1
|
Zhang J, Bai S, Zhao S, Guan X. Synthesis of a chitosan-based superabsorbent polymer and its influence on cement paste. Int J Biol Macromol 2024; 282:136676. [PMID: 39426773 DOI: 10.1016/j.ijbiomac.2024.136676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
To address the challenge of adaptability between cement-based materials and conventional superabsorbent polymers (sodium polyacrylate, Na-PA), a chitosan-based superabsorbent polymer (CSP) with high salt and alkaline resistance was synthesized, and the optimal synthesis process was determined by a single-factor method. The macroscopic performance and microstructure of CSP and Na-PA were compared, and their influences on cement paste were studied. The results show that CSP exhibits a gradual swelling process during water absorption, which is independent of the solution environment. The poriferous structure of CSP allows it to form a network composed of gel membranes. The introduction of amide group enhances the resistance of CSP to salt and alkaline conditions. The autogenous shrinkage of cement paste is mitigated by CSP, with a superior effect compared to Na-PA. The longer desorption time of CSP allows it to promote cement hydration for a longer period, reducing the loss of compressive strength. The heat release, chemically bound water and hydration products (portlandite and amorphous substances) of CSP pastes are higher than those of Na-PA pastes. The water desorption from CSP fills some middle capillary pores and mesopores, leading to the pores in the hardened cement paste being more concentrated in smaller sizes.
Collapse
Affiliation(s)
- Jianjian Zhang
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China; School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shuai Bai
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China; School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shengying Zhao
- China Construction Eighth Engineering Division Co., Ltd, 200122 Shanghai, China
| | - Xinchun Guan
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China; School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Wang Z, Zhai B, Sun J, Zhang X, Zou J, Shi Y, Guo D. Recent advances of injectable in situ-forming hydrogels for preventing postoperative tumor recurrence. Drug Deliv 2024; 31:2400476. [PMID: 39252545 PMCID: PMC11389645 DOI: 10.1080/10717544.2024.2400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.
Collapse
Affiliation(s)
- Zhanpeng Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Bingtao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Junbo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
3
|
Shen J, Fu S, Liu X, Tian S, Liu D, Liu H. Fabrication of Low-Temperature Fast Gelation β-Cyclodextrin-Based Hydrogel-Loaded Medicine for Wound Dressings. Biomacromolecules 2024; 25:55-66. [PMID: 37878661 DOI: 10.1021/acs.biomac.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
β-Cyclodextrin (β-CD) is often used as a drug carrier for biomedical materials due to its unique cavity structure. Herein, β-CD was modified by acryloyl chloride and further copolymerized with N-isopropylacrylamide (NIPAM) and acrylic acid (AA) to obtain PNIPAM-co-β-CD-AC. The results showed that the critical phase transition temperature of PNIPAM/β-CD-AC could be controlled at 19 °C, and the fast sol-gel phase transition was realized in 2-10 s. The hydrophobic drug carried in this hydrogel can constantly be released for more than 6 days at pH values (pH 5.5-8), and the duration may match the recovery of the wound. As a dressing hydrogel, its rapid gel formation and inversion as well as shear-thinning behavior prevent secondary wound damage. The β-CD-based hydrogel also has good biocompatibility and antioxidant properties, which provide a good potential choice for wound dressings, especially for exposed wounds in winter.
