1
|
Tussipkan D, Shevtsov V, Ramazanova M, Rakhimzhanova A, Shevtsov A, Manabayeva S. Kazakhstan tulips: comparative analysis of complete chloroplast genomes of four local and endangered species of the genus Tulipa L. FRONTIERS IN PLANT SCIENCE 2024; 15:1433253. [PMID: 39600902 PMCID: PMC11588485 DOI: 10.3389/fpls.2024.1433253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
Species of Tulipa are important ornamental plants used for horticultural purposes in various countries, across Asia, Europe, and North Africa. The present study is the first report on typical features of the complete chloroplast genome sequence of four local and endangered species including T. alberti, T. kaufmanniana, T. greigii, and T. dubia from Kazakhstan using Illumina sequencing technology. The comparative analyses revealed that the complete genomes of four species were highly conserved in terms of total genome size (152. 006 bp - 152. 382 bp), including a pair of inverted repeat regions (26. 330 bp - 26. 371 bp), separated by a large single copy region (82.169 bp - 82,378 bp) and a small copy region (17.172 bp -17.260 bp). Total GC content (36.58-36.62 %), gene number (131), and intron length (540 bp - 2620 bp) of 28 genes. The complete genomes of four species showed nucleotide diversity (π =0,003257). The total number of SSR loci was 159 in T. alberti, 158 in T. kaufmanniana, 174 in T. greigii, and 163 in T. dubia. The result indicated that ten CDS genes, namely rpoC2, cemA, rbcL, rpl36, psbH, rps3, rpl22, ndhF, ycf1, and matK, with effective polymorphic simple sequence repeats (SSRs), high sequence variability (SV) ranging from 2.581 to 6.102, and high nucleotide diversity (Pi) of these loci ranging from 0,004 to 0,010. For all intergenic regions longer than 150 bp, twenty one most variable regions were found with high sequence variability (SV) ranging from 4,848 to 11,862 and high nucleotide diversity (Pi) ranging from 0,01599 to 0,01839. Relative synonymous codon usage (RSCU) analysis was used to identify overrepresented and underrepresented codons for each amino acid. Based on the phylogenic analysis, the sequences clustered into four major groups, reflecting distinct evolutionary lineages corresponding to the subgenera Eriostemons, Tulipa, and Orithyia. Notably, T. greigii was distinctively grouped with species from Orithyia and Eriostemons rather than with other Tulipa species, suggesting a unique evolutionary history potentially shaped by geographical isolation or specific ecological pressures. The complete chloroplast genome of the four Tulipa species provides fundamental information for future research studies, even for designing the high number of available molecular markers.
Collapse
Affiliation(s)
- Dilnur Tussipkan
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Vladislav Shevtsov
- Plant Genomics and Bioinformatics Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Malika Ramazanova
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Aizhan Rakhimzhanova
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Alexandr Shevtsov
- Applied Genetics Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Shuga Manabayeva
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana, Kazakhstan
- General Biology and Genomics Department, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| |
Collapse
|
2
|
Song BN, Liu CK, Ren T, Xiao YL, Chen L, Xie DF, He AG, Xu P, Fan X, Zhou SD, He XJ. Plastid phylogenomics contributes to the taxonomic revision of taxa within the genus Sanicula L. and acceptance of two new members of the genus. FRONTIERS IN PLANT SCIENCE 2024; 15:1351023. [PMID: 38916035 PMCID: PMC11194442 DOI: 10.3389/fpls.2024.1351023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/14/2024] [Indexed: 06/26/2024]
Abstract
Introduction The genus Sanicula L. is a taxonomically complicated taxa within Apiaceae, as its high variability in morphology. Although taxonomists have performed several taxonomic revisions for this genus, the interspecific relationships and species boundaries have not been satisfactorily resolved, especially for those endemic to China. This study mainly focused on S. giraldii var. ovicalycina, S. tienmuensis var. pauciflora, and S. orthacantha var. stolonifera and also described two new members of the genus. Methods We newly sequenced sixteen plastomes from nine Sanicula species. Combined with eleven plastomes previously reported by us and one plastome downloaded, we performed a comprehensively plastid phylogenomics analysis of 21 Sanicula taxa. Results and Discussion The comparative results showed that 21 Sanicula plastomes in their structure and features were highly conserved and further justified that two new species were indeed members of Sanicula. Nevertheless, eleven mutation hotspot regions were still identified. Phylogenetic analyses based on plastome data and the ITS sequences strongly supported that these three varieties were clearly distant from three type varieties. The results implied that these three varieties should be considered as three independent species, which were further justified by their multiple morphological characters. Therefore, revising these three varieties into three independent species was reasonable and convincing. Moreover, we also identified and described two new Sanicula species (S. hanyuanensis and S. langaoensis) from Sichuan and Shanxi, China, respectively. Based on their distinct morphological characteristics and molecular phylogenetic analysis, two new species were included in Sanicula. In summary, our study impelled the revisions of Sanicula members and improved the taxonomic system of the genus.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chang-Kun Liu
