1
|
Serrano A, García-Martín J, Moret M, Martínez-Rivas JM, Luque F. Transcriptomic Analysis During Olive Fruit Development and Expression Profiling of Fatty Acid Desaturase Genes. Int J Mol Sci 2024; 25:11150. [PMID: 39456931 PMCID: PMC11508905 DOI: 10.3390/ijms252011150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The olive fruit is a drupe whose development and ripening takes several months from flowering to full maturation. During this period, several biochemical and physiological changes occur that affect the skin color, texture, composition, and size of the mesocarp. The final result is a fruit rich in fatty acids, phenolic compounds, tocopherols, pigments, sterols, terpenoids, and other compounds of nutritional interest. In this work, a transcriptomic analysis was performed using flowers (T0) and mesocarp tissue at seven different stages during olive fruit development and ripening (T1-T7) of the 'Picual' cultivar. A total of 1755 genes overexpressed at any time with respect to the flowering stage were further analyzed. These genes were grouped into eight clusters based on their expression profile. The gene enrichment analysis revealed the most relevant biological process of every cluster. Highlighting the important role of hormones at very early stages of fruit development (T1, Cluster 1), whereas genes involved in fatty acid biosynthesis were relevant throughout the fruit developmental process. Hence, genes coding for different fatty acid desaturase (SAD, FAD2, FAD3, FAD4, FAD5, FAD6, and FAD7) enzymes received special attention. In particular, 26 genes coding for different fatty acid desaturase enzymes were identified in the 'Picual' genome, contributing to the improvement of the genome annotation. The expression pattern of these genes during fruit development corroborated their role in determining fatty acid composition.
Collapse
Affiliation(s)
- Alicia Serrano
- The University Institute of Research in Olive Grove and Olive Oils (INUO), University of Jaén, 23071 Jaén, Spain; (J.G.-M.); (M.M.)
| | - Judith García-Martín
- The University Institute of Research in Olive Grove and Olive Oils (INUO), University of Jaén, 23071 Jaén, Spain; (J.G.-M.); (M.M.)
| | - Martín Moret
- The University Institute of Research in Olive Grove and Olive Oils (INUO), University of Jaén, 23071 Jaén, Spain; (J.G.-M.); (M.M.)
| | | | - Francisco Luque
- The University Institute of Research in Olive Grove and Olive Oils (INUO), University of Jaén, 23071 Jaén, Spain; (J.G.-M.); (M.M.)
| |
Collapse
|
2
|
Dias MC, Silva S, Galhano C, Lorenzo P. Olive Tree Belowground Microbiota: Plant Growth-Promoting Bacteria and Fungi. PLANTS (BASEL, SWITZERLAND) 2024; 13:1848. [PMID: 38999688 PMCID: PMC11244348 DOI: 10.3390/plants13131848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The olive tree is one of the most significant crops in the Mediterranean region. Its remarkable adaptability to various environments has facilitated olive cultivation across diverse regions and agricultural scenarios. The rising global demand for olive products, coupled with climate challenges, is driving changes in cultivation methods. These changes are altering the traditional landscape and may potentially reshape the structure and composition of orchard microbial communities, which can impact productivity and stress tolerance. Bacterial and fungal communities naturally associated with plants have long been recognized as crucial for plant growth and health, serving as a vital component of sustainable agriculture. In this review, we aim to highlight the significance of olive cultivation and the impact of abiotic stresses. We update the current knowledge on the profiles of rhizosphere and root fungal and bacterial communities in olive orchards and examine how (a)biotic factors influence these communities. Additionally, we explore the potential of plant growth-promoting bacteria and fungi in enhancing olive physiological performance and stress tolerance. We identify knowledge gaps and emphasize the need for implementing new strategies. A comprehensive understanding of olive-associated microbiota will aid in developing sustainable agronomic practices to address climatic challenges and meet the growing demand for olive products.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Associate Laboratory TERRA, Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Cristina Galhano
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Paula Lorenzo
- Associate Laboratory TERRA, Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
3
|
Asadi A, Shariati V, Mousavi S, Mariotti R, Hosseini Mazinani M. Meta-analysis of transcriptome reveals key genes relating to oil quality in olive. BMC Genomics 2023; 24:566. [PMID: 37740234 PMCID: PMC10517554 DOI: 10.1186/s12864-023-09673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Olive oil contains monounsaturated oleic acid up to 83% and phenolic compounds, making it an excellent source of fat. Due to its economic importance, the quantity and quality of olive oil should be improved in parallel with international standards. In this study, we analyzed the raw RNA-seq data with a meta-analysis approach to identify important genes and their metabolic pathways involved in olive oil quality. RESULTS A deep search of RNA-seq published data shed light on thirty-nine experiments associated with the olive transcriptome, four of these proved to be ideal for meta-analysis. Meta-analysis confirmed the genes identified in previous studies and released new genes, which were not identified before. According to the IDR index, the meta-analysis had good power to identify new differentially expressed genes. The key genes were investigated in the metabolic pathways and were grouped into four