1
|
Pessoa HR, Zago L, Difonzo G, Pasqualone A, Caponio F, Ferraz da Costa DC. Olive Leaves as a Source of Anticancer Compounds: In Vitro Evidence and Mechanisms. Molecules 2024; 29:4249. [PMID: 39275097 PMCID: PMC11397062 DOI: 10.3390/molecules29174249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Olive trees not only produce olives but also generate a substantial amount of waste and by-products, including leaves, pomace (the solid remains after pressing olives for oil), and wastewater from the olive oil-making process. The waste products, particularly the leaves, contain bioactive compounds, especially phenolic compounds, known for their health benefits, such as high antioxidant potential and the ability to reduce inflammation. These compounds have shown promise in preventing and treating cancer. This review, based on in vitro evidence, provides a detailed description and discussion of the mechanisms through which these compounds from olive leaves can prevent development, the ways they might act against cancer cells, and their potential to increase the sensitivity of tumor cells to conventional anticancer therapy. The possible synergistic effects of these compounds suggest that olive leaf extracts may offer a promising approach for cancer treatment, compared with isolated compounds, thus providing novel possibilities for cancer therapy.
Collapse
Affiliation(s)
- Heloisa Rodrigues Pessoa
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| | - Lilia Zago
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola 165/A, I-70126 Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola 165/A, I-70126 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola 165/A, I-70126 Bari, Italy
| | - Danielly C Ferraz da Costa
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| |
Collapse
|
2
|
Borghini F, Tamasi G, Loiselle SA, Baglioni M, Ferrari S, Bisozzi F, Costantini S, Tozzi C, Riccaboni A, Rossi C. Phenolic Profiles in Olive Leaves from Different Cultivars in Tuscany and Their Use as a Marker of Varietal and Geographical Origin on a Small Scale. Molecules 2024; 29:3617. [PMID: 39125022 PMCID: PMC11314593 DOI: 10.3390/molecules29153617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Olive leaves are a rich source of polyphenols with healthful properties and represent one of the most abundant waste products of olive oil production. The aims of this study were to explore the phenolic composition of olive leaves from the three main Tuscan cultivars (Leccino, Moraiolo and Frantoio) collected in Siena and Grosseto provinces and to investigate the possible use of these compounds as varietal and geographic origin markers. Discriminant factorial analysis (DFA) was used for distinguishing between different cultivars and locations. Apigenin and caffeoyl-secologanoside showed significant differences between cultivars. DFA showed that ligstroside, apigenin and luteolin have the most influence in determining the differences between sites, whereas total polyphenols, olacein and hydroxytyrosol acetate allowed for separation between leaves from the same province. The results of the present study indicate that concentrations of phenolic compounds, measured through high-resolution mass spectrometry, can be used as a marker for both the cultivar and of geographical origin of olive leaves, and possibly of olive-related products, as well as across small geographic scales (less than 50 km distance between sites).
Collapse
Affiliation(s)
- Francesca Borghini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Santa Chiara Lab, University of Siena, Via Valdimontone 1, 53100 Siena, Italy; (C.T.); (A.R.)
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Steven Arthur Loiselle
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Michele Baglioni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Stefano Ferrari
- ISVEA, Istituto per Lo Sviluppo Viticolo Enologico ed Agroindustriale, Via Basilicata 1-5, Località Fosci, 53036 Poggibonsi, Italy;
| | - Flavia Bisozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Sara Costantini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Cristiana Tozzi
- Santa Chiara Lab, University of Siena, Via Valdimontone 1, 53100 Siena, Italy; (C.T.); (A.R.)
| | - Angelo Riccaboni
- Santa Chiara Lab, University of Siena, Via Valdimontone 1, 53100 Siena, Italy; (C.T.); (A.R.)
