flanking phenotypic variance explained (PVE) markers (allele-specific quantitative PCR [AQP]) AQP-6 for QFhb.nwafu-2DS and 16K-13073 for QFhb.nwafu-5BS were validated in a panel of 217 cultivars and breeding lines. These markers could be useful for marker-assisted selection (MAS) of FHB resistance and provide a starting point for fine mapping and marker-based cloning of the resistance genes.
Collapse
Affiliation(s)
- Hui Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yibo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Ziyang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Muzi Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Xiangxue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Chunchun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jiangli Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Chuanliang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Mingjie Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Chengzhi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shuo Huang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, P.R. China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
2
|
Shvachko N, Solovyeva M, Rozanova I, Kibkalo I, Kolesova M, Brykova A, Andreeva A, Zuev E, Börner A, Khlestkina E. Mining of QTLs for Spring Bread Wheat Spike Productivity by Comparing Spring Wheat Cultivars Released in Different Decades of the Last Century. PLANTS (BASEL, SWITZERLAND) 2024; 13:1081. [PMID: 38674490 PMCID: PMC11055096 DOI: 10.3390/plants13081081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Genome-wide association studies (GWAS) are among the genetic tools for the mining of genomic loci associated with useful agronomic traits. The study enabled us to find new genetic markers associated with grain yield as well as quality. The sample under study consisted of spring wheat cultivars developed in different decades of the last century. A panel of 186 accessions was evaluated at VIR's experiment station in Pushkin across a 3-year period of field trials. In total, 24 SNPs associated with six productivity characteristics were revealed. Along with detecting significant markers for each year of the field study, meta-analyses were conducted. Loci associated with useful yield-related agronomic characteristics were detected on chromosomes 4A, 5A, 6A, 6B, and 7B. In addition to previously described regions, novel loci associated with grain yield and quality were identified during the study. We presume that the utilization of contrast cultivars which originated in different breeding periods allowed us to identify new markers associated with useful agronomic characteristics.
Collapse
Affiliation(s)
- Natalia Shvachko
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Maria Solovyeva
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Irina Rozanova
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Ilya Kibkalo
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Maria Kolesova
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Alla Brykova
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Anna Andreeva
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Evgeny Zuev
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany;
| | - Elena Khlestkina
- Federal Research Center, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (M.S.); (I.R.); (I.K.); (M.K.); (A.B.); (A.A.); (E.Z.); (E.K.)
| |
Collapse
|
3
|
Walker PL, Belmonte MF, McCallum BD, McCartney CA, Randhawa HS, Henriquez MA. Dual RNA-sequencing of Fusarium head blight resistance in winter wheat. FRONTIERS IN PLANT SCIENCE 2024; 14:1299461. [PMID: 38239218 PMCID: PMC10794533 DOI: 10.3389/fpls.2023.1299461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Fusarium head blight (FHB) is a devastating fungal disease responsible for significant yield losses in wheat and other cereal crops across the globe. FHB infection of wheat spikes results in grain contamination with mycotoxins, reducing both grain quality and yield. Breeding strategies have resulted in the production of FHB-resistant cultivars, however, the underlying molecular mechanisms of resistance in the majority of these cultivars are still poorly understood. To improve our understanding of FHB-resistance, we performed a transcriptomic analysis of FHB-resistant AC Emerson, FHB-moderately resistant AC Morley, and FHB-susceptible CDC Falcon in response to Fusarium graminearum. Wheat spikelets located directly below the point of inoculation were collected at 7-days post inoculation (dpi), where dual RNA-sequencing was performed to explore differential expression patterns between wheat cultivars in addition to the challenging pathogen. Differential expression analysis revealed distinct defense responses within FHB-resistant cultivars including the enrichment of physical defense through the lignin biosynthesis pathway, and DON detoxification through the activity of UDP-glycosyltransferases. Nucleotide sequence variants were also identified broadly between these cultivars with several variants being identified within differentially expressed putative defense genes. Further, F. graminearum demonstrated differential expression of mycotoxin biosynthesis pathways during infection, leading to the identification of putative pathogenicity factors.
