1
|
Ali L, Ahmad N, Uddin MN, Abdel-Maksoud MA, Fazal H, Fatima S, El-Tayeb MA, Kiani BH, Khan W, Rahat MA, Ali M, Khan Y, Rauf K, Khan S, Ullah S, Ahmad T, Salam A, Ahmad S. Immobilization of Silver Nanoparticles with Defensive Gum of Moringa oleifera for Antibacterial Efficacy Against Resistant Bacterial Species from Human Infections. Pharmaceuticals (Basel) 2024; 17:1546. [PMID: 39598455 PMCID: PMC11597128 DOI: 10.3390/ph17111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The worldwide misuse of antibiotics is one of the main factors in microbial resistance that is a serious threat worldwide. Alternative strategies are needed to overcome this issue. Objectives: In this study, a novel strategy was adopted to suppress the growth of resistant pathogens through immobilization of silver nanoparticles (AgNPs) in gum of Moringa oleifera. Methods: The AgNPs were prepared from the leaves of Moringa oleifera and subsequently characterized through UV-spectrophotometry, FTIR, SEM, and XRD. The differential ratios of characterized AgNPs were immobilized with gum of M. oleifera and investigated for antimicrobial potential against highly resistant pathogens. Results: The immobilized AgNPs displayed promising activities against highly resistant B. subtilis (23.6 mm; 50 µL:200 µL), E. coli (19.3 mm; 75 µL:200 µL), K. pneumoniae (22 mm; 200 µL:200 µL), P. mirabilis (16.3 mm; 100 µL:200 µL), P. aeruginosa (22 mm; 175 µL:200 µL), and S. typhi (19.3; 25 µL:200 µL) than either AgNPs alone or gum. The immobilized AgNPs released positive sliver ions that easily attached to negatively charged bacterial cells. After attachment and permeation to bacterial cells, the immobilized NPs alter the cell membrane permeability, protein/enzymes denaturation, oxidative stress (ROS), damage DNA, and change the gene expression level. It has been mechanistically considered that the immobilized AgNPs can kill bacteria by damaging their cell membranes, dephosphorylating tyrosine residues during their signal transduction pathways, inducing cell apoptosis, rupturing organelles, and inhibiting cell division, which finally leads to cell death. Conclusions: This study proposes a potential alternative drug for curing various infections.
Collapse
Affiliation(s)
- Liaqat Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Nisar Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Muhammad Nazir Uddin
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Mostafa A. Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hina Fazal
- Pakistan Council for Scientific and Industrial Research (PCSIR) Laboratories Complex, Peshawar 25120, Pakistan
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 12371, Saudi Arabia; (S.F.); (M.A.E.-T.)
| | - Mohamed A. El-Tayeb
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 12371, Saudi Arabia; (S.F.); (M.A.E.-T.)
| | - Bushra Hafeez Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Wajid Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Murad Ali Rahat
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Mohammad Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Yaqub Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Kamran Rauf
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar 25120, Pakistan;
| | - Salman Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Sami Ullah
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Tanveer Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Afshan Salam
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Sajjad Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| |
Collapse
|
2
|
Nafeh AAESAEK, Mohamed IMAEA, Foda MF. Ultrasonication-Assisted Green Synthesis and Physicochemical and Cytotoxic Activity Characterization of Protein-Based Nanoparticles from Moringa oleifera Seeds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1254. [PMID: 39120359 PMCID: PMC11313732 DOI: 10.3390/nano14151254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Moringa oleifera (M. oleifera) is globally recognized for its medicinal properties and offers high-quality, protein-rich seeds. This study aimed to explore the potential of M. oleifera seeds as a significant source of protein-based nanoparticles (PBNPs) using the ultrasonication technique after desolvation and to evaluate their cytotoxicity in the human leukemia cell line (THP-1) for the first time. The properties of the PBNPs were confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The extracted protein from moringa seed cake flour had a significant protein content of 54.20%, and the resulting PBNPs had an average size of 134.3 ± 0.47 nm with a robust zeta potential of -43.15 mV. Notably, our study revealed that PBNPs exhibited cytotoxic potential at high concentrations, especially against the THP-1 human leukemia cell line, which is widely used to study immunomodulatory properties. The inhibitory effect of PBNPs was quantitatively evidenced by a cytotoxicity assay, which showed that a concentration of 206.5 μg mL-1 (log conc. 2.315) was required to inhibit 50% of biological activity. In conclusion, our findings highlight the potential of M. oleifera seeds as a valuable resource in the innovative field of eco-friendly PBNPs by combining traditional medicinal applications with contemporary advancements in protein nanotechnology. However, further studies are required to ensure their biocompatibility.
