1
|
Berikbol N, Klivenko A, Markin V, Orazzhanova L, Yelemessova G, Kassymova Z. Development of Interpolyelectrolyte Complex Based on Chitosan and Carboxymethylcellulose for Stabilizing Sandy Soil and Stimulating Vegetation of Scots Pine ( Pinus sylvestris L.). Polymers (Basel) 2024; 16:2373. [PMID: 39204592 PMCID: PMC11359870 DOI: 10.3390/polym16162373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
The issue of water and wind erosion of soil remains critically important. Polymeric materials offer a promising solution to this problem. In this study, we prepared and applied an interpolyelectrolyte complex (IPEC) composed of the biopolymers chitosan and sodium carboxymethyl cellulose (Na-CMC) for the structuring of forest sandy soils and the enhancement of the pre-sowing treatment of Scots pine (Pinus sylvestris L.) seeds. A nonstoichiometric IPEC [Chitosan]:[Na-CMC] = [3:7] was synthesized, and its composition was determined using gravimetry, turbidimetry, and rheoviscosimetry methods. Soil surface treatment with IPEC involved the sequential application of a chitosan polycation (0.006% w/w) and Na-CMC polyanion (0.02% w/w) relative to the air-dry soil weight. The prepared IPEC increased soil moisture by 77%, extended water retention time by sixfold, doubled the content of agronomically valuable soil fractions > 0.25 mm, enhanced soil resistance to water erosion by 64% and wind erosion by 81%, and improved the mechanical strength of the soil-polymer crust by 17.5 times. Additionally, IPEC application resulted in slight increases in the content of humus, mobile potassium, mobile phosphorus, ammonium nitrogen, and mineral salts in the soil while maintaining soil solution pH stability and significantly increasing nitrate nitrogen levels. The novel application technologies of biopolymers and IPEC led to a 16-25% improvement in Scots pine seed germination and seedling growth metrics.
Collapse
Affiliation(s)
- Nazira Berikbol
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| | - Alexey Klivenko
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| | - Vadim Markin
- Department of Organic Chemistry, Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russia;
| | - Lazzyat Orazzhanova
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| | - Gulnur Yelemessova
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| | - Zhanar Kassymova
- Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan; (N.B.); (A.K.); (L.O.); (G.Y.)
| |
Collapse
|
2
|
Fu M, Filippov SK, Williams AC, Khutoryanskiy VV. On the mucoadhesive properties of synthetic and natural polyampholytes. J Colloid Interface Sci 2024; 659:849-858. [PMID: 38218088 DOI: 10.1016/j.jcis.2023.12.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
HYPOTHESIS The mucoadhesive characteristics of amphoteric polymers (also known as polyampholytes) can vary and are influenced by factors such as the solution's pH and its relative position against their isoelectric point (pHIEP). Whilst the literature contains numerous reports on mucoadhesive properties of either cationic or anionic polymers, very little is known about these characteristics for polyampholytes EXPERIMENTS: Here, two amphoteric polymers were synthesized by reaction of linear polyethylene imine (l-PEI) with succinic or phthalic anhydride and their mucoadhesive properties were compared to bovine serum albumin (BSA), selected as a natural polyampholyte. Interactions between these polymers and porcine gastric mucin were studied using turbidimetric titration and isothermal titration calorimetry across a wide range of pHs. Model tablets were designed, coated with these polymers and tested to evaluate their adhesion to porcine gastric mucosa at different pHs. Moreover, a retention study using fluorescein isothiocyanate (FITC)-labelled polyampholytes deposited onto mucosal surfaces was also conducted FINDINGS: All these studies indicated the importance of solution pH and its relative position against pHIEP in the mucoadhesive properties of polyampholytes. Both synthetic and natural polyampholytes exhibited strong interactions with mucin and good mucoadhesive properties at pH < pHIEP.