Collapse
Affiliation(s)
- Juanli Shen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaohong Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shenglong Tian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Detao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
de Dios-Pérez I, González-Garcinuño Á, Tabernero A, Blanco-López M, García-Esteban JA, Moreno-Rodilla V, Curto B, Pérez-Esteban P, Martín Del Valle EM. Development of a thermosensitive hydrogel based on Polaxamer 407 and gellan gum with inclusion complexes (Sulfobutylated-β-cyclodextrin-Farnesol) as a local drug delivery system. Eur J Pharm Sci 2023; 191:106618. [PMID: 37866674 DOI: 10.1016/j.ejps.2023.106618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
This work proposes the development of a thermosensitive local drug release system based on Polaxamer 407, also known as Pluronic® F-127 (PF-127), Gellan Gum (GG) and the inclusion complex Sulfobutylated-β-cyclodextrin (CD) with Farnesol (FOH). Rheological properties of the hydrogels and their degradation were studied. According to the rheological results, a solution of 20% w/v of PF-127 forms a strong gel with a gelling temperature of about 25 °C (storage modulus of 15,000 Pa). The addition of the GG increased the storage modulus (optimal concentration of 0.5 % w/v) twofold without modifying the gelling temperature. Moreover, including 0.5% w/v of GG also increased 6 times the degradation time of the hydrogel. Regarding the inclusion complex, the addition of free CD decreased the viscosity and the gel strength since polymer chains were included in CD cavity without affecting the gelling temperature. Contrarily, the inclusion complex CD-FOH did not significantly modify any property of the formulation because the FOH was hosted in the CD. Furthermore, a mathematical model was developed to adjust the degradation time. This model highlights that the addition of the GG decreases the number of released chains from the polymeric network (which coincides with an increase in the storage modulus) and that the free CD reduces the degradation rate, protecting the polymeric chains. Finally, FOH release was quantified with a specific device, that was designed and printed for this type of system, observing a sustainable drug release (similar to FOH aqueous solubility, 8 μM) dependent on polymer degradation.
Collapse
Affiliation(s)
| | - Álvaro González-Garcinuño
- Department of Chemical Engineering, University of Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | - Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | | | | | | | - Belén Curto
- Department of Computer Science and Automation, University of Salamanca, Spain
| | - Patricia Pérez-Esteban
- Institute of Translational Medicine, Heritage Building, Mindelsohn Way, Birmingham, B15 2TH, England
| | - Eva M Martín Del Valle
- Department of Chemical Engineering, University of Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Spain.
| |
Collapse
|
5
|
Koo HB, Heo E, Cho I, Kim SH, Kang J, Chang JB. Human hand-inspired all-hydrogel gripper with a high load capacity formed by the split-brushing adhesion of diverse hydrogels. MATERIALS HORIZONS 2023; 10:2075-2085. [PMID: 36920793 DOI: 10.1039/d2mh01309f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human hands are highly versatile. Even though they are primarily made of materials with high water content, they exhibit a high load capacity. However, existing hydrogel grippers do not possess a high load capacity due to their innate softness and mechanical strength. This work demonstrates a human hand-inspired all-hydrogel gripper that can bear more than 47.6 times its own weight. This gripper is made of two hydrogels: poly(methacrylamide-co-methacrylic acid) (P(MAAm-co-MAAc)) and poly(N-isopropylacrylamide) (PNIPAM). P(MAAm-co-MAAc) is extremely stiff but becomes soft above its transition temperature. By taking advantage of the difference in the kinetics of the stiff-soft transition of P(MAAm-co-MAAc) hydrogels and the swelling-shrinking transition of PNIPAM hydrogels, this gripper can be switched between its stiff-bent and stiff-stretched states by simply changing the temperature. The assembly of these two hydrogels into a gripper necessitated the development of a new hydrogel adhesion method, as existing topological adhesion methods are not applicable to such stiff hydrogels. A new hydrogel adhesion method, termed split-brushing adhesion, has been demonstrated to satisfy this need. When applied to P(MAAm-co-MAAc) hydrogels, this method achieves an adhesion energy of 1221.6 J m-2, which is 67.5 times higher than that achieved with other topological adhesion methods.
Collapse
Affiliation(s)
- Hye Been Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Eunseok Heo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sun Hong Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Luo J, Zhao X, Guo B, Han Y. Preparation, thermal response mechanisms and biomedical applications of thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 2023; 20:641-672. [PMID: 37218585 DOI: 10.1080/17425247.2023.2217377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Drug treatment is one of the main ways of coping with disease today. For the disadvantages of drug management, thermosensitive hydrogel is used as a countermeasure, which can realize the simple sustained release of drugs and the controlled release of drugs in complex physiological environments. AREAS COVERED This paper talks about thermosensitive hydrogels that can be used as drug carriers. The common preparation materials, material forms, thermal response mechanisms, characteristics of thermosensitive hydrogels for drug release and main disease treatment applications are reviewed. EXPERT OPINION When thermosensitive hydrogels are used as drug loading and delivery platforms, desired drug release patterns and release profiles can be tailored by selecting raw materials, thermal response mechanisms, and material forms. The properties of hydrogels prepared from synthetic polymers will be more stable than natural polymers. Integrating multiple thermosensitive mechanisms or different kinds of thermosensitive mechanisms on the same hydrogel is expected to realize the spatiotemporal differential delivery of multiple drugs under temperature stimulation. The industrial transformation of thermosensitive hydrogels as drug delivery platforms needs to meet some important conditions.