- College of Resources Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| | - Ting Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu-Lin Xiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lian Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - An-Guo He
- Administration of Zhejiang Dapanshan National Nature Reserve, Zhejiang, China
| | - Ping Xu
- Chengdu Branch of Giant Panda National Park, Chengdu, China
| | - Xing Fan
- Chengdu Branch of Giant Panda National Park, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Jiang QP, Guo XL, Zhao AQ, Fan X, Li Q, Zhou SD, He XJ. Phylogeny and Taxonomic Revision of the Genus Melanosciadium (Apiaceae), Based on Plastid Genomes and Morphological Evidence. PLANTS (BASEL, SWITZERLAND) 2024; 13:907. [PMID: 38592923 PMCID: PMC10974901 DOI: 10.3390/plants13060907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Melanosciadium is considered a monotypic genus and is also endemic to the southwest of China. No detailed phylogenetic studies or plastid genomes have been identified in Melanosciadium. In this study, the plastid genome sequence and nrDNA sequence were used for the phylogenetic analysis of Melanosciadium and its related groups. Angelica tsinlingensis was previously considered a synonym of Hansenia forbesii. Similarly, Ligusticum angelicifolium was previously thought to be the genus Angelica or Ligusticopsis. Through field observations and morphological evidence, we believe that the two species are more similar to M. pimpinelloideum in leaves, umbel rays, and fruits. Meanwhile, we found a new species from Anhui Province (eastern China) that is similar to M. pimpinelloideum and have named it M. Jinzhaiensis. We sequenced and assembled the complete plastid genomes of these species and another three Angelica species. The genome comparison results show that M. pimpinelloideum, A. tsinlingensis, Ligusticum angelicifolium, and M. jinzhaiensis have similarities to each other in the plastid genome size, gene number, and length of the LSC and IR regions; the plastid genomes of these species are distinct from those of the Angelica species. In addition, we reconstruct the phylogenetic relationships using both plastid genome sequences and nrDNA sequences. The phylogenetic analysis revealed that A. tsinlingensis, M. pimpinelloideum, L. angelicifolium, and M. jinzhaiensis are closely related to each other and form a monophyletic group with strong support within the Selineae clade. Consequently, A. tsinlingensis and L. angelicifolium should be classified as members of the genus Melanosciadium, and suitable taxonomical treatments have been proposed. Meanwhile, a comprehensive description of the new species, M. jinzhaiensis, is presented, encompassing its habitat environment and detailed morphological traits.
Collapse
Affiliation(s)
- Qiu-Ping Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Q.-P.J.); (A.-Q.Z.); (S.-D.Z.)
| | - Xian-Lin Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610093, China;
| | - An-Qi Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Q.-P.J.); (A.-Q.Z.); (S.-D.Z.)
| | - Xing Fan
- Chengdu Branch of Giant Panda National Park, Chengdu 610083, China; (X.F.); (Q.L.)
| | - Qing Li
- Chengdu Branch of Giant Panda National Park, Chengdu 610083, China; (X.F.); (Q.L.)
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Q.-P.J.); (A.-Q.Z.); (S.-D.Z.)
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Q.-P.J.); (A.-Q.Z.); (S.-D.Z.)
| |
Collapse
|
4
|
Wang LL, Li Y, Zheng SS, Kozlowski G, Xu J, Song YG. Complete Chloroplast Genomes of Four Oaks from the Section Cyclobalanopsis Improve the Phylogenetic Analysis and Understanding of Evolutionary Processes in the Genus Quercus. Genes (Basel) 2024; 15:230. [PMID: 38397219 PMCID: PMC10888318 DOI: 10.3390/genes15020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Quercus is a valuable genus ecologically, economically, and culturally. They are keystone species in many ecosystems. Species delimitation and phylogenetic studies of this genus are difficult owing to frequent hybridization. With an increasing number of genetic resources, we will gain a deeper understanding of this genus. In the present study, we collected four Quercus section Cyclobalanopsis species (Q. poilanei, Q. helferiana, Q. camusiae, and Q. semiserrata) distributed in Southeast Asia and sequenced their complete genomes. Following analysis, we compared the results with those of other species in the genus Quercus. These four chloroplast genomes ranged from 160,784 bp (Q. poilanei) to 161,632 bp (Q. camusiae) in length, with an overall guanine and cytosine (GC) content of 36.9%. Their chloroplast genomic organization and order, as well as their GC content, were similar to those of other Quercus species. We identified seven regions with relatively high variability (rps16, ndhk, accD, ycf1, psbZ-trnG-GCC, rbcL-accD, and rpl32-trnL-UAG) which could potentially serve as plastid markers for further taxonomic and phylogenetic studies within Quercus. Our phylogenetic tree supported the idea that the genus Quercus forms two well-differentiated lineages (corresponding to the subgenera Quercus and Cerris). Of the three sections in the subgenus Cerris, the section Ilex was split into two clusters, each nested in the other two sections. Moreover, Q. camusiae and Q. semiserrata detected in this study diverged first in the section Cyclobalanopsis and mixed with Q. engleriana in the section Ilex. In particular, 11 protein coding genes (atpF, ndhA, ndhD, ndhF, ndhK, petB, petD, rbcL, rpl22, ycf1, and ycf3) were subjected to positive selection pressure. Overall, this study enriches the chloroplast genome resources of Quercus, which will facilitate further analyses of phylogenetic relationships in this ecologically important tree genus.