- Department of Business and Law, University of Siena, Piazza San Francesco 8, 53100 Siena, Italy
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (S.A.L.); (M.B.); (F.B.); (S.C.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Magyari-Pavel IZ, Moacă EA, Avram Ș, Diaconeasa Z, Haidu D, Ștefănuț MN, Rostas AM, Muntean D, Bora L, Badescu B, Iuhas C, Dehelean CA, Danciu C. Antioxidant Extracts from Greek and Spanish Olive Leaves: Antimicrobial, Anticancer and Antiangiogenic Effects. Antioxidants (Basel) 2024; 13:774. [PMID: 39061845 PMCID: PMC11273738 DOI: 10.3390/antiox13070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Olea europaea L. is the most valuable species of the Olea type, and its products offer a wide range of therapeutical uses. The olive tree has been extensively studied for its nourishing qualities, and the "Mediterranean diet", which includes virgin olive oil as a key dietary component, is strongly associated with a reduced risk of cardiovascular disease and various malignancies. Olive leaves, a by-product in the olive harvesting process, are valued as a resource for developing novel phytomedicines. For this purpose, two ethanolic extracts obtained from Olivae folium from Spain (OFS) and Greece (OFG) were investigated. Our findings contribute to a wider characterization of olive leaves. Both extracts displayed important amounts of phenolic compounds and pentacyclic triterpenes, OFG having higher concentrations of both polyphenols, such as oleuropein and lutein, as well as triterpenes, such as oleanolic acid and maslinic acid. The antioxidant capacity is similar for the two extracts, albeit slightly higher for OFG, possibly due to metal polyphenol complexes with antioxidant activity. The extracts elicited an antimicrobial effect at higher doses, especially against Gram-positive bacteria, such as Streptococcus pyogenes. The extract with lower inorganic content and higher content of polyphenols and triterpenic acids induced a strong anti-radical capacity, a selective cytotoxic effect, as well as antimigratory potential on A375 melanoma cells and antiangiogenic potential on the CAM. No irritability and a good tolerability were noted after evaluating the extracts on the in vivo Hen's Egg Test-Chorioallantoic Membrane (HET-CAM). Therefore, the present data are suggestive for the possible use of the two types of olive leaf products as high-antioxidant extracts, potentially impacting the healthcare system through their use as antimicrobial agents and as anticancer and anti-invasion treatments for melanoma.
Collapse
Affiliation(s)
- Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.Z.M.-P.); (L.B.); (C.D.)
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (E.-A.M.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ștefana Avram
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.Z.M.-P.); (L.B.); (C.D.)
| | - Zorița Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania;
| | - Daniela Haidu
- Romanian Academy “Coriolan Dragulescu” Institute of Chemistry, Bv. M. Viteazu, No. 24, 300223 Timisoara, Romania;
| | - Mariana Nela Ștefănuț
- Department of Chemical and Electrochemical Syntheses, Laboratory of Electrochemical and Chemical Technologies, National Institute of Research and Development for Electrochemistry and Condensed Matter, Dr. A. P. Podeanu 144, 300569 Timişoara, Romania;
| | - Arpad Mihai Rostas
- National Institute for Research and Development of Isotopic and Molecular Technologies-INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania;
| | - Delia Muntean
- Department of Microbiology, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.Z.M.-P.); (L.B.); (C.D.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania;
| | - Cristian Iuhas
- Department of Obstetrics and Gynecology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street No. 8, 400012 Cluj-Napoca, Romania;
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (E.-A.M.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.Z.M.-P.); (L.B.); (C.D.)
