1
|
An Q, Wen C, Yan C. Meta-analysis reveals the combined effects of microplastics and heavy metal on plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135028. [PMID: 38925057 DOI: 10.1016/j.jhazmat.2024.135028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The combined pollution of microplastics and heavy metals is becoming increasingly serious, and its effects on toxicology and heavy metal accumulation of plants are closely related to crop yield and population health. Here, we collected 57 studies to investigate the effect of microplastics on heavy metal accumulation in plants and their combined toxicity. An assessment was conducted to discover the primary pollutant responsible for the toxicity of combined pollution on plants. The study examined the influence of microplastic characteristics, heavy metal characteristics, and experimental methods on this pollutant. The results showed that combined toxicity of plants was more similar to heavy metals, whereas microplastics interacted with heavy metals mainly by inducing oxidative stress damage. Culture environment, heavy metal type, experimental duration, microplastic concentration and microplastic size were the main factors affecting heavy metal accumulation in plants. There was a negative correlation between experimental duration, microplastic concentration and microplastic size with heavy metal accumulation in plants. The interactions among influencing factors were found, and microplastic biodegradation was the core factor of the strong interaction. These results provided comprehensive insights and guiding strategies for environmental and public health risks caused by the combined pollution of microplastics and heavy metals.
Collapse
Affiliation(s)
- Qiuying An
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Wen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
2
|
Tang H, Xiang G, Xiao W, Yang Z, Zhao B. Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects. FRONTIERS IN PLANT SCIENCE 2024; 15:1420408. [PMID: 39100088 PMCID: PMC11294182 DOI: 10.3389/fpls.2024.1420408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
Heavy metal pollution has become a serious concern across the globe due to their persistent nature, higher toxicity, and recalcitrance. These toxic metals threaten the stability of the environment and the health of all living beings. Heavy metals also enter the human food chain by eating contaminated foods and cause toxic effects on human health. Thus, remediation of HMs polluted soils is mandatory and it needs to be addressed at higher priority. The use of microbes is considered as a promising approach to combat the adverse impacts of HMs. Microbes aided in the restoration of deteriorated environments to their natural condition, with long-term environmental effects. Microbial remediation prevents the leaching and mobilization of HMs and they also make the extraction of HMs simple. Therefore, in this context recent technological advancement allowed to use of bioremediation as an imperative approach to remediate polluted soils. Microbes use different mechanisms including bio-sorption, bioaccumulation, bioleaching, bio-transformation, bio-volatilization and bio-mineralization to mitigate toxic the effects of HMs. Thus, keeping in the view toxic HMs here in this review explores the role of bacteria, fungi and algae in bioremediation of polluted soils. This review also discusses the various approaches that can be used to improve the efficiency of microbes to remediate HMs polluted soils. It also highlights different research gaps that must be solved in future study programs to improve bioremediation efficency.
Collapse
Affiliation(s)
- Haiying Tang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Guohong Xiang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Wen Xiao
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Zeliang Yang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Baoyi Zhao
- Shuangfeng Agriculture and Rural Bureau, Loudi, Hunan, China
| |
Collapse
|
3
|
Rizvi ZF, Jamal M, Parveen H, Sarfraz W, Nasreen S, Khalid N, Muzammil K. Phytoremediation potential of Pistia stratiotes, Eichhornia crassipes, and Typha latifolia for chromium with stimulation of secondary metabolites. Heliyon 2024; 10:e29078. [PMID: 38601583 PMCID: PMC11004193 DOI: 10.1016/j.heliyon.2024.e29078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Anthropogenic activities have significantly polluted the natural environments all over the world. Leather processing industries release toxic heavy metals through their effluents posing a great threat to the environment. Chromium (Cr) is the major component of tannery effluents. We designed this experiment with the aim to remediate Cr from effluents of tanneries through phytoremediation. We selected three native macrophytes i.e. Pistia stratiotes, Eichhornia crassipes, and Typha latifolia to grow in a set of Constructed Wetland systems (CWs) with a continuous supply of tannery wastewater. T. latifolia was the most efficient phytoremediator of these macrophytes as it reduced the Cr content by 96.7%. The effluent after passing through the CWs containing T. latifolia showed only 0.426 mg/L Cr content. All macrophytes showed an enhanced phytochemical activity such as total antioxidant activity (TAA), total reduction potential (TRP), total phenolic content (TPC), total flavonoid content (TFC), and DPPH radical scavenging activity (DPPH) substantially. The activation of antioxidant mechanism may have contributed towards robust defense system of these plants for survival in excessive Cr contaminated media. Also, these macrophytes showed a positive relationship in reducing Cr content from tannery wastewater. Results of this study could help in effective sustainable management of aquatic environments contaminated with metal pollutants from human activities.