Collapse
Affiliation(s)
- Ling-Ling Wang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
- Department of Biology and Botanic Garden, University of Fribourg, 1700 Fribourg, Switzerland
- Natural History Museum Fribourg, 1700 Fribourg, Switzerland
| | - Jin Xu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| |
Collapse
|
5
|
Song BN, Liu CK, Zhao AQ, Tian RM, Xie DF, Xiao YL, Chen H, Zhou SD, He XJ. Phylogeny and diversification of genus Sanicula L. (Apiaceae): novel insights from plastid phylogenomic analyses. BMC PLANT BIOLOGY 2024; 24:70. [PMID: 38263006 PMCID: PMC10807117 DOI: 10.1186/s12870-024-04750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND The genus Sanicula L. is a unique perennial herb that holds important medicinal values. Although the previous studies on Sanicula provided us with a good research basis, its taxonomic system and interspecific relationships have not been satisfactorily resolved, especially for those endemic to China. Moreover, the evolutionary history of this genus also remains inadequately understood. The plastid genomes possessing highly conserved structure and limited evolutionary rate have proved to be an effective tool for studying plant phylogeny and evolution. RESULTS In the current study, we newly sequenced and assembled fifteen Sanicula complete plastomes. Combined with two previously reported plastomes, we performed comprehensively plastid phylogenomics analyses to gain novel insights into the evolutionary history of this genus. The comparative results indicated that the seventeen plastomes exhibited a high degree of conservation and similarity in terms of their structure, size, GC content, gene order, IR borders, codon bias patterns and SSRs profiles. Such as all of them displayed a typical quadripartite structure, including a large single copy region (LSC: 85,074-86,197 bp), a small single copy region (SSC: 17,047-17,132 bp) separated by a pair of inverted repeat regions (IRs: 26,176-26,334 bp). And the seventeen plastomes had similar IR boundaries and the adjacent genes were identical. The rps19 gene was located at the junction of the LSC/IRa, the IRa/SSC junction region was located between the trnN gene and ndhF gene, the ycf1 gene appeared in the SSC/IRb junction and the IRb/LSC boundary was located between rpl12 gene and trnH gene. Twelve specific mutation hotspots (atpF, cemA, accD, rpl22, rbcL, matK, ycf1, trnH-psbA, ycf4-cemA, rbcL-accD, trnE-trnT and trnG-trnR) were identified that can serve as potential DNA barcodes for species identification within the genus Sanicula. Furthermore, the plastomes data and Internal Transcribed Spacer (ITS) sequences were performed to reconstruct the phylogeny of Sanicula. Although the tree topologies of them were incongruent, both provided strong evidence supporting the monophyly of Saniculoideae and Apioideae. In addition, the sister groups between Saniculoideae and Apioideae were strongly suggested. The Sanicula species involved in this study were clustered into a clade, and the Eryngium species were also clustered together. However, it was clearly observed that the sections of Sanicula involved in the current study were not respectively recovered as monophyletic group. Molecular dating analysis explored that the origin of this genus was occurred during the late Eocene period, approximately 37.84 Ma (95% HPD: 20.33-52.21 Ma) years ago and the diversification of the genus was occurred in early Miocene 18.38 Ma (95% HPD: 10.68-25.28 Ma). CONCLUSION The plastome-based tree and ITS-based tree generated incongruences, which may be attributed to the event of hybridization/introgression, incomplete lineage sorting (ILS) and chloroplast capture. Our study highlighted the power of plastome data to significantly improve the phylogenetic supports and resolutions, and to efficiently explore the evolutionary history of this genus. Molecular dating analysis explored that the diversification of the genus occurred in the early Miocene, which was largely influenced by the prevalence of the East Asian monsoon and the uplift of the Hengduan Mountains (HDM). In summary, our study provides novel insights into the plastome evolution, phylogenetic relationships, taxonomic framework and evolution of genus Sanicula.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - An-Qi Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Rong-Ming Tian