Collapse
Affiliation(s)
- Philip L. Walker
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Mark F. Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Curt A. McCartney
- Department of Plant Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Harpinder S. Randhawa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Maria A. Henriquez
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
- Department of Plant Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Li L, Xu D, Bian Y, Liu B, Zeng J, Xie L, Liu S, Tian X, Liu J, Xia X, He Z, Zhang Y, Zhang Y, Cao S. Fine mapping and characterization of a major QTL for plant height on chromosome 5A in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:167. [PMID: 37402103 DOI: 10.1007/s00122-023-04416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
KEY MESSAGE We precisely mapped QPH.caas-5AL for plant height in wheat, predicted candidate genes and confirmed genetic effects in a panel of wheat cultivars. Plant height is an important agronomic trait, and appropriately reduced height can improve yield potential and stability in wheat, usually combined with sufficient water and fertilizer. We previously detected a stable major-effect quantitative trait locus QPH.caas-5AL for plant height on chromosome 5A in a recombinant inbred line population of the cross 'Doumai × Shi 4185' using the wheat 90 K SNP assay. Here , QPH.caas-5AL was confirmed using new phenotypic data in additional environment and new-developed markers. We identified nine heterozygous recombinant plants for fine mapping of QPH.caas-5AL and developed 14 breeder-friendly kompetitive allele-specific PCR markers in the region of QPH.caas-5AL based on the genome re-sequencing data of parents. Phenotyping and genotyping analyses of secondary populations derived from the self-pollinated heterozygous recombinant plants delimited QPH.caas-5AL into an approximate 3.0 Mb physical region (521.0-524.0 Mb) according to the Chinese Spring reference genome. This region contains 45 annotated genes, and six of them were predicted as the candidates of QPH.caas-5AL based on genome and transcriptome sequencing analyses. We further validated that QPH.caas-5AL has significant effects on plant height but not yield component traits in a diverse panel of wheat cultivars; its dwarfing allele is frequently used in modern wheat cultivars. These findings lay a solid foundation for the map-based cloning of QPH.caas-5AL and also provide a breeding-applicable tool for its marker-assisted selection. Keymessage We precisely mapped QPH.caas-5AL for plant height in wheat, predicted candidate genes and confirmed genetic effects in a panel of wheat cultivars.
Collapse
Affiliation(s)
- Lingli Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dengan Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yingjie Bian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bingyan Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jianqi Zeng
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lina Xie
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Siyang Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiuling Tian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yan Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
5
|
Serajazari M, Torkamaneh D, Gordon E, Lee E, Booker H, Pauls KP, Navabi A. Identification of fusarium head blight resistance markers in a genome-wide association study of CIMMYT spring synthetic hexaploid derived wheat lines. BMC PLANT BIOLOGY 2023; 23:290. [PMID: 37259061 DOI: 10.1186/s12870-023-04306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most destructive wheat diseases worldwide. FHB infection can dramatically reduce grain yield and quality due to mycotoxins contamination. Wheat resistance to FHB is quantitatively inherited and many low-effect quantitative trait loci (QTL) have been mapped in the wheat genome. Synthetic hexaploid wheat (SHW) represents a novel source of FHB resistance derived from Aegilops tauschii and Triticum turgidum that can be transferred into common wheat (T. aestivum). In this study, a panel of 194 spring Synthetic Hexaploid Derived Wheat (SHDW) lines from the International Maize and Wheat Improvement Center (CIMMYT) was evaluated for FHB response under field conditions over three years (2017-2019). A significant phenotypic variation was found for disease incidence, severity, index, number of Fusarium Damaged Kernels (FDKs), and deoxynivalenol (DON) content. Further, 11 accessions displayed < 10 ppm DON in 2017 and 2019. Genotyping of the SHDW panel using a 90 K Single Nucleotide Polymorphism (SNP) chip array revealed 31 K polymorphic SNPs with a minor allele frequency (MAF) > 5%, which were used for a Genome-Wide Association Study (GWAS) of FHB resistance. A total of 52 significant marker-trait associations for FHB resistance were identified. These included 5 for DON content, 13 for the percentage of FDKs, 11 for the FHB index, 3 for disease incidence, and 20 for disease severity. A survey of genes associated with the markers identified 395 candidate genes that may be involved in FHB resistance. Collectively, our results strongly support the view that utilization of synthetic hexaploid wheat in wheat breeding would enhance diversity and introduce new sources of resistance against FHB into the common wheat gene pool. Further, validated SNP markers associated with FHB resistance may facilitate the screening of wheat populations for FHB resistance.
Collapse
Affiliation(s)
- Mitra Serajazari
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, Québec, G1V 0A6, Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Emily Gordon
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elizabeth Lee
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Helen Booker
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Karl Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alireza Navabi
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
6
|
Penta-Primer Amplification Refractory Mutation System (PARMS) with Direct PCR-Based SNP Marker-Assisted Selection (D-MAS). Methods Mol Biol 2023; 2638:327-336. [PMID: 36781653 DOI: 10.1007/978-1-0716-3024-2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The penta-primer amplification refractory mutation system (PARMS) is a high-throughput, low-cost, and automated genotyping assay system that utilizes competitive allele-specific polymerase chain reaction (AS-PCR) combined with a homogeneous fluorescence-based reporting system to detect genetic variation occurring at single-nucleotide polymorphism (SNP). It is flexible in terms of the number of SNPs and samples to be analyzed, and the whole process only needs standard liquid handling, thermal cycling instruments, and plate reading instruments, which are present in many labs. Its compatibility with DNA samples prepared from a variety of sources and extraction technologies, such as alkaline lysis, makes it suitable for a direct PCR-based SNP marker-assisted selection system (D-MAS), a simple, cost- and labor-saving, and robust SNP genotyping system. It combines rapid and high-throughput DNA extraction through modified alkaline lysis with PARMS to dramatically reduce the time of manual operation and result analysis in the molecular breeding of major crops.
