1
|
Ivanova LA, Komakhin RA. Efficiency of the alpha-hairpinin SmAMP-X gene promoter from Stellaria media plant depends on selection of transgenic approach. Transgenic Res 2024; 33:1-19. [PMID: 38071732 DOI: 10.1007/s11248-023-00374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/27/2023] [Indexed: 04/18/2024]
Abstract
The antimicrobial activity of the alpha-HAIRPININ ANTIMICROBIAL PEPTIDE X (SmAMP-X gene, GenBank acc. No. HG423454.1) from Stellaria media plant has been shown in vitro. Here, we isolated the SmAMP-X gene promoter and found two genomic sequences for the promoter (designated pro-SmAMP-X and pro-SmAMP-X-Ψ2) with 83% identity in their core and proximal regions. We found that the abilities of these promoters to express the uidA reporter and the nptII selectable marker differ according to the structural organization of T-DNA in the binary vector used for plant transformation. Analysis of Agrobacterium-infiltrated Nicotiana benthamiana leaves, transgenic Arabidopsis thaliana lines, and transgenic Solanum tuberosum plants revealed that both promoters in the pCambia1381Z and pCambia2301 binary vectors generate 42-100% of the ß-glucuronidase (GUS) activity generated by the CaMV35S promoter. According to 5'-RACE (rapid amplification of cDNA ends) analysis, both plant promoters are influenced by the CaMV35S enhancer used to express selectable markers in the T-DNA region of pCambia1381Z and pCambia2301. The exclusion of CaMV35S enhancer from the T-DNA region significantly reduces the efficiency of pro-SmAMP-X-Ψ2 promoter for GUS production. Both promoters in the pCambia2300 vector without CaMV35S enhancer in the T-DNA region weakly express the nptII selectable marker in different tissues of transgenic N. tabacum plants and enable selection of transgenic cells in media with a high concentration of kanamycin. Overall, promoter sequences must be functionally validated in binary vectors lacking CaMV35S enhancer.
Collapse
Affiliation(s)
- Lyubov A Ivanova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia, 127550
| | - Roman A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia, 127550.
| |
Collapse
|
2
|
de Moura SM, Freitas EO, Ribeiro TP, Paes-de-Melo B, Arraes FBM, Macedo LLP, Paixão JFR, Lourenço-Tessutti IT, Artico S, da Cunha Valença D, Silva MCM, de Oliveira AC, Alves-Ferreira M, Grossi-de-Sa MF. Discovery and functional characterization of novel cotton promoters with potential application to pest control. PLANT CELL REPORTS 2022; 41:1589-1601. [PMID: 35665839 DOI: 10.1007/s00299-022-02880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
pGhERF105 and pGhNc-HARBI1 promoters are highly responsive to CBW infestation and exhibit strong activity in vegetative and reproductive tissues, increasing their potential application in GM crop plants for pest control. The main challenge to cotton (Gossypium hirsutum) crop productivity is the constant attack of several pests, including the cotton boll weevil (CBW, Anthonomus grandis), which uses cotton floral buds for feeding and egg-laying. The endophytic nature of the early developmental stages of CBW makes conventional pesticide-based control poorly efficient. Most biotechnological assets used for pest control are based on Bacillus thurigiensis insecticidal Cry toxins or the silencing of insect-pest essential genes using RNA-interference technology. However, suitable plant promoter sequences are required to efficiently drive insecticidal molecules to the target plant tissue. This study selected the Ethylene Responsive Factor 105 (GhERF105) and Harbinger transposase-derived nuclease (GhNc-HARBI1) genes based on available transcriptome-wide data from cotton plants infested by CBW larvae. The GhERF105 and GhNc-HARBI1 genes showed induction kinetics from 2 to 96 h under CBW's infestation in cotton floral buds, uncovering the potential application of their promoters. Therefore, the promoter regions (1,500 base pairs) were assessed and characterized using Arabidopsis thaliana transgenic plants. The pGhERF105 and pGhNc-HARBI1 promoters showed strong activity in plant vegetative (leaves and roots) and reproductive (flowers and fruits) tissues, encompassing higher GUS transcriptional activity than the viral-constitutive Cauliflower Mosaic Virus 35S promoter (pCaMV35S). Notably, pGhERF105 and pGhNc-HARBI1 promoters demonstrated more efficiency in driving reporter genes in flowers than other previously characterized cotton flower-specific promoters. Overall, the present study provides a new set of cotton promoters suitable for biotechnological application in cotton plants for pest resistance.
Collapse
Affiliation(s)
- Stéfanie Menezes de Moura
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Elinea Oliveira Freitas
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- Federal University of Brasilia (UnB), Brasília, DF, Brazil
| | - Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Brasilia (UnB), Brasília, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabrício B M Arraes
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Joaquin F R Paixão
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Sinara Artico
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - David da Cunha Valença
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Antonio C de Oliveira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Marcio Alves-Ferreira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil.