| |
Collapse
|
4
|
Carrara M, Kelly MT, Griffin L, Margout-Jantac D. Development and cross-validation of simple HPLC-fluorescence and UPLC-MS-UV methods for rapid determination of oleuropein in olive leaves. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:476-482. [PMID: 37984858 DOI: 10.1002/pca.3302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Olive leaves, abundant by-products of the olive oil industry, are a rich source of oleuropein, an important polyphenol in olive leaves. So far, no published methods have been validated using matrix standards for oleuropein quantification in olive leaves. OBJECTIVES The study aimed to develop an HPLC method for oleuropein determination in olive leaves using spiked matrix standards prepared from a blank olive leaf matrix, to validate the method with respect to aqueous standards, and cross-validate the HPLC method with UPLC-MS and UPLC-UV techniques. METHODOLOGY Oleuropein was extracted into methanol and analysed by HPLC with fluorescence detection (FLD; excitation and emission wavelengths 281 and 316 nm, respectively) and by UPLC-MS-UV. For validation, calibration curves of spiked matrix standards (0.4 to 4.8 mg/g) were analysed by the three methods over several days. Oleuropein was then analysed in French olive varieties. RESULTS For the HPLC-FLD method, repeatability and intermediate precision were less than 5% RSD and linearity was demonstrated by the Fischer test. Differences in results of the spiked placebos by the three methods were non-significant, as confirmed by ANOVA. Extraction recovery was >90%, and there was a strong linear relationship between authentic and spiked matrix standards. The determination of oleuropein in French olive varieties is reported, including analysis in "Olivière" cultivar for the first time, leaves of which contained twice the amount of oleuropein compared with "Picholine". CONCLUSION Accurate quantification of oleuropein is possible using aqueous standards. Cross-validation indicates that selective analysis can equally be carried out by HPLC or by UPLC-MS techniques.
Collapse
Affiliation(s)
- Morgane Carrara
- Qualisud Mixed Research Unit, Faculté de Sciences Pharmaceutiques, Université de Montpellier, Montpellier, France
| | - Mary T Kelly
- Qualisud Mixed Research Unit, Faculté de Sciences Pharmaceutiques, Université de Montpellier, Montpellier, France
| | - Lauren Griffin
- School of Pharmacy, Trinity College, University of Dublin, Dublin, Ireland
| | - Delphine Margout-Jantac
- Qualisud Mixed Research Unit, Faculté de Sciences Pharmaceutiques, Université de Montpellier, Montpellier, France
| |
Collapse
|
5
|
Mohammed KAS, Hussein HM, Elshamly AMS. Monitoring plant responses in field-grown peanuts exposed to exogenously applied chitosan under full and limited irrigation levels. Sci Rep 2024; 14:6244. [PMID: 38485993 PMCID: PMC10940646 DOI: 10.1038/s41598-024-56573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
In recent decades, numerous studies have examined the effects of climate change on the responses of plants. These studies have primarily examined the effects of solitary stress on plants, neglecting the simultaneous effects of mixed stress, which are anticipated to transpire frequently as a result of the extreme climatic fluctuations. Therefore, this study investigated the impact of applied chitosan on boosting the resistance responses of peanuts to alkali and mixed drought-alkali stresses. Peanuts were grown in mid-alkaline soil and irrigated with full irrigation water requirements (100%IR), represented alkali condition (100% IR × alkali soil) and stress conditions (70% IR × alkali soil-represented mixed drought-alkali conditions). Additionally, the plants were either untreated or treated with foliar chitosan. The study evaluated various plant physio-chemical characteristics, including element contents (leaves and roots), seed yield, and irrigation water use efficiency (IWUE). Plants that experienced solitary alkali stress were found to be more vulnerable. However, chitosan applications were effective for reducing (soil pH and sodium absorption), alongside promoting examined physio-chemical measurements, yield traits, and IWUE. Importantly, when chitosan was applied under alkali conditions, the accumulations of (phosphorus, calcium, iron, manganese, zinc, and copper) in leaves and roots were maximized. Under mixed drought-alkali stresses, the results revealed a reduction in yield, reaching about 5.1 and 5.8% lower than under (100% IR × alkali), in the first and second seasons, respectively. Interestingly, treated plants under mixed drought-alkali stresses with chitosan recorded highest values of relative water content, proline, yield, IWUE, and nutrient uptake of (nitrogen, potassium, and magnesium) as well as the lowest sodium content in leaves and roots. Enhances the accumulation of (N, K, and Mg) instead of (phosphorus, calcium, iron, manganese, zinc, and copper) was the primary plant response to chitosan applications, which averted severe damage caused by mixed drought-alkali conditions, over time. These findings provide a framework of the nutrient homeostasis changes induced by chitosan under mixed stresses. Based on the findings, it is recommended under mixed drought-alkali conditions to treat plants with chitosan. This approach offers a promising perspective for achieving optimal yield with reduced water usage.