Collapse
|
7
|
Ghimire B, Mergoum M, Martinez-Espinoza AD, Sapkota S, Pradhan S, Babar MA, Bai G, Dong Y, Buck JW. Genetics of Fusarium head blight resistance in soft red winter wheat using a genome-wide association study. THE PLANT GENOME 2022; 15:e20222. [PMID: 35633121 DOI: 10.1002/tpg2.20222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
Host resistance is an effective and sustainable approach to manage the negative impact of Fusarium head blight (FHB) on wheat (Triticum aestivum L.) grain yield and quality. The objective of this study was to characterize the phenotypic responses and identify quantitative trait loci (QTL) conditioning different FHB resistance types using a panel of 236 elite soft red winter wheat (SRWW) lines in a genome-wide association study (GWAS). The panel was phenotyped for five FHB and three morphological traits under two field and two greenhouse environments in 2018-2019 and 2019-2020. We identified 160 significant marker-trait associations (MTAs) for FHB traits and 11 MTAs for plant height. Eleven QTL showed major effects and explained >10% phenotypic variation (PV) for FHB resistance. Among these major loci, three QTL were stable and five QTL exhibited a pleiotropic effect. The QTL QFhb-3BL, QFhb-5AS, QFhb-5BL, QFhb-7AS.1, QFhb-7AS.2, and QFhb-7BS are presumed to be novel. Pyramiding multiple resistance alleles from all the major-effect QTL resulted in a significant reduction in FHB incidence, severity, index, deoxynivalenol (DON), and Fusarium-damaged kernel (FDK) by 17, 43, 45, 55, and 25%, respectively. Further validation of these QTL could potentially facilitate successful introgression of these resistance loci in new cultivars for improved FHB resistance in breeding programs.
Collapse
Affiliation(s)
- Bikash Ghimire
- Dep. of Plant Pathology, Univ. of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Mohamed Mergoum
- Institute of Plant Breeding, Genetics, and Genomics, Univ. of Georgia, Griffin Campus, Griffin, GA, 30223, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | | | - Suraj Sapkota
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA, 31794, USA
| | - Sumit Pradhan
- Dep. of Agronomy, Univ. of Florida, Gainesville, FL, 32611, USA
| | - Md Ali Babar
- Dep. of Agronomy, Univ. of Florida, Gainesville, FL, 32611, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Yanhong Dong
- Dep. of Plant Pathology, Univ. of Minnesota, St. Paul, MN, 55108, USA
| | - James W Buck
- Dep. of Plant Pathology, Univ. of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| |
Collapse
|
8
|
Zhang J, Gill HS, Halder J, Brar NK, Ali S, Bernardo A, Amand PS, Bai G, Turnipseed B, Sehgal SK. Multi-Locus Genome-Wide Association Studies to Characterize Fusarium Head Blight (FHB) Resistance in Hard Winter Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:946700. [PMID: 35958201 PMCID: PMC9359313 DOI: 10.3389/fpls.2022.946700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 05/25/2023]
Abstract
Fusarium head blight (FHB), caused by the fungus Fusarium graminearum Schwabe is an important disease of wheat that causes severe yield losses along with serious quality concerns. Incorporating the host resistance from either wild relatives, landraces, or exotic materials remains challenging and has shown limited success. Therefore, a better understanding of the genetic basis of native FHB resistance in hard winter wheat (HWW) and combining it with major quantitative trait loci (QTLs) can facilitate the development of FHB-resistant cultivars. In this study, we evaluated a set of 257 breeding lines from the South Dakota State University (SDSU) breeding program to uncover the genetic basis of native FHB resistance in the US hard winter wheat. We conducted a multi-locus genome-wide association study (ML-GWAS) with 9,321 high-quality single-nucleotide polymorphisms (SNPs). A total of six distinct marker-trait associations (MTAs) were identified for the FHB disease index (DIS) on five different chromosomes including 2A, 2B, 3B, 4B, and 7A. Further, eight MTAs were identified for Fusarium-damaged kernels (FDK) on six chromosomes including 3B, 5A, 6B, 6D, 7A, and 7B. Out of the 14 significant MTAs, 10 were found in the proximity of previously reported regions for FHB resistance in different wheat classes and were validated in HWW, while four MTAs represent likely novel loci for FHB resistance. Accumulation of favorable alleles of reported MTAs resulted in significantly lower mean DIS and FDK score, demonstrating the additive effect of FHB resistance alleles. Candidate gene analysis for two important MTAs identified several genes with putative proteins of interest; however, further investigation of these regions is needed to identify genes conferring FHB resistance. The current study sheds light on the genetic basis of native FHB resistance in the US HWW germplasm and the resistant lines and MTAs identified in this study will be useful resources for FHB resistance breeding via marker-assisted selection.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Harsimardeep S. Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Navreet K. Brar
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Shaukat Ali
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Paul St. Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Brent Turnipseed
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|