Collapse
Affiliation(s)
| | | | - Mohamed Frahat Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Raza C, Mohsin S, Faheem M, Hanif U, Alkhathlan HZ, Shaik MR, Riaz HA, Anjum R, Jurrat H, Khan M. In Vivo Study of Moringa oleifera Seed Extracts as Potential Sources of Neuroprotection against Rotenone-Induced Neurotoxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1479. [PMID: 38891288 PMCID: PMC11175126 DOI: 10.3390/plants13111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Parkinson's disease (PD) is a leading neurodegenerative disorder affecting 1-3 percent of the elderly population. Oxidative stress is the primary factor for the neurodegeneration of Substantia Nigra (SN). The current study aims to assess the seed extracts of Moringa oleifera (MO) on rotenone-mediated motor function impairments in a PD mouse model. For this purpose, two different seed extracts of MO were prepared, including aqueous MO (AqMO) and ethanolic MO (EthMO). Male Swiss albino mice were grouped into five groups. Mice received 2.5 mg/kg rotenone for 21 consecutive days, and control mice received the vehicle. Extract-treated mice received 200 mg/kg AqMO and EthMO separately, orally and daily for 28 days. Sinemet-treated mice received 20 mg/kg, oral dose, as a positive group. The motor function performance was evaluated using standard neurobehavioral tests. The antioxidant potentials of MO seed extracts were estimated by lipid peroxidation (LPO), reduced glutathione (GSH), glutathione-s-transferase (GST) and catalase (CAT) activities in mice brain homogenates. The PD mice brain SN sections were investigated for neurodegeneration. MO seed extract-treated mice showed a significant reduction in motor dysfunction compared to rotenone-treated mice as assessed through the open field, beam walk, pole climb-down, tail suspension, stride length and stepping tests. Increased antioxidant capacities of the PD mice brains of MO extract-administered groups were observed compared to the control. A histological study showed reduced signs of neurodegeneration, vacuolation around multipolar cells and cytoplasmic shrinkage in MO extract-treated mice SN brain sections. Collectively, MO seed extracts protected the animals from locomotor deficits induced by rotenone, possibly through antioxidant means, and seem to have potential applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Chand Raza
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Sehrish Mohsin
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Mehwish Faheem
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Uzma Hanif
- Department of Botany, Government College University, Lahore 54000, Pakistan
| | - Hamad Z. Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.Z.A.); (M.R.S.)
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.Z.A.); (M.R.S.)
| | - Hasib Aamir Riaz
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Rabia Anjum
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Husna Jurrat
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.Z.A.); (M.R.S.)