Collapse
Affiliation(s)
- Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly( N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022; 8:454. [PMID: 35877539 PMCID: PMC9323937 DOI: 10.3390/gels8070454] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022] Open
Abstract
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul R. Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA;
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara 144001, Punjab, India;
| | - Kingshuk Panda
- Department of Applied Microbiology, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, Tamilnadu, India;
| | - Kishore Dhotre
- I.C.M.R.—National Institute of Virology, Pune 411021, Maharashtra, India;
| | - Ravi Manne
- Chemtex Environmental Lab, Quality Control and Assurance Department, 3082 25th Street, Port Arthur, TX 77642, USA;
| | - A. Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600124, Tamil Nadu, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; or
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella 396, Ethiopia;
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
8
|
Ghasemi S, Owrang M, Javaheri F, Farjadian F. Spermine Modified PNIPAAm Nano-Hydrogel Serving as Thermo-Responsive System for Delivery of Cisplatin. Macromol Res 2022. [DOI: 10.1007/s13233-022-0035-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Dilek A, Sevgili LM, Çavuş S. The Use of Poly(dodecyl methacrylate-co–N-isopropylacrylamide) Gel for the Separation of Limonene + Linalool Mixture. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Mohammadi M, Karimi M, Malaekeh-Nikouei B, Torkashvand M, Alibolandi M. Hybrid in situ- forming injectable hydrogels for local cancer therapy. Int J Pharm 2022; 616:121534. [PMID: 35124117 DOI: 10.1016/j.ijpharm.2022.121534] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 01/17/2023]
Abstract
Injectable in situ forming hydrogels are amongst the efficient local drug delivery systems for cancer therapy. Providing a 3D hydrogel network within the target tissue capable of sustained release of the chemotherapeutics made them attractive candidates for increasing the therapeutic index. Remarkable swelling properties, mechanical strength, biocompatibility, wide composition variety and tunable polymeric moieties have led to preparation of injectable hydrogels which also could be used as cavity adaptive chemotherapeutic-loaded implants to prevent post -surgical cancer recurrence. Implementation of various polymers, nanoparticles, peptide and proteins and different crosslinking chemistry facilitated the fabrication of hybrid hydrogels with favorable characteristics such as stimuli sensitive platforms or multifunctional systems. In the current review, we focused on design and fabrication strategies of injectable in situ forming hydrogels and summarized recent hybrid hydrogels used for local cancer therapy.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Malihe Karimi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Torkashvand
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Tanveer S, Chen CC. Thermodynamic analysis of hydrogel swelling in aqueous sodium chloride solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Deng L, Lu H, Tu C, Zhou T, Cao W, Gao C. A tough synthetic hydrogel with excellent post-loading of drugs for promoting the healing of infected wounds in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112577. [PMID: 35525747 DOI: 10.1016/j.msec.2021.112577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial infection is a major obstacle to the wound healing process. The hydrogel dressings with a simpler structure and good antibacterial and wound healing performance are appealing for clinical application. Herein, a robust hydrogel was synthesized from acrylamide (AM), acrylic acid (AA) and N,N'-methylene diacrylamide (MBA) via a redox initiating polymerization. The polymerization conditions were optimized to obtain the hydrogel with minimum unreacted monomers, which were 0.25% and 0.12% for AM and AA, respectively. The hydrogel had good mechanical strength, and could effectively resist damage by external forces and maintain a good macroscopic shape. It showed large water uptake capacity, and could post load a wide range of molecules via hydrogen bonding and electrostatic interaction. Loading of antibiotic doxycycline (DOX) enabled the hydrogel with good antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria in vitro and in vivo. In a rat model of methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness skin defect wound, the DOX-loaded hydrogel showed good therapeutic effect. It could significantly promote the wound closure, increased the collagen coverage area, down-regulate the expressions of pro-inflammatory TNF-α and IL-1β factors, and up-regulate the expressions of anti-inflammatory IL-4 factor and CD31 neovascularization factor.