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yu-Lin Xiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Weng L, Jiang Y, Wang Y, Zhang X, Zhou P, Wu M, Li H, Sun H, Chen S. Chloroplast genome characteristics and phylogeny of the sinodielsia clade (apiaceae: apioideae). BMC PLANT BIOLOGY 2023; 23:284. [PMID: 37246219 DOI: 10.1186/s12870-023-04271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/07/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The Sinodielsia clade of the subfamily Apioideae (Apiacieae) was established in 2008, and it is composed of 37 species from 17 genera. Its circumscription is still poorly delimited and unstable, and interspecific relationships in the clade lack comprehensive analysis. Chloroplast (cp.) genomes provide valuable and informative data sources for evolutionary biology and have been widely used in studies on plant phylogeny. To infer the phylogenetic history of the Sinodielsia clade, we assembled complete cp. genomes of 39 species and then performed phylogenetic analysis based on these cp. genome sequence data combined with 66 published cp. genomes from 16 genera relative to the Sinodielsia clade. RESULTS These 39 newly assembled genomes had a typical quadripartite structure with two inverted repeat regions (IRs: 17,599-31,486 bp) separated by a large single-copy region (LSC: 82,048-94,046 bp) and a small single-copy region (SSC: 16,343-17,917 bp). The phylogenetic analysis showed that 19 species were clustered into the Sinodielsia clade, and they were divided into two subclades. Six mutation hotspot regions were detected from the whole cp. genomes among the Sinodielsia clade, namely, rbcL-accD, ycf4-cemA, petA-psbJ, ycf1-ndhF, ndhF-rpl32 and ycf1, and it was found that ndhF-rpl32 and ycf1 were highly variable in the 105 sampled cp. genomes. CONCLUSION The Sinodielsia clade was subdivided into two subclades relevant to geographical distributions, except for cultivated and introduced species. Six mutation hotspot regions, especially ndhF-rpl32 and ycf1, could be used as potential DNA markers in the identification and phylogenetic analyses of the Sinodielsia clade and Apioideae. Our study provided new insights into the phylogeny of the Sinodielsia clade and valuable information on cp. genome evolution in Apioideae.
Collapse
Affiliation(s)
- Long Weng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yunhui Jiang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yong Wang
- Yunnan Institute of Forest Inventory and Planning, Kunming, 650051, China
| | - Xuemei Zhang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ping Zhou
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Mei Wu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hongzhe Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shaotian Chen
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
7
|
Qin HH, Cai J, Liu CK, Zhou RX, Price M, Zhou SD, He XJ. The plastid genome of twenty-two species from Ferula, Talassia, and Soranthus: comparative analysis, phylogenetic implications, and adaptive evolution. BMC PLANT BIOLOGY 2023; 23:9. [PMID: 36604614 PMCID: PMC9814190 DOI: 10.1186/s12870-022-04027-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The Ferula genus encompasses 180-185 species and is one of the largest genera in Apiaceae, with many of Ferula species possessing important medical value. The previous studies provided more information for Ferula, but its infrageneric relationships are still confusing. In addition, its genetic basis of its adaptive evolution remains poorly understood. Plastid genomes with more variable sites have the potential to reconstruct robust phylogeny in plants and investigate the adaptive evolution of plants. Although chloroplast genomes have been reported within the Ferula genus, few studies have been conducted using chloroplast genomes, especially for endemic species in China. RESULTS Comprehensively comparative analyses of 22 newly sequenced and assembled plastomes indicated that these plastomes had highly conserved genome structure, gene number, codon usage, and repeats type and distribution, but varied in plastomes size, GC content, and the SC/IR boundaries. Thirteen mutation hotspot regions were detected and they would serve as the promising DNA barcodes candidates for species identification in Ferula and related genera. Phylogenomic analyses with high supports and resolutions showed that Talassia transiliensis and Soranthus meyeri were nested in the Ferula genus, and thus they should be transferred into the Ferula genus. Our phylogenies also indicated the monophyly of subgenera Sinoferula and subgenera Narthex in Ferula genus. Twelve genes with significant posterior probabilities for codon sites were identified in the positively selective analysis, and their function may relate to the photosystem II, ATP subunit, and NADH dehydrogenase. Most of them might play an important role to help Ferula species adapt to high-temperatures, strong-light, and drought habitats. CONCLUSION Plastome data is powerful and efficient to improve the support and resolution of the complicated Ferula phylogeny. Twelve genes with significant posterior probabilities for codon sites were helpful for Ferula to adapt to the harsh environment. Overall, our study supplies a new perspective for comprehending the phylogeny and evolution of Ferula.
