1
|
Yang J, Song J, Park YG, Jeong BR. Both the Positioned Supplemental or Night-Interruptional Blue Light and the Age of Leaves (or Tissues) Are Important for Flowering and Vegetative Growth in Chrysanthemum. PLANTS (BASEL, SWITZERLAND) 2024; 13:2874. [PMID: 39458821 PMCID: PMC11511255 DOI: 10.3390/plants13202874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
In this study, the effects of supplemental or night interruptional blue light (S-BL or NI-BL) positioning on morphological growth, photoperiodic flowering, and expression of floral genes in Chrysanthemum morifolium were investigated. Blue light-emitting diodes (LEDs) at an intensity of 30 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) were used for 4 h either (1) to supplement the white LEDs at the end of the 10 h short-day (SD10 + S-BL4) and 13 h long-day conditions (LD13 + S-BL4), or (2) to provide night interruption in the SD10 (SD10 + NI-BL4) and LD13 (LD13 + NI-BL4). The S-BL4 or NI-BL4 was positioned to illuminate either the shoot tip, the youngest leaf (vigorously growing the third leaf from the shoot tip), or the old leaf (the third leaf from the stem base). In the text, they will be denoted as follows: SD10 + S-BL4-S, -Y, or -O; SD10 + NI-BL4-S, -Y, or -O; LD13 + S-BL4-S, -Y, or -O; LD13 + NI-BL4-S, -Y, or -O. Normally, the LD13 conditions enhanced more vegetative growth than the SD10 periods. The growth of leaves, stems, and branches strongly responded to the S-BL4 or NI-BL4 when it was targeted onto the shoot tip, followed by the youngest leaf. The SD10 + S-BL4 or +NI-BL4 on the old leaf obviously suppressed plant extension growth, resulting in the smallest plant height. Under LD13 conditions, the flowering-related traits were significantly affected when the S-BL4 or NI-BL4 was shed onto the youngest leaf. However, these differences do not exist in the SD10 environments. At the harvest stage, other than the non-flowered LD13 treatment, the LD13 + S-BL4 irradiating the youngest leaf induced the most flowers, followed by the shoot tip and old leaf. Moreover, LD13 + NI-BL4 resulted in the latest flowering, especially when applied to the shoot tip and old leaf. However, the SD10 + S-BL4 or + NI-BL4 irradiated the shoot tip, youngest leaf, or old leaf all significantly earlier and increased flowering compared to the SD10 treatment. Overall: (1) Generally, vegetative growth was more sensitive to photoperiod rather than lighting position, while, during the same photoperiod, the promotion of growth was stronger when the light position of S-BL4 or NI-BL4 was applied to the shoot tip or the youngest leaf. (2) The photoperiodic flowering of these short-day plants (SDPs) comprehensively responded to the photoperiod combined with blue light positioning. Peculiarly, when they were exposed to the LD13 flowering-inhibited environments, the S-BL4 or NI-BL4 shed onto the leaves, especially the youngest leaves, significantly affecting flowering.
Collapse
Affiliation(s)
- Jingli Yang
- Weifang Key Laboratory for Stress Resistance and High Yield Regulation of Horticultural Crops, Shandong Provincial University Laboratory for Protected Horticulture, College of Jia Sixie Agriculture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jinnan Song
- Weifang Key Laboratory for Stress Resistance and High Yield Regulation of Horticultural Crops, Shandong Provincial University Laboratory for Protected Horticulture, College of Jia Sixie Agriculture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Yoo Gyeong Park
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea;
- National Institute of Biological Resources (NIBR), 1008-11, Sangnam-ro, Sangnam-myeon, Miryang-si 50452, Republic of Korea
| | - Byoung Ryong Jeong
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Yang J, Song J, Jeong BR. Flowering and Runnering of Seasonal Strawberry under Different Photoperiods Are Affected by Intensity of Supplemental or Night-Interrupting Blue Light. PLANTS (BASEL, SWITZERLAND) 2024; 13:375. [PMID: 38337908 PMCID: PMC10857185 DOI: 10.3390/plants13030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The strawberry (Fragaria × ananassa Duch.) "Sulhyang" is a typical seasonal flowering (SF) strawberry that produces flower buds in day lengths shorter than a critical limit (variable, but often defined as <12 h). There is a trade-off between photoperiod-controlled flowering and gibberellin (GA) signaling pathway-mediated runnering. Some related genes (such as CO, FT1, SOC1, and TFL1) participating in light signaling and circadian rhythm in plants are altered under blue light (BL). Sugars for flowering and runnering are mainly produced by