Collapse
Affiliation(s)
- Liwen Deng
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huidan Lu
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China
| | - Chenxi Tu
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
13
|
Alsaid Y, Wu S, Wu D, Du Y, Shi L, Khodambashi R, Rico R, Hua M, Yan Y, Zhao Y, Aukes D, He X. Tunable Sponge-Like Hierarchically Porous Hydrogels with Simultaneously Enhanced Diffusivity and Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008235. [PMID: 33829563 DOI: 10.1002/adma.202008235] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Crosslinked polymers and gels are important in soft robotics, solar vapor generation, energy storage, drug delivery, catalysis, and biosensing. However, their attractive mass transport and volume-changing abilities are diffusion-limited, requiring miniaturization to avoid slow response. Typical approaches to improving diffusion in hydrogels sacrifice mechanical properties by increasing porosity or limit the total volumetric flux by directionally confining the pores. Despite tremendous efforts, simultaneous enhancement of diffusion and mechanical properties remains a long-standing challenge hindering broader practical applications of hydrogels. In this work, cononsolvency photopolymerization is developed as a universal approach to overcome this swelling-mechanical property trade-off. The as-synthesized poly(N-isopropylacrylamide) hydrogel, as an exemplary system, presents a unique open porous network with continuous microchannels, leading to record-high volumetric (de)swelling speeds, almost an order of magnitude higher than reported previously. This swelling enhancement comes with a simultaneous improvement in Young's modulus and toughness over conventional hydrogels fabricated in pure solvents. The resulting fast mass transport enables in-air operation of the hydrogel via rapid water replenishment and ultrafast actuation. The method is compatible with 3D printing. The generalizability is demonstrated by extending the technique to poly(N-tertbutylacrylamide-co-polyacrylamide) and polyacrylamide hydrogels, non-temperature-responsive polymer systems, validating the present hypothesis that cononsolvency is a generic phenomenon driven by competitive adsorption.
Collapse
Affiliation(s)
- Yousif Alsaid
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90 095, USA
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90 095, USA
| | - Dong Wu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90 095, USA
| | - Yingjie Du
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90 095, USA
| | - Lingxia Shi
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90 095, USA
| | - Roozbeh Khodambashi
- The Polytechnic School, Fulton School of Engineering, Arizona State University, Mesa, AZ, 85 212, USA
| | - Rossana Rico
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90 095, USA
| | - Mutian Hua
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90 095, USA
| | - Yichen Yan
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90 095, USA
| | - Yusen Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90 095, USA
| | - Daniel Aukes
- The Polytechnic School, Fulton School of Engineering, Arizona State University, Mesa, AZ, 85 212, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90 095, USA
| |
Collapse
|
14
|
Ozcelik Kazancioglu E, Batibay GS, Uner A, Arsu N. Thermal and morphological investigation of the effect of
POSS
‐(
PEG
2000
)
8
addition to
UV
curable
PEGMEA
/
PEGDA
formulation and simultaneously in situ formed silver nanoparticles. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Gonul S. Batibay
- Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - Ahmet Uner
- Department of Chemistry Gebze Technical University Kocaeli Turkey
| | - Nergis Arsu
- Department of Chemistry Yildiz Technical University Istanbul Turkey
| |
Collapse
|
15
|
Khodambashi R, Alsaid Y, Rico R, Marvi H, Peet MM, Fisher RE, Berman S, He X, Aukes DM. Heterogeneous Hydrogel Structures with Spatiotemporal Reconfigurability using Addressable and Tunable Voxels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005906. [PMID: 33491825 DOI: 10.1002/adma.202005906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Stimuli-responsive hydrogels can sense environmental cues and change their volume accordingly without the need for additional sensors or actuators. This enables a significant reduction in the size and complexity of resulting devices. However, since the responsive volume change of hydrogels is typically uniform, their robotic applications requiring localized and time-varying deformations have been challenging to realize. Here, using addressable and tunable hydrogel building blocks-referred to as soft voxel actuators (SVAs)-heterogeneous hydrogel structures with programmable spatiotemporal deformations are presented. SVAs are produced using a mixed-solvent photopolymerization method, utilizing a fast reaction speed and the cononsolvency property of poly(N-isopropylacrylamide) (PNIPAAm) to produce highly interconnected hydrogel pore structures, resulting in tunable swelling ratio, swelling rate, and Young's modulus in a simple, one-step casting process that is compatible with mass production of SVA units. By designing the location and swelling properties of each voxel and by activating embedded Joule heaters in the voxels, spatiotemporal deformations are achieved, which enables heterogeneous hydrogel structures to manipulate objects, avoid obstacles, generate traveling waves, and morph to different shapes. Together, these innovations pave the way toward tunable, untethered, and high-degree-of-freedom hydrogel robots that can adapt and respond to changing conditions in unstructured environments.