Collapse
Affiliation(s)
- Huan-Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jing Cai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ren-Xiu Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Megan Price
- Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Liu C, Deng J, Zhou R, Song B, Zhou S, He X. Plastid Phylogenomics Provide Evidence to Accept Two New Members of Ligusticopsis (Apiaceae, Angiosperms). Int J Mol Sci 2022; 24:ijms24010382. [PMID: 36613825 PMCID: PMC9820081 DOI: 10.3390/ijms24010382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Peucedanum nanum and P. violaceum are recognized as members of the genus Peucedanum because of their dorsally compressed mericarps with slightly prominent dorsal ribs and narrowly winged lateral ribs. However, these species are not similar to other Peucedanum taxa but resemble Ligusticopsis in overall morphology. To check the taxonomic positions of P. nanum and P. violaceum, we sequenced their complete plastid genome (plastome) sequences and, together with eleven previously published Ligusticopsis plastomes, performed comprehensively comparative analyses. The thirteen plastomes were highly conserved and similar in structure, size, GC content, gene content and order, IR borders, and the patterns of codon bias, RNA editing, and simple sequence repeats (SSRs). Nevertheless, twelve mutation hotspots (matK, ndhC, rps15, rps8, ycf2, ccsA-ndhD, petN-psbM, psbA-trnK, rps2-rpoC2, rps4-trnT, trnH-psbA, and ycf2-trnL) were selected. Moreover, both the phylogenetic analyses based on plastomes and on nuclear ribosomal DNA internal transcribed spacer (ITS) sequences robustly supported that P. nanum and P. violaceum nested in Ligusticopsis, and this was further confirmed by the morphological evidence. Hence, transferring P. nanum and P. violaceum into Ligusticopsis genus is reasonable and convincing, and two new combinations are presented.
Collapse
Affiliation(s)
| | | | | | | | - Songdong Zhou
- Correspondence: (S.Z.); (X.H.); Tel.: +028-85415006 (X.H.)
| | - Xingjin He
- Correspondence: (S.Z.); (X.H.); Tel.: +028-85415006 (X.H.)
| |
Collapse
|
9
|
Song B, Liu C, Xie D, Xiao Y, Tian R, Li Z, Zhou S, He X. Plastid Phylogenomic Analyses Reveal the Taxonomic Position of Peucedanum franchetii. PLANTS (BASEL, SWITZERLAND) 2022; 12:97. [PMID: 36616226 PMCID: PMC9824613 DOI: 10.3390/plants12010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Peucedanum franchetii is a famous folk medicinal plant in China. However, the taxonomy of the P. franchetii has not been sufficiently resolved. Due to similar morphological features between P. franchetii and Ligusticopsis members, the World Flora Online (WFO) Plant List suggested that this species transformed into the genus Ligusticopsis and merged with Ligusticopsis likiangensis. However, both species are obviously diverse in leaf shape, bracts, and bracteoles. To check the taxonomic position of P. franchetii, we newly sequenced and assembled the plastome of P. franchetii and compared it with nine other plastomes of the genus Ligusticopsis. Ten plastomes were highly conserved and similar in gene order, codon bias, RNA editing sites, IR borders, and SSRs. Nevertheless, 10 mutation hotspot regions (infA, rps8, matK, ndhF, rps15, psbA-trnH, rps2-rpoC2, psbA-trnK, ycf2-trnL, and ccsA-ndhD) were still detected. In addition, both phylogenetic analyses based on plastome data and ITS sequences robustly supported that P. franchetii was not clustered with members of Peucedanum but nested in Ligusticopsis. P. franchetii was sister to L. likiangensis in the ITS topology but clustered with L. capillacea in the plastome tree. These findings implied that P. franchetii should be transferred to genus Ligusticopsis and not merged with L. likiangensis, but as an independent species, which was further verified by morphological evidences. Therefore, transferring P. franchetii under the genus Ligusticopsis as an independent species was reasonable, and a new combination was presented.
Collapse
|
10
|
Lei JQ, Liu CK, Cai J, Price M, Zhou SD, He XJ. Evidence from Phylogenomics and Morphology Provide Insights into the Phylogeny, Plastome Evolution, and Taxonomy of Kitagawia. PLANTS (BASEL, SWITZERLAND) 2022; 11:3275. [PMID: 36501315 PMCID: PMC9740501 DOI: 10.3390/plants11233275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Kitagawia Pimenov is one of the segregate genera of Peucedanum sensu lato within the Apiaceae. The phylogenetic position and morphological delimitation of Kitagawia have been controversial. In this study, we used plastid genome (plastome) and nuclear ribosomal DNA (nrDNA) sequences to reconstruct the phylogeny of Kitagawia, along with comparative plastome and morphological analyses between Kitagawia and related taxa. The phylogenetic results identified that all examined Kitagawia species were divided into Subclade I and Subclade II within the tribe Selineae, and they were all distant from the representative members of Peucedanum sensu stricto. The plastomes of Kitagawia and related taxa showed visible differences in the LSC/IRa junction (JLA) and several hypervariable regions, which separated Subclade I and Subclade II from other taxa. Fruit anatomical and micromorphological characteristics, as well as general morphological characteristics, distinguished the four Kitagawia species within Subclade I from Subclade II and other related genera. This study supported the separation of Kitagawia from Peucedanum sensu lato, confirmed that Kitagawia belongs to Selineae, and two species (K. praeruptora and K. formosana) within Subclade II should be placed in a new genus. We believe that the "core" Kitagawia should be limited to Subclade I, and this genus can be distinguished by the association of a series of morphological characteristics. Overall, our study provides new insights into the phylogeny, plastome evolution, and taxonomy of Kitagawia.