classes based on the biosynthetic cycle of fatty acids and factors that affect oil quality. Galactose metabolism, glycolysis pathway, pyruvate metabolism, fatty acid biosynthesis, glycerolipid metabolism, and terpenoid backbone biosynthesis were the main pathways in olive oil quality. In galactose metabolism, raffinose is a suitable source of carbon along with other available sources for carbon in fruit development. The results showed that the biosynthesis of acetyl-CoA in glycolysis and pyruvate metabolism is a stable pathway to begin the biosynthesis of fatty acids. Key genes in oleic acid production as an indicator of oil quality and critical genes that played an important role in production of triacylglycerols were identified in different developmental stages. In the minor compound, the terpenoid backbone biosynthesis was investigated and important enzymes were identified as an interconnected network that produces important precursors for the synthesis of a monoterpene, diterpene, triterpene, tetraterpene, and sesquiterpene biosynthesis. CONCLUSIONS The results of the current investigation can produce functional data related to the quality of olive oil and would be a useful step in reducing the time of cultivar screening by developing gene specific markers in olive breeding programs, releasing also new genes that could be applied in the genome editing approach.
Collapse
Affiliation(s)
- AliAkbar Asadi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Km 15, Tehran - Karaj Highway, PO Box 14965161, Tehran, Iran
| | - Vahid Shariati
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Km 15, Tehran - Karaj Highway, PO Box 14965161, Tehran, Iran.
| | - Soraya Mousavi
- Institute of Biosciences and Bioresources, National Research Council, 06128, Perugia, Italy
| | - Roberto Mariotti
- Institute of Biosciences and Bioresources, National Research Council, 06128, Perugia, Italy
| | - Mehdi Hosseini Mazinani
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Km 15, Tehran - Karaj Highway, PO Box 14965161, Tehran, Iran.
| |
Collapse
|
4
|
Erel R, Yermiyahu U, Yasuor H, Ben-Gal A, Zipori I, Dag A. Elevated fruit nitrogen impairs oil biosynthesis in olive ( Olea europaea L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1180391. [PMID: 37457358 PMCID: PMC10347680 DOI: 10.3389/fpls.2023.1180391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
Oil in fruits and seeds is an important source of calories and essential fatty acids for humans. This specifically holds true for olive oil, which is appreciated for its superior nutritional value. Most olive orchards are cultivated to produce oil, which are the outcome of fruit yield and oil content. Little information is available on the effect of nitrogen (N) on olive fruit oil content. The response of olive trees to different rates of N was therefore studied in soilless culture (3 years) and commercial field (6 years) experiments. In both experiments, fruit N level and oil biosynthesis were negatively associated. Fruit N increased in response to N fertilization level and was inversely related to fruit load. The negative correlation between fruit N and oil content was more pronounced under high fruit load, indicating sink limitation for carbon. These results agree with those reported for oilseed crops for which a trade-off between oil and protein was proposed as the governing mechanism for the negative response to elevated N levels. Our results suggest that the protein/oil trade-off paradigm cannot explain the noticeable decrease in oil biosynthesis in olives, indicating that additional mechanisms are involved in N-induced inhibition of oil production. This inhibition was not related to the soluble carbohydrate levels in the fruit, which were comparable regardless of N level. These results emphasize the importance of balanced N nutrition in oil-olive cultivation to optimize production with oil content.
Collapse
|
5
|
Miserere A, Searles PS, Rousseaux MC. Influence of Experimental Warming on the Rate and Duration of Fruit Growth and Oil Accumulation in Young Olive Trees (cvs. Arbequina, Coratina). PLANTS (BASEL, SWITZERLAND) 2023; 12:1942. [PMID: 37653859 PMCID: PMC10223588 DOI: 10.3390/plants12101942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 07/30/2023]
Abstract
Olive tree cultivation in new warmer areas and climate change have increased the global interest in understanding how air temperature affects both fruit growth and oil accumulation. The aims of this study were to evaluate the rate and duration of fruit growth and oil accumulation in response to experimental warming (+3) in a semiarid region of Argentina; and assess how warming affected fatty acid composition. Young, potted olive trees (cvs. Arbequina, Coratina) were warmed (T+) or maintained near ambient temperature (T0) inside open top chambers in the field during oil accumulation in 2014-2015 or 2015-2016 using different trees in each season. Warming reduced the rate of both fruit growth and oil accumulation in T+ compared to T0 in both cultivars. These rate reductions under T+ led to large decreases in final fruit dry weight and oil concentration. In contrast, the durations (i.e., days) of fruit growth and oil accumulation were most often not affected. Cultivar x temperature interactions were observed in 2014-2015 with warming decreasing oleic acid and increasing linoleic acid in cv. Arbequina, while cv. Coratina showed no response to warming. However, no interactions were found in 2015-2016. Studying how fruit growth and oil accumulation respond to adaptation strategies against increasing air temperatures should be a priority in both young and mature olive trees of numerous cultivars given crop expansion to new regions and future climate scenarios.