Collapse
Affiliation(s)
- Roozbeh Khodambashi
- The Polytechnic School, Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Yousif Alsaid
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rossana Rico
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hamid Marvi
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Matthew M Peet
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Rebecca E Fisher
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Spring Berman
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel M Aukes
- The Polytechnic School, Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| |
Collapse
|
16
|
Silicon-Containing Polymeric Materials. Polymers (Basel) 2021; 13:polym13020188. [PMID: 33430192 PMCID: PMC7825594 DOI: 10.3390/polym13020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
When thinking about a chemical element that has contributed to the technological progress over the last two centuries, carbon and all carbon-based materials immediately come to mind [...].
Collapse
|
17
|
Wang SW, Lin YK, Fang JY, Lee RS. Synthesis and characterization of redox and ultrasonic dual-responsive organic-inorganic amphiphilic hybrid copolymers for drug delivery. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2019.1685515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Shiu-Wei Wang
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| | - Yin-Ku Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan, Taiwan
| | - Ren-Shen Lee
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
18
|
Lagopati N, Evangelou K, Falaras P, Tsilibary EPC, Vasileiou PVS, Havaki S, Angelopoulou A, Pavlatou EA, Gorgoulis VG. Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent. Pharmacol Ther 2020; 222:107795. [PMID: 33358928 DOI: 10.1016/j.pharmthera.2020.107795] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
The multivariate condition of cancer disease has been approached in various ways, by the scientific community. Recent studies focus on individualized treatments, minimizing the undesirable consequences of the conventional methods, but the development of an alternative effective therapeutic scheme remains to be held. Nanomedicine could provide a solution, filling this gap, exploiting the unique properties of innovative nanostructured materials. Nanostructured titanium dioxide (TiO2) has a variety of applications of daily routine and of advanced technology. Due to its biocompatibility, it has also a great number of biomedical applications. It is now clear that photo-excited TiO2 nanoparticles, induce generation of pairs of electrons and holes which react with water and oxygen to yield reactive oxygen species (ROS) that have been proven to damage cancer cells, triggering controlled cellular processes. The aim of this review is to provide insights into the field of nanomedicine and particularly into the wide context of TiO2-NP-mediated anticancer effect, shedding light on the achievements of nanotechnology and proposing this nanostructured material as a promising anticancer photosensitizer.
Collapse
Affiliation(s)
- Nefeli Lagopati
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece; Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou str., GR 15780 Zografou, Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece.