Collapse
Affiliation(s)
- Kassem A S Mohammed
- Institute of African and Nile Basin Countries Research and Studies, Aswan University, Aswan, Egypt
| | - Hussein Mohamed Hussein
- Institute of African and Nile Basin Countries Research and Studies, Aswan University, Aswan, Egypt
- Water Studies and Research Complex. National Water Research Center, Cairo, Egypt
| | - Ayman M S Elshamly
- Water Studies and Research Complex. National Water Research Center, Cairo, Egypt.
| |
Collapse
|
6
|
Prelac M, Major N, Cvitan D, Anđelini D, Repajić M, Ćurko J, Kovačević TK, Goreta Ban S, Užila Z, Ban D, Palčić I. Valorization of Olive Leaf Polyphenols by Green Extraction and Selective Adsorption on Biochar Derived from Grapevine Pruning Residues. Antioxidants (Basel) 2023; 13:1. [PMID: 38275621 PMCID: PMC10812658 DOI: 10.3390/antiox13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Given today's increasingly intensive agriculture, one key problem area considers the valorization and reuse of wastes from food and agricultural production with minimal impact on the environment. Due to its physicochemical characteristics, biochar (BC) derived from grapevine pruning residue has shown considerable potential for use as an adsorbent. High-value phytochemicals found in abundance in the olive leaf (OL) can be employed in many different industrial sectors. The potential application of BC in the removal of specific polyphenolic components from OL extracts has been investigated in the present study. Water, as the most available and greenest of solvents, was investigated as to its use in the extraction of polyphenols, which was carried out by comparing maceration, ultrasound-assisted extraction, and microwave-assisted extraction, considering different temperatures and solid-to-liquid (s/l) ratios. The BC adsorption capacity of selected polyphenols was fitted with both the Langmuir and Freundlich isotherm models. The Freundlich model fitted better relative to OL polyphenols adsorption. Oleuropein was the most abundant compound identified in the extracts, obtaining the highest Kf value (20.4 (mg/g) × (L/g)n) and R2 coefficient (0.9715) in the adsorption on the biochar's surface. The optimum conditions in the dosage experiment suggest the use of 0.5 g of BC using 3 g/L extracts, with an exception for oleuropein and hydroxytyrosol, for which the highest biochar dose (2.5 g) performed better. Considering the compounds' concentrations and the BC dose, BC from grapevine pruning residues demonstrated a potential use in the uptake of specific polyphenols from olive leaves, making it a promising adsorbent for such applications.
Collapse
Affiliation(s)
- Melissa Prelac
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Danko Cvitan
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Dominik Anđelini
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Maja Repajić
- Department of Food Engineering, University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (J.Ć.)
| | - Josip Ćurko
- Department of Food Engineering, University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (J.Ć.)
| | - Tvrtko Karlo Kovačević
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Zoran Užila
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Igor Palčić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| |
Collapse
|
7
|
Liao G, Ning X, Yang Y, Wang Z, Fan G, Wang X, Fu D, Liu J, Tang M, Chen S, Wang J. Main Habitat Factors Driving the Phenotypic Diversity of Litsea cubeba in China. PLANTS (BASEL, SWITZERLAND) 2023; 12:3781. [PMID: 37960137 PMCID: PMC10648399 DOI: 10.3390/plants12213781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Litsea cubeba (Lour.) Pers. is an important woody spice tree in southern China, and its fruit is a rich source of valuable essential oil. We surveyed and sampled L. cubeba germplasm resources from 36 provenances in nine Chinese provinces, and detected rich phenotypic diversity. The survey results showed that plants of SC-KJ, SC-HJ, and SC-LS provenance presented higher leaf area (LA); YN-SM and YN-XC plants had larger thousand-grain fresh weight (TFW); and HN-DX plants had the highest essential oil content (EOC). To explain the large differences in the phenotypes of L. cubeba among different habitats, we used Pearson's correlation analysis, multiple stepwise regression path analysis, and redundancy analysis to evaluate the phenotypic diversity of L. cubeba. It was found that compared to other traits, leaf and fruit traits had more significant geographical distributions, and that leaf phenotypes were correlated to fruit phenotypes. The results showed that elevation, latitude, longitude, total soil porosity (SP), soil bulk density (SBD), and average annual rainfall (AAR, mm) contributed significantly to the phenotypic diversity of L. cubeba. Geographical factors explained a higher percentage of variation in phenotypic diversity than did soil factors and climate factors. Plants of SC-KJ and HN-DX provenances could be important resources for domestication and breeding to develop new high-yielding varieties of this woody aromatic plant. This study describes significant phenotypic differences in L. cubeba related to adaptation to different environments, and provides a theoretical basis for the development of a breeding strategy and for optimizing L. cubeba cultivation.