Collapse
Affiliation(s)
- Andrea Miserere
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR- SEGEMAR-UNCa-CONICET), Entre Ríos y Mendoza s/n, Anillaco 5301, La Rioja, Argentina
- Instituto de Investigación y Desarrollo Agropecuario (IIDA), Departamento de Ciencias y Tecnologías Aplicadas (DACTAPAyU), Universidad Nacional de La Rioja (UNLaR), Av. Luis M. de la Fuente s/n, Ciudad Universitaria de la Ciencia y de la Técnica, La Rioja 5300, La Rioja, Argentina
| | - Peter S. Searles
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR- SEGEMAR-UNCa-CONICET), Entre Ríos y Mendoza s/n, Anillaco 5301, La Rioja, Argentina
| | - M. Cecilia Rousseaux
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR- SEGEMAR-UNCa-CONICET), Entre Ríos y Mendoza s/n, Anillaco 5301, La Rioja, Argentina
- Departamento de Ciencias Exactas, Físicas y Naturales (DACEFyN), Universidad Nacional de La Rioja (UNLaR), Av. Luis M. de la Fuente s/n, Ciudad Universitaria de la Ciencia y de la Técnica, La Rioja 5300, La Rioja, Argentina
| |
Collapse
|
6
|
Contreras C, Pierantozzi P, Maestri D, Tivani M, Searles P, Brizuela M, Fernández F, Toro A, Puertas C, Trentacoste ER, Kiessling J, Mariotti R, Baldoni L, Mousavi S, Fernandez P, Moschen S, Torres M. How Temperatures May Affect the Synthesis of Fatty Acids during Olive Fruit Ripening: Genes at Work in the Field. PLANTS (BASEL, SWITZERLAND) 2022; 12:54. [PMID: 36616181 PMCID: PMC9824132 DOI: 10.3390/plants12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
A major concern for olive cultivation in many extra-Mediterranean regions is the adaptation of recently introduced cultivars to environmental conditions different from those prevailing in the original area, such as the Mediterranean basin. Some of these cultivars can easily adapt their physiological and biochemical parameters in new agro-environments, whereas others show unbalanced values of oleic acid content. The objective of this study was to evaluate the effects of the thermal regime during oil synthesis on the expression of fatty acid desaturase genes and on the unsaturated fatty acid contents at the field level. Two cultivars (Arbequina and Coratina) were included in the analysis over a wide latitudinal gradient in Argentina. The results suggest that the thermal regime exerts a regulatory effect at the transcriptional level on both OeSAD2 and OeFAD2-2 genes and that this regulation is cultivar-dependent. It was also observed that the accumulated thermal time affects gene expression and the contents of oleic and linoleic acids in cv. Arbequina more than in Coratina. The fatty acid composition of cv. Arbequina is more influenced by the temperature regime than Coratina, suggesting its greater plasticity. Overall, findings from this study may drive future strategies for olive spreading towards areas with different or extreme thermal regimes serve as guidance for the evaluation olive varietal patrimony.