Collapse
Affiliation(s)
- Jia-Qing Lei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Cai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Megan Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Cai J, Qin HH, Lei JQ, Liu CK, He XJ, Zhou SD. The phylogeny of Seseli (Apiaceae, Apioideae): insights from molecular and morphological data. BMC PLANT BIOLOGY 2022; 22:534. [PMID: 36380268 PMCID: PMC9667662 DOI: 10.1186/s12870-022-03919-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The genus Seseli L., which consists of 125-140 species distributed in the Old World from western Europe and northwestern Africa to China and Japan, is one of the largest and most taxonomically difficult genera of Apiaceae Lindl. Although several previous studies have been conducted on Seseli based on limited morphological characteristics and molecular fragments, a robust and comprehensive phylogeny of Seseli remains elusive. Plastomes provide abundant genetic information and have been widely used in studying plant phylogeny and evolution. Consequently, we newly generated the complete plastomes of eleven Seseli taxa. We combined plastome data and morphological characteristics to investigate the phylogeny of Seseli. RESULTS In our study, we observed that the genome length, gene numbers, IR/SC borders, and repeat composition of the eleven Seseli plastomes were variable. Several appropriate mutation hotspot regions may be developed as candidate DNA barcodes for evolution, phylogeny, and species identification of Seseli. The phylogenetic results identified that Seseli was not a monophyletic group. Moreover, the eleven newly sequenced Seseli taxa did not cluster with S. tortuosum (the type species of Seseli, belonging to the tribe Selineae), where S. delavayi clustered with Eriocycla belonging to the tribe Echinophoreae and the other ten belonged to Selineae. The comparative plastome and morphological characteristics analyses confirmed the reliability of the phylogenetic analyses and implied the complex evolution of Seseli. CONCLUSION Combining molecular and morphological data is efficient and useful for studying the phylogeny of Seseli. We suggest that "a narrow sense" of Seseli will be meaningful for further study and the current taxonomic system of Seseli needs to be revised. In summary, our study can provide new insights into the phylogenetic relationships and taxonomic framework of Seseli.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huan-Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jia-Qing Lei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
12
|
Jiang QP, Price M, Zhang XY, He XJ. Hanseniatrifoliolata, a new species (Apiaceae) from Shaanxi, China. PHYTOKEYS 2022; 213:79-93. [PMID: 36762253 PMCID: PMC9836542 DOI: 10.3897/phytokeys.213.83632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/11/2022] [Indexed: 06/18/2023]
Abstract
Hanseniatrifoliolata Q.P.Jiang & X.J.He (Apiaceae), is described as new from Shaanxi Province, northwest China. The mericarp features of H.trifoliolata resemble H.himalayensis and H.phaea and molecular phylogenetic analyses (combining ITS and plastid genomes data) suggest that H.trifoliolata is closely related to the group formed by H.oviformis and H.forbesii. The new species H.trifoliolata has unique 3-foliolate leaves and differ from other Hansenia species in its leaves, umbel numbers and size. A comprehensive description of H.trifoliolata is provided, including habitat environment and detailed morphological traits.
Collapse
Affiliation(s)
- Qiu-Ping Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, ChinaSichuan UniversityChengduChina
| | - Megan Price
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, ChinaSichuan UniversityChengduChina
| | - Xiang-Yi Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, ChinaSichuan UniversityChengduChina
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, ChinaSichuan UniversityChengduChina
| |
Collapse
|
13
|
Li Y, Wang TR, Kozlowski G, Liu MH, Yi LT, Song YG. Complete Chloroplast Genome of an Endangered Species Quercus litseoides, and Its Comparative, Evolutionary, and Phylogenetic Study with Other Quercus Section Cyclobalanopsis Species. Genes (Basel) 2022; 13:genes13071184. [PMID: 35885967 PMCID: PMC9316884 DOI: 10.3390/genes13071184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Quercus litseoides, an endangered montane cloud forest species, is endemic to southern China. To understand the genomic features, phylogenetic relationships, and molecular evolution of Q. litseoides, the complete chloroplast (cp) genome was analyzed and compared in Quercus section Cyclobalanopsis. The cp genome of Q. litseoides was 160,782 bp in length, with an overall guanine and cytosine (GC) content of 36.9%. It contained 131 genes, including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. A total of 165 simple sequence repeats (SSRs) and 48 long sequence repeats with A/T bias were identified in the Q. litseoides cp genome, which were mainly distributed in the large single copy region (LSC) and intergenic spacer regions. The Q. litseoides cp genome was similar in size, gene composition, and linearity of the structural region to those of Quercus species. The non-coding regions were more divergent than the coding regions, and the LSC region and small single copy region (SSC) were more divergent than the inverted repeat regions (IRs). Among the 13 divergent regions, 11 were in the LSC region, and only two were in the SSC region. Moreover, the coding sequence (CDS) of the six protein-coding genes (rps12, matK, atpF, rpoC2, rpoC1, and ndhK) were subjected to positive selection pressure when pairwise comparison of 16 species of Quercus section Cyclobalanopsis. A close relationship between Q. litseoides and Quercus edithiae was found in the phylogenetic analysis of cp genomes. Our study provided highly effective molecular markers for subsequent phylogenetic analysis, species identification, and biogeographic analysis of Quercus.