Collapse
Affiliation(s)
- Guoxiang Liao
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaodan Ning
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuling Yang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zongde Wang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guorong Fan
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuefang Wang
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dan Fu
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Juan Liu
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ming Tang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shangxing Chen
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiawei Wang
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (G.L.); (X.N.)
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
8
|
Zakraoui M, Hannachi H, Pasković I, Vidović N, Polić Pasković M, Palčić I, Major N, Goreta Ban S, Hamrouni L. Effect of Geographical Location on the Phenolic and Mineral Composition of Chetoui Olive Leaves. Foods 2023; 12:2565. [PMID: 37444304 DOI: 10.3390/foods12132565] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we investigated the influence of pedological parameters and variation of altitude on the mineral nutrients, phenolic compounds, and antioxidant activities of olive leaves. Samples of the Chetoui cultivar were collected from eight geographical locations with different altitudes. Levels of phenolic compounds varied according to the altitude. Classification of the locations revealed that altitude 1 (>500 m) was characterized by high levels of secoiridoids and simple phenols, while altitude 2 (500-300 m) and altitude 3 (<300 m) were higher in flavonoids. Levels of Mn, Ca and B in the leaves and level of Zn in the soil were significantly correlated with the abundance of oleuropein and luteolin-7-O glucoside, the most important phenols in Chetoui olive leaves. The results suggest that, in addition to pedological criteria, environmental conditions also influence the formation of phenolic compounds.
Collapse
Affiliation(s)
- Mariem Zakraoui
- Laboratory of Management and Valorization of Forest Resources, National Researches Institute of Water, Forests and Rural Engineering, University of Carthage, Ariana 2080, Tunisia
- Faculty of Sciences of Tunis, University of El Manar, Tunis 2092, Tunisia
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint, Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2029, Tunisia
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Nikolina Vidović
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Igor Palčić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Nikola Major
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Smiljana Goreta Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Researches Institute of Water, Forests and Rural Engineering, University of Carthage, Ariana 2080, Tunisia
| |
Collapse
|
9
|
Pongrac P, Kelemen M, Vogel-Mikuš K, Vavpetič P, Pelicon P, Žurga P, Vidović N, Polić Pasković M, Smiljana GB, Lukić I, Pasković I. Tissue-specific calcium and magnesium allocation to explain differences in bulk concentration in leaves of one-year-old seedlings of two olive (Olea europaea L.) cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:619-626. [PMID: 36535101 DOI: 10.1016/j.plaphy.2022.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Olive tree (Olea europaea L.) leaves have recently been recognised as a valuable source in cosmetic and pharmaceutical industry as well as in preparation of health-supporting beverages. Little is known about the element composition of olive leaves and almost nothing about tissue-specific allocation of elements. Element composition and tissue-specific distribution were determined in leaves of two olive cultivars, Leccino and Istarska bjelica using micro-particle induced X-ray emission (micro-PIXE). In leaves of the Istarska bjelica cultivar larger bulk concentrations of potassium, sodium, molybdenum and boron, but smaller concentrations of calcium and magnesium were found than in leaves of the Leccino cultivar. Tissue-specific investigation revealed that larger concentration of calcium in epidermis and in leaf blade tissues (secondary veins, palisade and spongy mesophyll) contributed to the larger leaf bulk calcium concentration in the Leccino cultivar. For magnesium, all leaf tissues, except the bundle sheath cells and consequently the main vascular bundle, contributed to the larger bulk concentration in the Leccino cultivar. Potassium was not predominant in any of the leaf tissues examined, while sodium and molybdenum were below the limit of detection, and boron not detectable by micro-PIXE. The results indicate that sinks for calcium and magnesium are stronger in specific leaf tissues of the Leccino than of the Istarska bjelica cultivar. The new understanding of tissue-specific allocation of elements in leaves of olive will serve as a basis for detailed studies into the effects of foliar and/or soil fertilisers in olive.