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, Laboratory of Nanotechnology Processes for Solar Energy Conversion and Environmental Protection, National Centre for Scientific Research "Demokritos", Patriarchou Gregoriou E & 27 Neapoleos Str., GR 15341 Agia Paraskevi, Athens, Greece.
| | | | - Panagiotis V S Vasileiou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece
| | - Sofia Havaki
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece.
| | - Andriani Angelopoulou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece
| | - Evangelia A Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou str., GR 15780 Zografou, Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, GR 11527 Athens, Greece; Biomedical Research Foundation Academy of Athens, Athens, Greece; Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
19
|
Fatima SW, Barua S, Sardar M, Khare SK. Immobilization of Transglutaminase on multi-walled carbon nanotubes and its application as bioinspired hydrogel scaffolds. Int J Biol Macromol 2020; 163:1747-1758. [DOI: 10.1016/j.ijbiomac.2020.09.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
|
20
|
Rezaei F, Damoogh S, Reis RL, Kundu SC, Mottaghitalab F, Farokhi M. Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. Biofabrication 2020; 13:015005. [PMID: 33078712 DOI: 10.1088/1758-5090/abbb82] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein, the pH-sensitive vancomycin (VANCO) loaded silk fibroin-sodium alginate nanoparticles (NPs) embedded in poly(N-isopropylacrylamide) (PNIPAM) hydrogel containing epidermal growth factor (EGF) are introduced for treating chronic burn wound infections. The hybrid system was developed to control the release rates of an antibiotic and growth factor for optimal treatment of burn infections. VANCO had a pH responsive release behavior from the nanoparticle (NP) and showed higher release rate in an alkaline pH compared to the neutral pH during 10 d. About 30% of EGF was also released from the hydrogel within 20 d. The released VANCO and EGF preserved their bioactivity more than ∼ 80%. The suitable physico-chemical properties and cellular behaviors of PNIPAM hydrogel supported the proliferation and growth of the fibroblast cells. Furthermore, the higher re-epithelialization with good wound contraction rate, neovascular formation, and expression of transforming growth factor-beta were observed in S. aureus infected rat burn wound by using the hydrogel containing VANCO and EGF compared with untreated wounds and hydrogel alone. The wound infection was also significantly reduced in the groups treated with the hydrogels containing VANCO. Overall, in vitro and in vivo results suggested that developed hybrid system would be a promising construct to treat severe wound infection.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 15875/4413, Iran. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
21
|
Synthesis, characterization and in vitro cytotoxicity studies of poly-N-isopropyl acrylamide gel nanoparticles and films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111507. [PMID: 33255065 DOI: 10.1016/j.msec.2020.111507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/02/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023]
Abstract
In this work, we show synthesis that leads to thermoreponsive poly-N-isopropyl acrylamide (pNIPAM) nanogels with sizes below 100 nm, irrespectively of the surfactant to crosslinker ratio. We also show that in many environments the temperature induced pNIPAM collapse at Lower Critical Solution Temperature (LCST) of 32.5 °C is accompanied by gel nanoparticles' aggregation. Thus, the proper information on the nanoparticle (NP) structure and deswelling can be obtained only if the routinely measured hydrodynamic radius is supplemented by information on the molecular weight, which can be obtained from the intensity of scattered light. We measured the dynamics and reversibility of the deswelling and subsequent aggregation processes. Furthermore, we show that the highly concentrated pNIPAM gel NPs reversibly form bulk hydrogel networks of varied interconnected porous structure. We show, that in case of drying pNIPAM gel NPs above the LCST, it is possible to obtain films with 20-fold increase in storage modulus (G') compared to hydrogel networks measured at room temperature. They exhibit temperature hysteresis behavior around LCST of 32.5 °C similar to pNIPAM films. Finally, we show that these hydrogel films, lead to extended proliferation of cells across three different types: fibroblast, endothelial and cancer cells. Additionally, none of the films exhibited any cytotoxic effects. Our study brings new insights into physicochemical characterization of pNIPAM gel NPs and networks behavior in realistic conditions of in vitro measurements, especially by means of dynamic light scattering as well as final unique properties of both gel NPs and formed porous films for possible tissue engineering applications.