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil.
- Catholic University of Brasília (UCB), Brasília, DF, Brazil.
| |
Collapse
|
3
|
Tian C, Zhang Y, Li J, Wang Y. Benchmarking Intrinsic Promoters and Terminators for Plant Synthetic Biology Research. BIODESIGN RESEARCH 2022; 2022:9834989. [PMID: 37850139 PMCID: PMC10521690 DOI: 10.34133/2022/9834989] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/11/2022] [Indexed: 10/19/2023] Open
Abstract
The emerging plant synthetic metabolic engineering has been exhibiting great promise to produce either value-added metabolites or therapeutic proteins. However, promoters for plant pathway engineering are generally selected empirically. The quantitative characterization of plant-based promoters is essential for optimal control of gene expression in plant chassis. Here, we used N. benthamiana leaves and BY2 suspension cells to quantitatively characterize a library of plant promoters by transient expression of firefly/Renilla luciferase. We validated the dual-luciferase reporter system by examining the correlation between reporter protein and mRNA levels. In addition, we investigated the effects of terminator-promoter combinations on gene expression and found that the combinations of promoters and terminators resulted in a 326-fold difference between the strongest and weakest performance, as reflected in reporter gene expression. As a proof of concept, we used the quantitatively characterized promoters to engineer the betalain pathway in N. benthamiana. Seven selected plant promoters with different expression strengths were used orthogonally to express CYP76AD1 and DODA, resulting in a final betalain production range of 6.0-362.4 μg/g fresh weight. Our systematic approach not only demonstrates the various intensities of multiple promoter sequences in N. benthamiana and BY2 cells but also adds to the toolbox of plant promoters for plant engineering.
Collapse
Affiliation(s)
- Chenfei Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yixin Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Jianhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
González-Romero ME, Rivera C, Cancino K, Geu-Flores F, Cosio EG, Ghislain M, Halkier BA. Bioengineering potato plants to produce benzylglucosinolate for improved broad-spectrum pest and disease resistance. Transgenic Res 2021; 30:649-660. [PMID: 33956271 PMCID: PMC8478770 DOI: 10.1007/s11248-021-00255-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/10/2021] [Indexed: 10/31/2022]
Abstract
In traditional, small-scale agriculture in the Andes, potatoes are frequently co-cultivated with the Andean edible tuber Tropaeolum tuberosum, commonly known as mashua, which is believed to exert a pest and disease protective role due to its content of the phenylalanine-derived benzylglucosinolate (BGLS). We bioengineered the production of BGLS in potato by consecutive generation of stable transgenic events with two polycistronic constructs encoding for expression of six BGLS biosynthetic genes from Arabidopsis thaliana. First, we integrated a polycistronic construct coding for the last three genes of the pathway (SUR1, UGT74B1 and SOT16) into potato driven by the cauliflower mosaic virus 35S promoter. After identifying the single-insertion transgenic event with the highest transgene expression, we stacked a second polycistronic construct coding for the first three genes in the pathway (CYP79A2, CYP83B1 and GGP1) driven by the leaf-specific promoter of the rubisco small subunit from chrysanthemum. We obtained transgenic events producing as high as 5.18 pmol BGLS/mg fresh weight compared to the non-transgenic potato plant producing undetectable levels of BGLS. Preliminary bioassays suggest a possible activity against Phytophthora infestans, causing the late blight disease and Premnotrypes suturicallus, referred to as the Andean potato weevil. However, we observed altered leaf morphology, abnormally thick and curlier leaves, reduced growth and tuber production in five out of ten selected transgenic events, which indicates that the expression of BGLS biosynthetic genes has an undesirable impact on the potato. Optimization of the expression of the BGLS biosynthetic pathway in potato is required to avoid alterations of plant development.
Collapse
Affiliation(s)
- M E González-Romero
- Applied Biotechnology Laboratory, International Potato Centre, P.O. Box 1558, Lima, 12, Peru
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - C Rivera
- Applied Biotechnology Laboratory, International Potato Centre, P.O. Box 1558, Lima, 12, Peru
- Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, 12, Peru
| | - K Cancino
- Applied Biotechnology Laboratory, International Potato Centre, P.O. Box 1558, Lima, 12, Peru
- Pathology Department, Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, 15038, Peru
| | - F Geu-Flores
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center & Section for Plant Biochemistry, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, Denmark
| | - E G Cosio
- Chemistry Section, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, 15088, Peru
| | - M Ghislain
- Applied Biotechnology Laboratory, International Potato Centre, P.O. Box 1558, Lima, 12, Peru.
| | - B A Halkier
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
| |
Collapse
|