Collapse
Affiliation(s)
- Paula Pongrac
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia; Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| | - Mitja Kelemen
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia; Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Primož Vavpetič
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Primož Pelicon
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Paula Žurga
- Teaching Institute of Public Health Primorsko-Goranska County, Krešimirova 52a, 51000, Rijeka, Croatia
| | - Nikolina Vidović
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440, Poreč, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440, Poreč, Croatia
| | - Goreta Ban Smiljana
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440, Poreč, Croatia; Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000, Zagreb, Croatia
| | - Igor Lukić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440, Poreč, Croatia; Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000, Zagreb, Croatia
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440, Poreč, Croatia
| |
Collapse
|
10
|
Difonzo G, Crescenzi MA, Piacente S, Altamura G, Caponio F, Montoro P. Metabolomics Approach to Characterize Green Olive Leaf Extracts Classified Based on Variety and Season. PLANTS (BASEL, SWITZERLAND) 2022; 11:3321. [PMID: 36501360 PMCID: PMC9735528 DOI: 10.3390/plants11233321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The huge interest in the health-related properties of plant polyphenols to be applied in food and health-related sectors has brought about the development of sensitive analytical methods for metabolomic characterization. Olive leaves constitute a valuable waste rich in polyphenols with functional properties. A (HR)LC-ESI-ORBITRAP-MS analysis with a multivariate statistical analysis approach using PCA and/or PLS-DA projection methods were applied to identify polyphenols in olive leaf extracts of five varieties from the Apulia region (Italy) in two different seasonal times. A total of 26 metabolites were identified, further finding that although metabolites are common among the different cultivars, they differ in the relative intensity of each peak and within each cultivar in the two seasonal periods taken into consideration. The results of the total phenol contents showed the highest content in November for Bambina and Cima di Mola varieties (1816 and 1788 mg/100 g, respectively), followed by Coratina, Leccino, and Cima di Melfi; a similar trend was found for the antioxidant activity and RapidOxy evaluations by reaching in Bambina values of 45 mmol TE/100 g and 85 min of induction time.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Maria Assunta Crescenzi
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
- PhD Program in Drug Discovery & Development, Pharmacy Department, University of the Study of Salerno, I-84135 Salerno, Italy
| | - Sonia Piacente
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
| | - Giuseppe Altamura
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, Locorotondo, I-70010 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Paola Montoro
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
| |
Collapse
|
11
|
Jiménez-Sánchez A, Martínez-Ortega AJ, Remón-Ruiz PJ, Piñar-Gutiérrez A, Pereira-Cunill JL, García-Luna PP. Therapeutic Properties and Use of Extra Virgin Olive Oil in Clinical Nutrition: A Narrative Review and Literature Update. Nutrients 2022; 14:nu14071440. [PMID: 35406067 PMCID: PMC9003415 DOI: 10.3390/nu14071440] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil (EVOO) is a cornerstone of the Mediterranean diet (MedD). In this narrative review, we synthesize and illustrate the various characteristics and clinical applications of EVOO and its components—such as oleic acid, hydroxytyrosol, and oleuropein—in the field of clinical nutrition and dietetics. The evidence is split into diet therapy, oleic acid-based enteral nutrition formulations and oral supplementation formulations, oleic acid-based parenteral nutrition, and nutraceutical supplementation of minor components of EVOO. EVOO has diverse beneficial health properties, and current evidence supports the use of whole EVOO in diet therapy and the supplementation of its minor components to improve cardiovascular health, lipoprotein metabolism, and diabetes mellitus in clinical nutrition. Nevertheless, more intervention studies in humans are needed to chisel specific recommendations for its therapeutic use through different formulations in other specific diseases and clinical populations.