Collapse
|
22
|
Garcia-Pinel B, Ortega-Rodríguez A, Porras-Alcalá C, Cabeza L, Contreras-Cáceres R, Ortiz R, Díaz A, Moscoso A, Sarabia F, Prados J, López-Romero JM, Melguizo C. Magnetically active pNIPAM nanosystems as temperature-sensitive biocompatible structures for controlled drug delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1022-1035. [PMID: 32663040 DOI: 10.1080/21691401.2020.1773488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Here, temperature-sensitive hybrid poly(N-isopropylacrylamide) (pNIPAM) nanosystems with magnetic response are synthesised and investigated for controlled release of 5-fluorouracil (5FU) and oxaliplatin (OXA). Initially, magnetic nanoparticles (@Fe3O4) are synthesised by co-precipitation approach and functionalised with acrylic acid (AA), 3-butenoic acid (3BA) or allylamine (AL) as comonomers. The thermo-responsive polymer is grown by free radical polymerisation using N-isopropylacrylamide (NIPAM) as monomer, N,N'-methylenbisacrylamide (BIS) as cross-linker, and 2,2'-azobis(2-methylpropionamidene) (V50) as initiator. We evaluate particle morphology by transmission electron microscopy (TEM) and particle size and surface charge by dynamic light scattering (DLS) and Z-potential (ZP) measurements. These magnetically active pNIPAM@ nanoformulations are loaded with 5-fluorouracil (5FU) and oxaliplatin (OXA) to determine loading efficiency, drug content and release as well as the cytotoxicity against T-84 colon cancer cells. Our results show high biocompatibility of pNIPAM nanoformulations using human blood cells and cultured cells. Interestingly, the pNIPAM@Fe3O4-3BA + 5FU nanoformulation significantly reduces the growth of T-84 cells (57% relative inhibition of proliferation). Indeed, pNIPAM-co-AL@Fe3O4-AA nanosystems produce a slight migration of HCT15 cells in suspension in the presence of an external magnetic field. Therefore, the obtained hybrid nanoparticles can be applied as a promising biocompatible nanoplatform for the delivery of 5FU and OXA in the improvement of colon cancer treatments.
Collapse
Affiliation(s)
- Beatriz Garcia-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - Cristina Porras-Alcalá
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rafael Contreras-Cáceres
- Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Amelia Díaz
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Ana Moscoso
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Juan M López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
23
|
Yang L, Fan X, Zhang J, Ju J. Preparation and Characterization of Thermoresponsive Poly( N-Isopropylacrylamide) for Cell Culture Applications. Polymers (Basel) 2020; 12:E389. [PMID: 32050412 PMCID: PMC7077488 DOI: 10.3390/polym12020389] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) is a typical thermoresponsive polymer used widely and studied deeply in smart materials, which is attractive and valuable owing to its reversible and remote "on-off" behavior adjusted by temperature variation. PNIPAAm usually exhibits opposite solubility or wettability across lower critical solution temperature (LCST), and it is readily functionalized making it available in extensive applications. Cell culture is one of the most prospective and representative applications. Active attachment and spontaneous detachment of targeted cells are easily tunable by surface wettability changes and volume phase transitions of PNIPAAm modified substrates with respect to ambient temperature. The thermoresponsive culture platforms and matching thermal-liftoff method can effectively substitute for the traditional cell harvesting ways like enzymatic hydrolysis and mechanical scraping, and will improve the stable and high quality of recovered cells. Therefore, the establishment and detection on PNIPAAm based culture systems are of particular importance. This review covers the important developments and recommendations for future work of the preparation and characterization of temperature-responsive substrates based on PNIPAAm and analogues for cell culture applications.
Collapse
Affiliation(s)
- Lei Yang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| | - Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Zhang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| | - Jia Ju
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| |
Collapse
|
24
|
Mahon R, Balogun Y, Oluyemi G, Njuguna J. Swelling performance of sodium polyacrylate and poly(acrylamide-co-acrylic acid) potassium salt. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1874-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract
The application of superabsorbent polymer hydrogels is gaining much research attention. Industrial applications include agriculture, environmental engineering, biomedical and tissue engineering, oilfield, construction and electrical products, personal care products, and wastewater treatment. In this study, the swelling performance and adsorption kinetics of two commercial superabsorbent polymer hydrogels were evaluated based upon their stimuli response to pH and salinity at varying temperature and reaction time periods. Characterisation and evaluation of the materials were performed using analytical techniques—optical microscopy, scanning electron microscopy, thermal gravimetric analysis, and the gravimetric method. Experimental results show that reaction conditions strongly influence the swelling performance of the superabsorbent polymer hydrogels considered in this study. Generally, increasing pH and salinity concentration led to a significant decline in the swelling performance of both superabsorbent polymer hydrogels. An optimal temperature range between 50 and 75 °C was considered appropriate based on swell tests performed between 25 c to 100 °C over 2-, 4- and 6-h time periods. These findings serve as a guideline for material technologist and field engineers in the use of superabsorbent polymer hydrogels for a wide range of applications. The study results provide evidence that the two superabsorbent polymer hydrogels can be used for petroleum fraction-saline water emulsions separation, among other applications.