Collapse
Affiliation(s)
- Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Muqaddas Jamal
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Haseena Parveen
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Wajiha Sarfraz
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Syeda Nasreen
- Ibadat International University, Islamabad, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| |
Collapse
|
4
|
Fatima A, Farid M, Asam ZUZ, Zubair M, Farid S, Abbas M, Rizwan M, Ali S. Efficacy of marigold (Tagetes erecta L.) for the treatment of tannery and surgical industry wastewater under citric acid amendment: a lab scale study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43403-43418. [PMID: 36658313 DOI: 10.1007/s11356-023-25299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Contamination of land and aquatic ecosystems with heavy metals (HMs) is a global issue having the persistent potential to damage the quality of food and water. In the present study, Tagetes erecta L. plants were used to assess their potential to uptake HMs from wastewater. Plants were grown in soil for 20 days and then transplanted in hydroponic system containing Hoagland nutrient solution. After more than 15 days of growth, plants were then subjected to wastewater from tannery and surgical industries in different concentrations ranging from 25 to 100% in combination of citric acid (5 and 10 mM). After 6 weeks of treatment, plants were collected and segmented into roots, stem, and leaves for characterizing the morphological properties including plant height, roots length, fresh and dry mass of roots, stem, and leaves. For evaluation of the effect of wastewater on the plants, photosynthetic pigments; soluble proteins; reactive oxygen species (ROS); antioxidant enzymes SOD, POD, CAT, and APX; and metal accumulation were analyzed. Application of industrial wastewater revealed a significant effect on plant morphology under wastewater treatments. Overall growth and physiological attributes of plant decreased, and metal accumulation enhanced with increasing concentration of wastewater. Similarly, the production of ROS and antioxidant enzymes were also increased. Chlorophyll, protein content, and enzyme production enhanced with CA (5 and 10 mM) mediation; however, ROS production and EL were reduced. Metals analysis showed that the maximum accumulation of Pb was in roots, while Cr and Ni in the stem which further increased under CA mediation. Overall, the metal accumulation ability was in the order of Pb > Ni > Cr under CA.
Collapse
Affiliation(s)
- Arooj Fatima
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan.
| | - Zaki Ul Zaman Asam
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Sheharyaar Farid
- Earth and Life Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
- Department of Biology, Ecology and Evolution, University of Liege, Liege, Belgium
| | - Mohsin Abbas
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
5
|
Shi W, Li J, Kan D, Yu W, Chen X, Zhang Y, Ma C, Deng S, Zhou J, Fayyaz P, Luo ZB. Sulfur metabolism, organic acid accumulation and phytohormone regulation are crucial physiological processes modulating the different tolerance to Pb stress of two contrasting poplars. TREE PHYSIOLOGY 2022; 42:1799-1811. [PMID: 35313352 DOI: 10.1093/treephys/tpac033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
To investigate the pivotal physiological processes modulating lead (Pb) tolerance capacities of poplars, the saplings of two contrasting poplar species, Populus × canescens with high Pb sensitivity and Populus nigra with relatively low Pb sensitivity, were treated with either 0 or 8 mM Pb for 6 weeks. Lead was absorbed by the roots and accumulated massively in the roots and leaves, leading to overproduction of reactive oxygen species, reduced photosynthesis and biomass in both poplar species. Particularly, the tolerance index of P. × canescens was significantly lower than that of P. nigra. Moreover, the physiological responses including the concentrations of nutrient elements, thiols, organic acids, phytohormones and nonenzymatic antioxidants, and the activities of antioxidative enzymes in the roots and leaves were different between the two poplar species. Notably, the differences in concentrations of nutrient elements, organic acids and phytohormones were remarkable between the two poplar species. A further evaluation of the Pb tolerance-related physiological processes showed that the change of 'sulfur (S) metabolism' in the roots was greater, and that of 'organic acid accumulation' in the roots and 'phytohormone regulation' in the leaves were markedly smaller in P. × canescens than those in P. nigra. These results suggest that there are differences in Pb tolerance capacities between P. × canescens and P. nigra, which is probably associated with their contrasting physiological responses to Pb stress, and that S metabolism, organic acid accumulation and phytohormone regulation are probably the key physiological processes modulating the different Pb tolerance capacities between the two poplar species.
Collapse
Affiliation(s)
- Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
| | - Jing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan road, Xuanwu district, Nanjing 210037, China
| | - Donxu Kan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing road, Xiangfang district, Harbin 150040, China
| | - Wenjian Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
| | - Xin Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
| | - Chaofeng Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Yasouj University, Daneshjoo St, Yasuj 75919-63179, Iran
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
| |
Collapse
|
6
|
Riyazuddin R, Nisha N, Ejaz B, Khan MIR, Kumar M, Ramteke PW, Gupta R. A Comprehensive Review on the Heavy Metal Toxicity and Sequestration in Plants. Biomolecules 2021; 12:43. [PMID: 35053191 PMCID: PMC8774178 DOI: 10.3390/biom12010043] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022] Open
Abstract
Heavy metal (HM) toxicity has become a global concern in recent years and is imposing a severe threat to the environment and human health. In the case of plants, a higher concentration of HMs, above a threshold, adversely affects cellular metabolism because of the generation of reactive oxygen species (ROS) which target the key biological molecules. Moreover, some of the HMs such as mercury and arsenic, among others, can directly alter the protein/enzyme activities by targeting their -SH group to further impede the cellular metabolism. Particularly, inhibition of photosynthesis has been reported under HM toxicity because HMs trigger the degradation of chlorophyll molecules by enhancing the chlorophyllase activity and by replacing the central Mg ion in the porphyrin ring which affects overall plant growth and yield. Consequently, plants utilize various strategies to mitigate the negative impact of HM toxicity by limiting the uptake of these HMs and their sequestration into the vacuoles with the help of various molecules including proteins such as phytochelatins, metallothionein, compatible solutes, and secondary metabolites. In this comprehensive review, we provided insights towards a wider aspect of HM toxicity, ranging from their negative impact on plant growth to the mechanisms employed by the plants to alleviate the HM toxicity and presented the molecular mechanism of HMs toxicity and sequestration in plants.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726 Szeged, Hungary;
- Faculty of Science and Informatics, Doctoral School in Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Nisha Nisha
- Department of Integrated Plant Protection, Faculty of Horticultural Science, Plant Protection Institute, Szent István University, 2100 Godollo, Hungary;
| | - Bushra Ejaz
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (M.I.R.K.)
| | - M. Iqbal R. Khan
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (M.I.R.K.)
| | - Manu Kumar
- Department of Life Science, Dongguk University, Seoul 10326, Korea;
| | - Pramod W. Ramteke
- Department of Life Sciences, Mandsaur University, Mandsaur 458001, India;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea
| |
Collapse
|