photosynthetic carbon assimilation. The intensity of light could affect photosynthesis, thereby regulating flowering and runnering. Here, we investigated the effect of the intensity of supplemental blue light (S-BL) or night-interrupting blue light (NI-BL) in photoperiodic flowering and runnering regulation by applying 4 h of S-BL or NI-BL with either 0, 10, 20, 30, or 40 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10 h short-day (SD10) (SD10 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)) or 14 h long-day (LD14) conditions (LD14 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)). Approximately 45 days after the photoperiodic light treatment, generally, whether S-BL or NI-BL, BL (20) was the most promotive in runnering, leading to more runners in both the LD and SD conditions. For flowering, except the treatment LD14 + S-BL, BL (20) was still the key light, either from BL (20) or BL (40), promoting flowering, especially when BL acted as the night-interrupting light, regardless of the photoperiod. At the harvest stage, larger numbers of inflorescences and runners were observed in the LD14 + NI-BL4 treatment, and the most were observed in the LD14 + NI-BL (20). Moreover, the SD10 + NI-BL4 was slightly inferior to the LD14 + NI-BL4 in increasing the numbers of inflorescences and runners, but it caused earlier flowering. Additionally, the circadian rhythm expression of flowering-related genes was affected differently by the S-BL and NI-BL. After the application of BL in LD conditions, the expression of an LD-specific floral activator FaFT1 was stimulated, while that of a flowering suppressor FaTFL1 was inhibited, resetting the balance of expression between these two opposite flowering regulators. The SD runnering was caused by BL in non-runnering SD conditions associated with the stimulation of two key genes that regulate runner formation in the GA pathway, FaGRAS32 and FaGA20ox4. In addition, the positive effects of BL on enhancing photosynthesis and carbohydrate production also provided an abundant energy supply for the flowering and runnering processes.
Collapse
Affiliation(s)
- Jingli Yang
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Kong Y, Zheng Y. Magic Blue Light: A Versatile Mediator of Plant Elongation. PLANTS (BASEL, SWITZERLAND) 2023; 13:115. [PMID: 38202422 PMCID: PMC10780743 DOI: 10.3390/plants13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Blue light plays an important role in regulating plant elongation. However, due to the limitations of older lighting technologies, the responses of plants to pure blue light have not been fully studied, and some of our understandings of the functions of blue light in the literature need to be revisited. This review consolidates and analyzes the diverse findings from previous studies on blue-light-mediated plant elongation. By synthesizing the contrasting results, we uncover the underlying mechanisms and explanations proposed in recent research. Moreover, we delve into the exploration of blue light-emitting diodes (LEDs) as a tool for manipulating plant elongation in controlled-environment plant production, highlighting the latest advancements in this area. Finally, we acknowledge the challenges faced and outline future directions for research in this promising field. This review provides valuable insights into the pivotal role of blue light in plant growth and offers a foundation for further investigations to optimize plant elongation using blue light technology.
Collapse
Affiliation(s)
| | - Youbin Zheng
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
4
|
Yang J, Song J, Jeong BR. Blue Light Supplemented at Intervals in Long-Day Conditions Intervenes in Photoperiodic Flowering, Photosynthesis, and Antioxidant Properties in Chrysanthemums. Antioxidants (Basel) 2022; 11:2310. [PMID: 36552519 PMCID: PMC9774458 DOI: 10.3390/antiox11122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The flowering of chrysanthemum (Chrysanthemum morifolium Ramat.), inhibited by long-day lighting, can be reversed with a short period of low supplemental blue light (S-BL). Both flowering and the reactive oxygen species (ROS) scavenging processes are primarily driven by sugars created by photosynthetic carbon assimilation. In addition, the antioxidant ability potentially affects flowering in photoperiod- and/or circadian rhythm-dependent manners. This indicates that there is an interactive relationship among blue (B) light, photosynthetic efficiency, sugar accumulation, and antioxidant ability in flowering regulation. Here, 4 h of 30 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) S-BL was applied at the end