Graphic abstract
Highlights
The swelling performance of the two superabsorbent polymer hydrogels experimentally studied showed a maximum absorbency in the range of 270 to 300g/g.
Thermal gravimetric analysis curves show that both superabsorbent polymer hydrogels are stable at high temperatures.
Commercially available superabsorbent polymer hydrogels can be used in industrial water absorption applications.
Collapse
|
25
|
Ribeiro AM, Flores-Sahagun THS. Application of stimulus-sensitive polymers in wound healing formulation. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1655744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Andreza M Ribeiro
- Engineering and Material Science, University Federal of Paraná, Curitiba, Brazil
| | | |
Collapse
|
26
|
Zhang N, Zheng S, Pan Z, Liu Z. Phase Transition Effects on Mechanical Properties of NIPA Hydrogel. Polymers (Basel) 2018; 10:E358. [PMID: 30966393 PMCID: PMC6414852 DOI: 10.3390/polym10040358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/08/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022] Open
Abstract
Due to its excellent temperature sensitivity, the Poly(N-isopropylacrylamide) (NIPA) hydrogel has attracted great interest for a wide variety of applications in tissue engineering and regenerative medicine. NIPA hydrogel undergoes an abrupt volume phase transition at a lower critical solution temperature (LCST) of 30⁻35 °C. However, the mechanical behaviors of NIPA hydrogel induced by phase transition are still not well understood. In this study, phase transition effects on mechanical properties of NIPA hydrogel are quantitatively studied from experimental studies. The mechanical properties of NIPA hydrogel with the LSCT around 35 °C are systemically studied with varying temperatures (31⁻39 °C) under a tensile test. We find that the mechanical properties of NIPA hydrogel are greatly influenced by phase transition during the tension process. The maximum nominal stress and maximum stretch above the LCST are larger than those of below the LCST. The Young's modulus of NIPA hydrogel is around 13 kPa at 31 °C and approximately 28 kPa at 39 °C. A dramatic increase of Young's modulus values is observed as the temperature increases through the phase transition. The samples at a temperature around the LCST are easy to rupture, because of phase coexistent. Additionally, NIPA hydrogel displays toughening behavior under a cyclic load. Furthermore, the toughening characteristic is different between the swollen state and the collapsed state. This might originate from the internal fracture process and redistribution of polymer chains during the tension process.
Collapse
Affiliation(s)
- Ni Zhang
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structure, Shaanxi Engineering Research Center of Nondestructive Testing and Structural Integrity Evaluation, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shoujing Zheng
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structure, Shaanxi Engineering Research Center of Nondestructive Testing and Structural Integrity Evaluation, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhouzhou Pan
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structure, Shaanxi Engineering Research Center of Nondestructive Testing and Structural Integrity Evaluation, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zishun Liu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structure, Shaanxi Engineering Research Center of Nondestructive Testing and Structural Integrity Evaluation, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
27
|
Jiang X, Wang Q, Liu Y, Fu X, Luo Y, Lyu Y. A nanoscale porous glucose-based polymer for gas adsorption and drug delivery. NEW J CHEM 2018. [DOI: 10.1039/c8nj03160f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A glucose-based nanoporous organic polymer with the –OH group shows significant CO2 uptake capacities and good drug release behaviour.
Collapse
Affiliation(s)
- Xiaowei Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Qiuliang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Yunfei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Xiaohui Fu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Yali Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Yinong Lyu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| |
Collapse
|