Collapse
Affiliation(s)
- Andrés Jiménez-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| | - Antonio Jesús Martínez-Ortega
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Torrecárdenas, C. Hermandad de Donantes de Sangre, s/n, 04009 Almería, Spain
| | - Pablo Jesús Remón-Ruiz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Ana Piñar-Gutiérrez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - José Luis Pereira-Cunill
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Pedro Pablo García-Luna
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| |
Collapse
|
12
|
Combined Sulfur and Nitrogen Foliar Application Increases Extra Virgin Olive Oil Quantity without Affecting Its Nutritional Quality. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigates the effect of combined sulfur (S) and nitrogen (N) foliar fertilization on leaf S and N concentration, as well as on the growth of olive fruit and on the quantity and quality of olive oil, obtained from two olive cultivars ‘Istarska bjelica’ and ‘Leccino’ in two consecutive years. S and N are some of the most important nutrients, and both play a crucial role in plant oil production. The here-reported fertilization program significantly increased S concentration in leaves without affecting N concentration, which led to an increase in fruit yield and improvement of all fruit morphological parameters. The best oil yield per tree was obtained under the treatment with the highest S/N dose. Oil quality was not affected by S and N supply, and this allowed us to classify all our oil samples as extra virgin (EVOO). Regarding the content of total phenols (TPC) and composition of fatty acid methyl esters (FAME), they remained unaltered under the applied treatments. All investigated fruit morphological parameters, as well as fruit and oil yield, were highly cultivar-dependent. ‘Istarska bjelica’ was characterized as a cultivar with higher fruit mass and pulp percentage, while its stone parameters were lower than those of ‘Leccino’. Consequently, the extraction oil yield obtained from ‘Istarska bjelica’ fruits was much higher. Moreover, environmental conditions had a great impact on fruit and oil quantity. The here-obtained results led us to the conclusion that supply of S and N can enhance oil production without affecting its nutritional quality, a finding that could generate large long-term effects on economic growth in the olive oil sector.
Collapse
|
13
|
Fouda SE, El-Saadony FM, Saad AM, Sayed SM, El-Sharnouby M, El-Tahan AM, El-Saadony MT. Improving growth and productivity of faba bean (Vicia faba L.) using chitosan, tryptophan, and potassium silicate anti-transpirants under different irrigation regimes. Saudi J Biol Sci 2022; 29:955-962. [PMID: 35197763 PMCID: PMC8847969 DOI: 10.1016/j.sjbs.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
This work aims to study the effect of foliar spraying of three anti-transpirants i.e., A1: tryptophan (Tri), A2: potassium silicate (KS), A3: chitosan (Chi) as well as A0: control (Tap water) under three irrigation regimes, I1: 2400, I2: 3600, and I3: 4800 m3ha−1 on the quality and production of faba bean crop and its nutrient contents. The study was carried out during two successive winter seasons of 2018/2019 and 2019/2020. Drought stress affected the average performance of all studied traits as it reduced seed yield and traits, as a result of the decrease in chlorophyll related to photosynthesis, protein, carbohydrates, total phenols, amino acids, macronutrients (N, P, and K), micronutrient contents (Fe, Mn, and Zn) and their absorption. The single foliar spraying of faba bean with tryptophan 75 ppm, potassium silicate at 100 ppm, or chitosan at 750 ppm significantly increased all studied traits and reduced the drought stress compared to control under different irrigation systems. We recommended using a foliar spray of chitosan (750 ppm) on faba bean plants under an irrigation level of 4800 m3 led to an improvement in the physiological properties of the plant, i.e., plant height, the number of branches/plants, and the number of plants, pods plant−1, the number of seed pods−1, the weight of 100 seeds and seed yield ha−1 increased with relative increase about 42.29, 89.47, 28.85, 75.91, 24.43, and 306.48% compared to control. The quality properties also improved, as the total chlorophyll, protein, carbohydrates, total phenols, and amino acids were higher than the control with a relative increase of 63.83, 29.58, 27.72, 37.54, and 64.19%. Additionally, an increase in the contents and uptake of macronutrients (N, P, and K), and micronutrients (Fe, Mn, Zn) and their absorption. The increase was estimated with 29.41, 75.00, 16.56, 431.17, 630.48, 72.68%, 22.37, 35.69, 42.33, 397.63, 452.58, and 485.94% about the control. This was followed by potassium silicate (100 ppm), then tryptophan (75 ppm) compared to the control, which recorded the minimum values in plant traits.