of a 13-h long-day period (LD13 + 4B) at different intervals during 60 days of experimental duration. The five experimental groups were named according to the actual number of days of S-BL and their intervals: applied once every day, "60 days-(LD13 + 4B) (100.0%)"; once every other day, "30 days-(LD13 + 4B) (50.0%)"; once every three days, "15 days-(LD13 + 4B) (25.0%)"; once every five days, "10 days-(LD13 + 4B) (16.7%)"; and once every seven days, "7 days-(LD13 + 4B) (11.7%)". Two non-S-BL control groups were also included: 60 10-h short days (60 days-SD10) and 13-h long days (60 days-LD13). At the harvest stage, varying degrees of flowering were observed except in "60 days-LD13" and "7 days-(LD13 + 4B) (11.7%)". The number of flowers increased and the flower buds appeared earlier as the proportion of S-BL days increased in LD13 conditions, although the "60 days-SD10" gave the earliest flowering. The proportion of initial, pivotal, and optimal flowering was 16.7% ("10 days-(LD13 + 4B)"), 50.0% ("30 days-(LD13 + 4B)"), and 100.0% ("60 days-(LD13 + 4B)"), respectively. Meanwhile, a series of physiological parameters such as the production of enzymatic or non-enzymatic antioxidants, chlorophyll content, photosynthetic efficiency, enzyme activities, and carbohydrate accumulation were significantly improved by "30 days-(LD13 + 4B) (50.0%)" as a turning point until the peaks appeared in "60 days-(LD13 + 4B) (100.0%)", as well as the expression of florigenic or anti-florigenic and some antioxidant-synthetic genes. Furthermore, the results of principal component analysis (PCA) indicated that S-BL days positively regulated flowering, photosynthesis, carbohydrate accumulation, and antioxidant production. In aggregate, the pivotal and optimal proportions of S-BL days to reconcile the relationship among flowering, photosynthetic carbon assimilation, and antioxidant ability were 50.0% and 100.0%, respectively. However, there are still significant gaps to be filled in order to determine the specific involvement of blue light and antioxidant abilities in flowering regulation.
Collapse
Affiliation(s)
- Jingli Yang
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Mekapogu M, Kwon OK, Song HY, Jung JA. Towards the Improvement of Ornamental Attributes in Chrysanthemum: Recent Progress in Biotechnological Advances. Int J Mol Sci 2022; 23:ijms232012284. [PMID: 36293140 PMCID: PMC9603847 DOI: 10.3390/ijms232012284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
Incessant development and introduction of novel cultivars with improved floral attributes are vital in the dynamic ornamental industry. Chrysanthemum (Chrysanthemum morifolium) is a highly favored ornamental plant, ranking second globally in the cut flower trade, after rose. Development of new chrysanthemum cultivars with improved and innovative modifications in ornamental attributes, including floral color, shape, plant architecture, flowering time, enhanced shelf life, and biotic and abiotic stress tolerance, is a major goal in chrysanthemum breeding. Despite being an economically important ornamental plant, the application of conventional and molecular breeding approaches to various key traits of chrysanthemum is hindered owing to its genomic complexity, heterozygosity, and limited gene pool availability. Although classical breeding of chrysanthemum has resulted in the development of several hundreds of cultivars with various morphological variations, the genetic and transcriptional control of various important ornamental traits remains unclear. The coveted blue colored flowers of chrysanthemums cannot be achieved through conventional breeding and mutation breeding due to technical limitations. However, blue-hued flower has been developed by genetic engineering, and transgenic molecular breeding has been successfully employed, leading to substantial progress in improving various traits. The recent availability of whole-genome sequences of chrysanthemum offers a platform to extensively employ MAS to identify a large number of markers for QTL mapping, and GWAS to dissect the genetic control of complex traits. The combination of NGS, multi-omic platforms, and genome editing technologies has provided a tremendous scope to decipher the molecular and regulatory mechanisms. However, the application and integration of these technologies remain inadequate for chrysanthemum. This review, therefore, details the significance of floral attributes, describes the efforts of recent advancements, and highlights the possibilities for future application towards the improvement of crucial ornamental traits in the globally popular chrysanthemum plant.