Collapse
Affiliation(s)
- Yu Li
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (Y.L.); (M.-H.L.)
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (T.-R.W.); (G.K.)
| | - Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (T.-R.W.); (G.K.)
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (T.-R.W.); (G.K.)
- Department of Biology and Botanic Garden, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Natural History Museum Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
| | - Mei-Hua Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (Y.L.); (M.-H.L.)
| | - Li-Ta Yi
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (Y.L.); (M.-H.L.)
- Correspondence: (L.-T.Y.); (Y.-G.S.)
| | - Yi-Gang Song
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (Y.L.); (M.-H.L.)
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (T.-R.W.); (G.K.)
- Correspondence: (L.-T.Y.); (Y.-G.S.)
| |
Collapse
|
14
|
Li ZX, Guo XL, Price M, Zhou SD, He XJ. Phylogenetic position of Ligusticopsis (Apiaceae, Apioideae): evidence from molecular data and carpological characters. AOB PLANTS 2022; 14:plac008. [PMID: 35475242 PMCID: PMC9035215 DOI: 10.1093/aobpla/plac008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 03/02/2022] [Indexed: 05/13/2023]
Abstract
Ligusticopsis (Apiaceae, Apioideae) is now considered to have an East-Asia and Sino-Himalaya distribution. The genus was not recognized as a natural and separate genus and was treated as a synonym of Ligusticum both in Flora Reipublicae Popularis Sinicae and Flora of China since first established, though Pimenov et al. have made many taxonomic revisions to Ligusticopsis, phylogenetic relationships between Ligusticopsis and Ligusticum have been in dispute. Thirty-four plastomes and 35 nrITS from Apioideae were analysed by RAxML and MrBayes to reconstruct the phylogenetic relationships, along with carpology of 10 species and comparative analyses of 17 plastomes to investigate the evidence supporting the independence of Ligusticopsis. As a result, nine species suggested to be Ligusticopsis formed a highly supported monophyletic branch (Subclade A) inside Selineae both in maximum likelihood and Bayesian inference; the results of the comparative analyses further supported the monophyly of Subclade A, mainly in the location of genes at the IRa/LSC boundary, the sequence diversity exhibited by various genes (e.g. trnH-GUG-psbA and ycf2) and same codon biases in terminator TAA (relative synonymous codon usage = 1.75). Species in Subclade A also had shared characters in mericarps, combined with other characters of the plant, 'base clothed in fibrous remnant sheaths, pinnate bracts, pinnate bracteoles longer than rays of umbellule, mericarps strongly compressed dorsally, median and lateral ribs filiform or keeled, marginal ribs winged, and numerous vittae in commissure and each furrow' should be the most important and diagnostic characters of Ligusticopsis. Our phylogenetic trees and other analyses supported the previous taxonomic treatments of Pimenov et al. that Ligusticopsis should be a natural and separate genus rather than a synonym of Ligusticum.
Collapse
Affiliation(s)
- Zi-Xuan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Xian-Lin Guo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Megan Price
- Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Corresponding authors’ e-mail addresses: ;
| | - Xing-Jin He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Corresponding authors’ e-mail addresses: ;
| |
Collapse
|
15
|
Samigullin T, Logacheva M, Terentieva E, Degtjareva G, Pimenov M, Valiejo-Roman C. Plastid Phylogenomic Analysis of Tordylieae Tribe (Apiaceae, Apioideae). PLANTS (BASEL, SWITZERLAND) 2022; 11:709. [PMID: 35270181 PMCID: PMC8912408 DOI: 10.3390/plants11050709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Based on the nrDNA ITS sequence data, the Tordylieae tribe is recognized as monophyletic with three major lineages: the subtribe Tordyliinae, the Cymbocarpum clade, and the Lefebvrea clade. Recent phylogenomic investigations showed incongruence between the nuclear and plastid genome evolution in the tribe. To assess phylogenetic relations and structure evolution of plastomes in Tordylieae, we generated eleven complete plastome sequences using the genome skimming approach and compared them with the available data from this tribe and close relatives. Newly assembled plastomes had lengths ranging from 141,148 to 150,103 base pairs and contained 122-127 genes, including 79-82 protein-coding genes, 35-37 tRNAs, and 8 rRNAs. We observed substantial differences in the inverted repeat length and gene content, accompanied by a complex picture of multiple JLA and JLB shifts. In concatenated phylogenetic analyses, Tordylieae plastomes formed at least three not closely related lineages with plastomes of the Lefebvrea clade as a sister group to plastomes from the Selineae tribe. The newly obtained data have increased our knowledge on the range of plastome variability in Apiaceae.