Collapse
|
14
|
Biophenolic Profile Modulations in Olive Tissues as Affected by Manganese Nutrition. PLANTS 2021; 10:plants10081724. [PMID: 34451769 PMCID: PMC8402200 DOI: 10.3390/plants10081724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
Abstract
Manganese (Mn) is an essential element that intervenes in several plant metabolic processes. The olive tree, and its fruits and leaves, are known as a source of nutraceuticals since they are rich in biophenols. However, there is still a serious lack of data about biophenolic distribution in olive stems and roots under Mn fertilisation. In this context, our study aimed to examine the effects of Mn fertilisation on the biophenolic profile in the leaves, stems, and roots of the ‘Istarska bjelica’ olive cultivar. The experiment was set up in a greenhouse, during a period of five months, as a random block design consisting of three treatments with varying Mn concentrations in full-strength Hoagland’s nutrient solution (0.2 µM Mn, 12 µM Mn, and 24 µM Mn). The obtained results indicate that the amount of Mn in the examined olive plant tissues was significantly higher under 12 µM Mn and 24 µM Mn treatments compared to that of the 0.2 µM Mn treatment. While the concentration of biophenols varied in roots depending on the compound in question, a strong positive impact of the increased Mn concentration in nutrient solution (12 µM Mn and 24 µM Mn) on the concentrations of the main biophenolic compounds was observed in stems. The concentration of oleuropein in leaves almost doubled at 24 µM Mn, with the highest Mn concentration, as compared to the 0.2 µM Mn treatment. The obtained results led to the conclusion that the supply of Mn could enhance the concentration of some biologically active compounds in olives grown hydroponically, implying a critical need for further investigation of Mn fertilisation practices in the conventional olive farming system.
Collapse
|
15
|
Essential Oil Volatile Fingerprint Differentiates Croatian cv. Oblica from Other Olea europaea L. Cultivars. Molecules 2021; 26:molecules26123533. [PMID: 34207862 PMCID: PMC8226588 DOI: 10.3390/molecules26123533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 01/18/2023] Open
Abstract
Olive leaves are a highly available by-product from table olive and olive oil production. They are nowadays strongly valuable for their major bioactive compounds and their beneficial effects. To determine the differences between two Croatian domestic (Lastovka, Oblica) and two introduced (Leccino, Frantoio) cultivars, physical and chemical analysis of olive leaves were performed: surface area, color variability, total phenolic amounts, and essential oil volatile profiles were analyzed at three harvest periods. All cultivars greatly differed in surface area, with cv. Lastovka being the smallest. Color variability resulted in an overall decrease in darkness and amounts of green and yellow that could be attributed to a decrease in photosynthetic demand and chlorophyll content. The highest amount of total phenolic content occurred in the summer months, followed by a reduction until October. Essential oils volatiles were determined by GC-MS and showed great diversity not only amongst cultivars but also between harvest periods, with overall 45 compounds identified. Principal component analysis distinguished domestic cultivar Oblica from the other observed cultivars, mainly due to its essential oil volatile fingerprint. Compounds that differentiated cv. Oblica were aldehydes ((E,Z)-2,4-heptadienal, (E,E)-2,4-heptadienal, decanal), ketones ((E)-β-damascone, dihydrodehydro-β-ionone), sesquiterpenes (cyclosativene, α-copaene, α-muurolene) and saturated hydrocarbons (tetradecane, hexadecane). Essential oil volatile fingerprint attributed the highest to the biodiversity of domestic cv. Oblica through all three harvest periods.
Collapse
|