Collapse
|
6
|
Yang J, Song J, Jeong BR. The flowering of SDP chrysanthemum in response to intensity of supplemental or night-interruptional blue light is modulated by both photosynthetic carbon assimilation and photoreceptor-mediated regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:981143. [PMID: 36186037 PMCID: PMC9523439 DOI: 10.3389/fpls.2022.981143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The photoreceptor-mediated photoperiodic sensitivity determines the obligate short-day flowering in chrysanthemum (Chrysanthemum morifolium Ramat.) when the night length is longer than a critical minimum, otherwise, flowering is effectively inhibited. The reversal of this inhibition by subsequent exposure to a short period of supplemental (S) or night-interruptional (NI) blue (B) light (S-B; NI-B) indicates the involvement of B light-received photoreceptors in the flowering response. Flowering is mainly powered by sugars produced through photosynthetic carbon assimilation. Thus, the light intensity can be involved in flowering regulation by affecting photosynthesis. Here, it is elucidated that the intensity of S-B or NI-B in photoperiodic flowering regulation of chrysanthemums by applying 4-h of S-B or NI-B with either 0, 10, 20, 30, or 40 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10-h short-day (SD10) [SD10 + 4B or + NI-4B (0, 10, 20, 30, or 40)] or 13-h long-day (LD13) condition [LD13 + 4B or + NI-4B (0, 10, 20, 30, or 40)] provided by 300 ± 5 μmol·m-2·s-1 PPFD white (W) LEDs. After 60 days of photoperiodic light treatments other than the LD13 and LD13 + NI-4B (40), flowering with varying degrees was observed, although the SD10 gave the earliest flowering. And the LD13 + 4B (30) produced the greatest number of flowers. The flowering pattern in response to the intensity of S-B or NI-B was consistent as it was gradually promoted from 10 to 30 μmol m-2 s-1 PPFD and inhibited by 40B regardless of the photoperiod. In SD conditions, the same intensity of S-B and NI-B did not significantly affect flowering, while differential flowering inhibition was observed with any intensity of NI-B in LDs. Furthermore, the 30 μmol·m-2·s-1 PPFD of S-B or NI-B up-regulated the expression of floral meristem identity or florigen genes, as well as the chlorophyll content, photosynthetic efficiency, and carbohydrate accumulation. The 40B also promoted these physiological traits but led to the unbalanced expression of florigen or anti-florigen genes. Overall, the photoperiodic flowering in response to the intensity of S-B or NI-B of the SDP chrysanthemum suggests the co-regulation of photosynthetic carbon assimilation and differential photoreceptor-mediated control.
Collapse
Affiliation(s)
- Jingli Yang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju, South Korea
| | - Jinnan Song
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju, South Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
7
|
Cavallaro V, Muleo R. The Effects of LED Light Spectra and Intensities on Plant Growth. PLANTS 2022; 11:plants11151911. [PMID: 35893615 PMCID: PMC9331218 DOI: 10.3390/plants11151911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Valeria Cavallaro
- Institute of BioEconomy (IBE), National Research Council of Italy, 95126 Catania, Italy
- Correspondence: (V.C.); (R.M.)
| | - Rosario Muleo
- Tree Physiology and Fruit Crop Biotechnology Laboratory, Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
- Correspondence: (V.C.); (R.M.)
| |
Collapse
|
8
|
Yang J, Song J, Jeong BR. Low-Intensity Blue Light Supplemented during Photoperiod in Controlled Environment Induces Flowering and Antioxidant Production in Kalanchoe. Antioxidants (Basel) 2022; 11:811. [PMID: 35624675 PMCID: PMC9137757 DOI: 10.3390/antiox11050811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Kalanchoe (Kalanchoe blossfeldiana) is a qualitative short-day plant with a high aesthetic value. When the night length is less than a specified cultivar-dependent critical value, however, it does not develop flowers. This study investigated the effects of low-intensity supplementary or night interrupting (NI) blue (B) light on the plant performance and flower induction in kalanchoe 'Rudak'. During the photoperiod in a closed-type plant factory with day/night temperatures of 23 °C/18 °C, white (W) LEDs were utilized to produce a photosynthetic photon flux density (PPFD) of 300 μmol m-2 s-1, and B LEDs were used to give supplementary/NI light at a PPFD of 10 μmol m-2 s-1. The control plants were exposed to a 10-h short day (SD, positive control) or a 13-h long day (LD, negative control) treatment without any B light. The B light was used for 4 h either (1) to supplement the W LEDs at the end of the SD (SD + 4B) and LD (LD + 4B), or (2) to provide night interruption (NI) in the SD (SD + NI-4B) and LD (LD + NI-4B). The LD + 4B and LD + NI-4B significantly enhanced plant growth and development, followed by the SD + 4B and SD + NI-4B treatments. In addition, the photosynthesis, physiological parameters, and activity of antioxidant systems were improved in those treatments. Except in the LD and LD + NI-4B, all plants flowered. It is noteworthy that kalanchoe 'Rudak' flowered in the LD + 4B treatment and induced the greatest number of flowers, followed by SD + NI-4B and SD + 4B. Plants grown in the LD + 4B treatment had the highest expression levels of certain monitored genes related to flowering. The results indicate that a 4-h supplementation of B light during the photoperiod in both the SD and LD treatments increased flower bud formation, promoted flowering, and enhanced plant performance. Kalanchoe 'Rudak' flowered especially well in the LD + 4B, presenting a possibility of practically inducing flowering in long-day seasons with B light application.
Collapse
Affiliation(s)
- Jingli Yang
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.Y.); (J.S.)
| | - Jinnan Song
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.Y.); (J.S.)