Collapse
Affiliation(s)
- Cibeles Contreras
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan 5427, Argentina
| | - Pierluigi Pierantozzi
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan 5427, Argentina
| | - Damián Maestri
- Instituto Multidisciplinario de Biología Vegetal, X5000 IMBIV—CONICET—Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Martín Tivani
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan 5427, Argentina
| | - Peter Searles
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja, 5301 CRILAR La Rioja—UNLaR-SEGEMAR-UNCa, CONICET, Anillaco 5301, Argentina
| | - Magdalena Brizuela
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja, 5301 CRILAR La Rioja—UNLaR-SEGEMAR-UNCa, CONICET, Anillaco 5301, Argentina
| | - Fabricio Fernández
- Estación Experimental Agropecuaria Catamarca, INTA, Sumalao 4705, Argentina
| | - Alejandro Toro
- Estación Experimental Agropecuaria Cerro Azul, INTA, Cerro Azul 3313, Argentina
| | - Carlos Puertas
- Estación Experimental Agropecuaria Junín, INTA, Junín 5573, Argentina
| | | | - Juan Kiessling
- Agencia de Extensión Rural Centenario, INTA, Plottier 8316, Argentina
| | - Roberto Mariotti
- CNR—Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Luciana Baldoni
- CNR—Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Soraya Mousavi
- CNR—Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Paula Fernandez
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo—INTA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, INTA, Hurlingham 1686, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín 1650, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad Autónoma de Buenos Aires, Viamonte 2671, Argentina
| | - Sebastián Moschen
- Estación Experimental Agropecuaria Famaillá, INTA, CONICET, Famaillá 4132, Argentina
| | - Mariela Torres
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan 5427, Argentina
| |
Collapse
|
7
|
Genome-wide exploration of oil biosynthesis genes in cultivated olive tree varieties (Olea europaea): insights into regulation of oil biosynthesis. Funct Integr Genomics 2022; 22:171-178. [PMID: 34997394 DOI: 10.1007/s10142-021-00824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
Genome-wide oil biosynthesis was explored by de novo sequencing two cultivated olive tree (Olea europaea) varieties (cv. Ayvalik and Picual). This is the first report of the former variety sequencing. As outgroups, raw reads of cv. Leccino and scaffold-level assembly of cv. Farga were also retrieved. Each of these four cultivars was chromosome-scale assembled into 23 pseudochromosomes, with 1.31 Gbp (Farga), 0.93 Gbp (Ayvalik), 0.7 Gbp (Picual), and 0.54 Gbp (Leccino) in size. Ab initio gene finding was performed on these assemblies, using wild olive tree (oleaster)-trained parameters. High numbers of gene models were predicted and anchored to the pseudochromosomes: 69,028 (Ayvalik), 55,073 (Picual), 63,785 (Farga), and 40,449 (Leccino). Using previously reported oil biosynthesis genes from wild olive tree genome project, the following homologous sequences were identified: 1,355 (Ayvalik), 1,269 (Farga), 812 (Leccino), and 774 (Picual). Of these, 358 sequences were commonly shared by all cultivars. Besides, some sequences were cultivar unique: Ayvalik (126), Farga (118), Leccino (46), and Picual (52). These putative sequences were assigned to various GO terms, ranging from lipid metabolism to stress tolerance, from signal transactions to development, and to many others, implicating that oil biosynthesis is synergistically regulated with involvement of various other pathways.
Collapse
|
8
|
Zhang L, Wu P, Li W, Feng T, Shockey J, Chen L, Zhang L, Lü S. Triacylglycerol biosynthesis in shaded seeds of tung tree (Vernicia fordii) is regulated in part by Homeodomain Leucine Zipper 21. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1735-1753. [PMID: 34643970 DOI: 10.1111/tpj.15540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Light quantity and quality affect many aspects of plant growth and development. However, few reports have addressed the molecular connections between seed oil accumulation and light conditions, especially dense shade. Shade-avoiding plants can redirect plant resources into extension growth at the expense of leaf and root expansion in an attempt to reach areas containing richer light. Here, we report that tung tree seed oil accumulation is suppressed by dense shade during the rapid oil accumulation phase. Transcriptome analysis confirmed that oil accumulation suppression due to dense shade was attributed to reduced expression of fatty acid and triacylglycerol biosynthesis-related genes. Through weighted gene co-expression network analysis, we identified 32 core transcription factors (TFs) specifically upregulated in densely shaded seeds during the rapid oil accumulation period. Among these, VfHB21, a class I homeodomain leucine zipper TF, was shown to suppress expression of FAD2 and FADX, two key genes related to α-eleostearic acid, by directly binding to HD-ZIP I/II motifs in their respective promoter regions. VfHB21 also binds to similar motifs in the promoters of VfWRI1 and VfDGAT2, two additional key seed lipid regulatory/biosynthetic genes. Functional conservation of HB21 during plant evolution was demonstrated by the fact that AtWRI1, AtSAD1, and AtFAD2 were downregulated in VfHB21-overexpressor lines of transgenic Arabidopsis, with concomitant seed oil reduction, and the fact that AtHB21 expression also was induced by shade. This study reveals some of the regulatory mechanisms that specifically control tung tree seed oil biosynthesis and more broadly regulate plant storage carbon partitioning in response to dense shade conditions.
Collapse
Affiliation(s)
- Lingling Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Pan Wu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wenying Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Tao Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|