| |
Collapse
|
4
|
Liu X, Sun S, Liu J, Dang Q, Gao Y, Fang L, Min W. Isolation, Virtual Screening, and Evaluation of Hazelnut-Derived Immunoactive Peptides for the Inhibition of SARS-CoV-2 Main Protease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11561-11576. [PMID: 38739709 DOI: 10.1021/acs.jafc.4c01942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The aim of this study is to validate the activity of hazelnut (Corylus avellana L.)-derived immunoactive peptides inhibiting the main protease (Mpro) of SARS-CoV-2 and further unveil their interaction mechanism using in vitro assays, molecular dynamics (MD) simulations, and binding free energy calculations. In general, the enzymatic hydrolysis components, especially molecular weight < 3 kDa, possess good immune activity as measured by the proliferation ability of mouse splenic lymphocytes and phagocytic activity of mouse peritoneal macrophages. Over 866 unique peptide sequences were isolated, purified, and then identified by nanohigh-performance liquid chromatography/tandem mass spectrometry (NANO-HPLC-MS/MS) from hazelnut protein hydrolysates, but Trp-Trp-Asn-Leu-Asn (WWNLN) and Trp-Ala-Val-Leu-Lys (WAVLK) in particular are found to increase the cell viability and phagocytic capacity of RAW264.7 macrophages as well as promote the secretion of the cytokines nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Fluorescence resonance energy transfer assay elucidated that WWNLN and WAVLK exhibit excellent inhibitory potency against Mpro, with IC50 values of 6.695 and 16.750 μM, respectively. Classical all-atom MD simulations show that hydrogen bonds play a pivotal role in stabilizing the complex conformation and protein-peptide interaction. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculation indicates that WWNLN has a lower binding free energy with Mpro than WAVLK. Furthermore, adsorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions illustrate favorable drug-likeness and pharmacokinetic properties of WWNLN compared to WAVLK. This study provides a new understanding of the immunomodulatory activity of hazelnut hydrolysates and sheds light on peptide inhibitors targeting Mpro.
Collapse
Affiliation(s)
- Xiaoting Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Shuo Sun
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Jiale Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Qiao Dang
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Yawen Gao
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Li Fang
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Weihong Min
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P. R. China
| |
Collapse
|
5
|
Jikah AN, Edo GI. Moringa oleifera: a valuable insight into recent advances in medicinal uses and pharmacological activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7343-7361. [PMID: 37532676 DOI: 10.1002/jsfa.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Moringa oleifera is an important medicinal plant in several countries; for example, Nigeria, the USA, Turkey, Germany, Greece, and Ukraine. The abundant bioactive and nutritional properties of this plant make it useful in many and diverse areas of life, including the health, cosmetic, agricultural, and food industries to mention but a few. Research has found that the presence of proteins, carbohydrates, lipids, vitamins, minerals, flavonoids, phenols, alkaloids, fatty acids, saponins, essential oils, folate, aromatic hydrocarbons, sterols, glucosinolates, and glycosides, among others, characterize the moringa nutrient profile and, as a result, give rise to its remedial effects on ailments such as wounds, stomach and duodenal ulcers, allergies, obesity, diabetes, inflammation, asthma, and so on. It is the aim of this review to provide an insight into such medicinal and pharmacological remedies attributed to moringa, stating both the past and recent discoveries. This review article also takes a look into the botanical features, bioactive compounds, antinutrients, food applications, bacterial fermentation products, biosafety, industrial applications, and other uses of moringa. Finally, with the belief that knowledge is progressive, we acknowledge that there are things yet undiscovered about this wonder plant that will be of value both to medicine and general life; we therefore recommend that research work continues on the moringa plant. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Great Iruoghene Edo
- Department of Chemical Science, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| |
Collapse
|
6
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Göksu AG, Çakır B, Gülseren İ. Hazelnut peptide fractions preserve their bioactivities beyond industrial manufacture and simulated digestion of hazelnut cocoa cream. Food Res Int 2022; 161:111865. [DOI: 10.1016/j.foodres.2022.111865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
|
8
|
Wang Y, Xu Y, Liu Z. A review of plant antipathogenic constituents: Source, activity and mechanism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105225. [PMID: 36464345 DOI: 10.1016/j.pestbp.2022.105225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
Green prevention and control of plant pathogens is a development direction of sustainable and low-carbon agriculture given the limitation of traditional chemicals. Plant-derived antipathogenic constituents (PAPCs) exhibit the advantages of being environmental benign and a broad spectrum of target pathogens over traditional chemicals. Here, we review the research advances on plant sources, chemical compositions, activities of antipathogenic constituents in the past 20 years. Reported PAPCs are classified into categories of phenols, flavonoids, terpenoids, alkaloids and antimicrobial peptides. Angiosperms, gymnosperms and some lower plants are the main plant source of detected PAPCs. The PAPCs act on pathogens through multiple pathways including destroying cell structures, blocking key composition synthesis and inhibiting cell metabolism. The development trends of PAPCs are finally prospected. This review serves as a comprehensive review on the study of plant antipathogenic constituents and a key reference for forecasting the source, characteristic and activity of PAPC.