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.Y.); (J.S.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
9
|
Lighting from Top and Side Enhances Photosynthesis and Plant Performance by Improving Light Usage Efficiency. Int J Mol Sci 2022; 23:ijms23052448. [PMID: 35269590 PMCID: PMC8910434 DOI: 10.3390/ijms23052448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Light is a critical environmental factor that influences plant growth and development, ranging from seed germination to flowering and fruiting. This study was carried out to explore how the optimal combination of various lighting directions increases the light usage efficiency and influences the plant morphophysiology, by investigating the plant growth parameters, leaf anatomy, epidermal morphology, stomatal properties, chlorophyll content, key physiological changes, and correlated gene expressions. In closed-type plant growth chambers, rooted cuttings of two chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars, “Pearl Egg” and “Gaya Glory”, were subjected to a 10-h photoperiod with 600 μmol∙m−2·s−1 photosynthetic photon flux density (PPFD) provided by light-emitting diodes (LEDs) in each light-direction combination (top (1/1) (T), top (1/2) + side (1/2) (TS), top (1/2) + bottom (1/2) (TB), side (1/2) + bottom (1/2) (SB), and top (1/3) + side (1/3) + bottom (1/3) (TSB)). The TS lighting significantly enhanced the morphophysiological performance, compared to the other lighting direction combinations. Notably, the excellent branch formation and earlier flowering were induced by the TS lighting in both “Pearl Egg” and “Gaya Glory” plants.
Collapse
|
10
|
Side Lighting Enhances Morphophysiology by Inducing More Branching and Flowering in Chrysanthemum Grown in Controlled Environment. Int J Mol Sci 2021; 22:ijms222112019. [PMID: 34769450 PMCID: PMC8584406 DOI: 10.3390/ijms222112019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Light is one of the most important factors that influence plant growth and development. This study was conducted to examine how lighting direction affects plant morphophysiology by investigating plant growth parameters, leaf anatomy, epidermal cell elongation, stomatal properties, chloroplast arrangement, and physiological changes. In closed-type plant factory units, the rooted cuttings of two chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars, ‘Gaya Glory’ and ‘Pearl Egg’, were subjected to a 10 h photoperiod with a 300 μmol∙m−2∙s−1 photosynthetic photon flux density (PPFD) provided by light-emitting diodes (LEDs) from three directions relative to the plant including the top, side, and bottom. Compared to the top or bottom lighting, the side lighting greatly enhanced the plant growth, improved the leaf internal structure and chloroplast arrangement, induced small stomata with a higher density, and promoted stomatal opening, which is associated with an increased stomatal conductance and photosynthetic efficiency. It is worth noting that the side lighting significantly enhanced the induction of branching and flowering for both cultivars., The plants grown with side lighting consistently exhibited the greatest physiological performance. We conclude that the lighting direction had a profound effect on the morphophysiological characteristics of chrysanthemum, and that side lighting dramatically promoted their growth and development, especially in their branching and flowering.
Collapse
|
11
|
Wang M, Wei H, Jeong BR. Lighting Direction Affects Leaf Morphology, Stomatal Characteristics, and Physiology of Head Lettuce ( Lactuca sativa L.). Int J Mol Sci 2021; 22:3157. [PMID: 33808879 PMCID: PMC8003708 DOI: 10.3390/ijms22063157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Plants are exposed to numerous biotic and abiotic stresses, and light is one of the most important factors that influences the plant morphology. This study was carried out to examine how the lighting direction affected the plant morphology by investigating the growth parameters, epidermal cell elongation, stomatal properties, and physiological changes. Seedlings of two head lettuce (Lactuca sativa L.) cultivars, Caesar Green and Polla, were subjected to a 12 h photoperiod with a 300 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) provided by light emitting diodes (LEDs) from three directions: the top, side, and bottom, relative to the plants. Compared with the top and side lighting, the bottom lighting increased the leaf angle and canopy by stimulating the epidermal cell elongation in leaf midrib, reduced the leaf number and root biomass, and induced large stomata with a low density, which is associated with reduced stomatal conductance and carbohydrate contents. However, the proline content and quantum yield exhibited no significant differences with the different lighting directions in both cultivars, which implies that the plants were under normal physiological conditions. In a conclusion, the lighting direction had a profound effect on the morphological characteristics of lettuce, where the plants adapted to the changing lighting environments.
Collapse
Affiliation(s)
- Mengzhao Wang
- Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (M.W.); (H.W.)
| | - Hao Wei
- Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (M.W.); (H.W.)
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (M.W.); (H.W.)
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|