Collapse
Affiliation(s)
- Tahir Samigullin
- Department of Evolutionary Biochemistry, A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory 1–40, 119992 Moscow, Russia; (M.L.); (C.V.-R.)
| | - Maria Logacheva
- Department of Evolutionary Biochemistry, A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory 1–40, 119992 Moscow, Russia; (M.L.); (C.V.-R.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Elena Terentieva
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119992 Moscow, Russia; (E.T.); (G.D.); (M.P.)
| | - Galina Degtjareva
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119992 Moscow, Russia; (E.T.); (G.D.); (M.P.)
| | - Michael Pimenov
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119992 Moscow, Russia; (E.T.); (G.D.); (M.P.)
| | - Carmen Valiejo-Roman
- Department of Evolutionary Biochemistry, A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory 1–40, 119992 Moscow, Russia; (M.L.); (C.V.-R.)
| |
Collapse
|
16
|
Liu CK, Lei JQ, Jiang QP, Zhou SD, He XJ. The complete plastomes of seven Peucedanum plants: comparative and phylogenetic analyses for the Peucedanum genus. BMC PLANT BIOLOGY 2022; 22:101. [PMID: 35255817 PMCID: PMC8900453 DOI: 10.1186/s12870-022-03488-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/02/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND The Peucedanum genus is the backbone member of Apiaceae, with many economically and medically important plants. Although the previous studies on Peucedanum provide us with a good research basis, there are still unclear phylogenetic relationships and many taxonomic problems in Peucedanum, and a robust phylogenetic framework of this genus still has not been obtained, which severely hampers the improvement and revision of taxonomic system for this genus. The plastid genomes possessing more variable characters have potential for reconstructing a robust phylogeny in plants. RESULTS In the current study, we newly sequenced and assembled seven Peucedanum plastid genomes. Together with five previously published plastid genomes of Peucedanum, we performed a comprehensively comparative analyses for this genus. Twelve Peucedanum plastomes were similar in terms of genome structure, codon bias, RNA editing sites, and SSRs, but varied in genome size, gene content and arrangement, and border of SC/IR. Fifteen mutation hotspot regions were identified among plastid genomes that can serve as candidate DNA barcodes for species identification in Peucedanum. Our phylogenetic analyses based on plastid genomes generated a phylogeny with high supports and resolutions for Peucedanum that robustly supported the non-monophyly of genus Peucedanum. CONCLUSION The plastid genomes of Peucedanum showed both conservation and diversity. The plastid genome data were efficient and powerful for improving the supports and resolutions of phylogeny for the complex Peucedanum genus. In summary, our study provides new sights into the plastid genome evolution, taxonomy, and phylogeny for Peucedanum species.
Collapse
Affiliation(s)
- Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jia-Qing Lei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qiu-Ping Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
17
|
Palumbo F, Vannozzi A, Barcaccia G. Impact of Genomic and Transcriptomic Resources on Apiaceae Crop Breeding Strategies. Int J Mol Sci 2021; 22:ijms22189713. [PMID: 34575872 PMCID: PMC8465131 DOI: 10.3390/ijms22189713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/18/2023] Open
Abstract
The Apiaceae taxon is one of the most important families of flowering plants and includes thousands of species used for food, flavoring, fragrance, medical and industrial purposes. This study had the specific intent of reviewing the main genomics and transcriptomic data available for this family and their use for the constitution of new varieties. This was achieved starting from the description of the main reproductive systems and barriers, with particular reference to cytoplasmic (CMS) and nuclear (NMS) male sterility. We found that CMS and NMS systems have been discovered and successfully exploited for the development of varieties only in Foeniculum vulgare, Daucus carota, Apium graveolens and Pastinaca sativa; whereas, strategies to limit self-pollination have been poorly considered. Since the constitution of new varieties benefits from the synergistic use of marker-assisted breeding in combination with conventional breeding schemes, we also analyzed and discussed the available SNP and SSR marker datasets (20 species) and genomes (8 species). Furthermore, the RNA-seq studies aimed at elucidating key pathways in stress tolerance or biosynthesis of the metabolites of interest were limited and proportional to the economic weight of each species. Finally, by aligning 53 plastid genomes from as many species as possible, we demonstrated the precision offered by the super barcoding approach to reconstruct the phylogenetic relationships of Apiaceae species. Overall, despite the impressive size of this family, we documented an evident lack of molecular data, especially because genomic and transcriptomic resources are circumscribed to a small number of species. We believe that our contribution can help future studies aimed at developing molecular tools for boosting breeding programs in crop plants of the Apiaceae family.
Collapse
|