Collapse
Affiliation(s)
- Yueyao Wang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Sharma P, Kaur J, Sharma G, Kashyap P. Plant derived antimicrobial peptides: Mechanism of target, isolation techniques, sources and pharmaceutical applications. J Food Biochem 2022; 46:e14348. [PMID: 35945701 DOI: 10.1111/jfbc.14348] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Antimicrobial resistance is a global health and development threat which is caused by the excess and prolonged usage of antimicrobial compounds in agriculture and pharmaceutical industries. Resistance of pathogenic microorganisms to the already existing drugs represent a serious risk to public health. Plant sources such as cereals, legumes, fruits and vegetables are potential substrates for the isolation of antimicrobial peptides (AMP) with broad spectrum antimicrobial activity against bacteria, fungi and viruses with novel immunomodulatory activities. Thus, in the quest of new antimicrobial agents, AMPs have recently gained interest. Therefore, AMP can be used in agriculture, pharmaceutical and food industries. This review focuses on various explored and unexplored plant based food sources of AMPs, their isolation techniques and antimicrobial mechanism of peptides. Therefore, the literature discussed in this review paper will prove beneficial the research purposes for agriculture, pharmaceutical and food industries. PRACTICAL APPLICATIONS: Isolation of antimicrobial peptides (AMPs) can be done on industrial scale. AMP isolated from food sources can be used in pharmaceutical and agriculture industries. AMP from natural sources mitigate the problem of antimicrobial resistance. AMP isolated from food products can be used as nutraceutical.
Collapse
Affiliation(s)
- Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jasleen Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Geetika Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Piyush Kashyap
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| |
Collapse
|
10
|
Zhao Q, He L, Wang X, Ding X, Li L, Tian Y, Huang A. Characterization of a Novel Antimicrobial Peptide Isolated from Moringa oleifera Seed Protein Hydrolysates and Its Membrane Damaging Effects on Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6123-6133. [PMID: 35576531 DOI: 10.1021/acs.jafc.2c01335] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study sought to identify and characterize a novel antimicrobial peptide, named MOp2 from Moringa oleifera seed protein hydrolysates, and elucidate its potential antimicrobial effects on Staphylococcus aureus. MOp2, with the amino acid sequence of His-Val-Leu-Asp-Thr-Pro-Leu-Leu (HVLDTPLL), was characterized as a hydrophobic anionic AMP of the β-sheet structure. MOp2 exhibited negligible hemolytic activity at 2.0× MIC, suggesting its inhibitory effect on the growth of S. aureus (MIC: 2.204 mM). It maintained more than 90% of antimicrobial activity under 5% salt and about 78% of antimicrobial activity at a high temperature of 115 °C for 30 min. Protease, especially acid protease, reduced its antimicrobial activity to different extents. Moreover, MOp2 caused irreversible membrane damage to S. aureus cells by increasing the membrane permeability, resulting in the release of intracellular nucleotide pools. Additionally, molecular docking revealed that MOp2 could inhibit S. aureus growth by interacting with dihydrofolate reductase and DNA gyrase through hydrogen bonding and hydrophobic interactions. Overall, MOp2 could be a potential novel antimicrobial agent against S. aureus in food processing.
Collapse
Affiliation(s)
- Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Li He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuesong Ding
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lige Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
11
|
Extraction of low molecular weight peptides from bovine bone using ultrasound-assisted double enzyme hydrolysis: Impact on the antioxidant activities of the extracted peptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111470] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|