Collapse
Affiliation(s)
- Manfei Fu
- School of Pharmacy, University of Reading, Whiteknights, Post Office Box 224, Reading RG6 6AD, United Kingdom
| | - Sergey K Filippov
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50 52074, Aachen, Germany
| | - Adrian C Williams
- School of Pharmacy, University of Reading, Whiteknights, Post Office Box 224, Reading RG6 6AD, United Kingdom
| | - Vitaliy V Khutoryanskiy
- School of Pharmacy, University of Reading, Whiteknights, Post Office Box 224, Reading RG6 6AD, United Kingdom.
| |
Collapse
|
3
|
Xue H, Ju Y, Ye X, Dai M, Tang C, Liu L. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review. Int J Biol Macromol 2024; 254:128048. [PMID: 37967605 DOI: 10.1016/j.ijbiomac.2023.128048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Micelles are nanostructures developed via the spontaneous assembly of amphiphilic polymers in aqueous systems, which possess the advantages of high drug stability or active-ingredient solubilization, targeted transport, controlled release, high bioactivity, and stability. Polysaccharides have excellent water solubility, biocompatibility, and degradability, and can be modified to achieve a hydrophobic core to encapsulate hydrophobic drugs, improve drug biocompatibility, and achieve regulated delivery of the loaded drug. Micelles drug delivery systems based on polysaccharides and their derivatives show great potential in the biomedical field. This review discusses the principles of self-assembly of amphiphilic polymers and the formation of micelles; the preparation of amphiphilic polysaccharides is described in detail, and an overview of common polysaccharides and their modifications is provided. We focus on the review of strategies for encapsulating drugs in polysaccharide-derived polymer micelles (PDPMs) and building intelligent drug delivery systems. This review provides new research directions that will help promote future research and development of PDPMs in the field of drug carriers.
Collapse
Affiliation(s)
- Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
4
|
Kuenen MK, Cuomo AM, Gray VP, Letteri RA. Net anionic poly(β-amino ester)s: synthesis, pH-dependent behavior, and complexation with cationic cargo. Polym Chem 2023; 14:421-431. [PMID: 37842180 PMCID: PMC10569340 DOI: 10.1039/d2py01319c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
As hydrolytically-labile, traditionally-cationic polymers, poly(β-amino ester)s (PBAEs) adeptly complex anionic compounds such as nucleic acids, and release their cargo as the polymer degrades. To engineer fully-degradable polyelectrolyte complexes and delivery vehicles for cationic therapeutics, we sought to invert PBAE net charge to generate net anionic PBAEs. Since PBAEs can carry up to a net charge of +1 per tertiary amine, we synthesized a series of alkyne-functionalized PBAEs that allowed installation of 2 anionic thiol-containing molecules per tertiary amine via a radical thiol-yne reaction. Finding dialysis in aqueous solution to lead to PBAE degradation, we developed a preparative size exclusion chromatography method to remove unreacted thiol from the net anionic PBAEs without triggering hydrolysis. The net anionic PBAEs display non-monotonic solution behavior as a function of pH, being more soluble at pH 4 and 10 than in intermediate pH ranges. Like cationic PBAEs, these net anionic PBAEs degrade in aqueous environments with hydrophobic content-dependent hydrolysis, as determined by 1H NMR spectroscopy. Further, these net anionic PBAEs form complexes with the cationic peptide (GR)10, which disintegrate over time as the polymer hydrolyzes. Together, these studies outline a synthesis and purification route to make previously inaccessible net anionic PBAEs with tunable solution and degradation behavior, allowing for user-determined complexation and release rates and providing opportunities for degradable polyelectrolyte complexes and cationic therapeutic delivery.
Collapse
Affiliation(s)
- Mara K Kuenen
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Alexa M Cuomo
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| |
Collapse
|
5
|
Arshad Z, Ali SA. Synthesis and anticorrosive application of biomimetic dopamine-based cationic polyelectrolytes derived from diallylammonium salts. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Lunkad R, Biehl P, Murmiliuk A, Blanco PM, Mons P, Štěpánek M, Schacher FH, Košovan P. Simulations and Potentiometric Titrations Enable Reliable Determination of Effective p Ka Values of Various Polyzwitterions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raju Lunkad
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Philip Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Anastasiia Murmiliuk
- Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Pablo M. Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Peter Mons
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
7
|
Abdiyev KZ, Maric M, Orynbayev BY, Toktarbay Z, Zhursumbaeva MB, Seitkaliyeva NZ. Flocculating properties of 2-acrylamido-2-methyl-1-propane sulfonic acid-co-allylamine polyampholytic copolymers. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03994-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Selenova B, Ayazbayeva A, Shakhvorostov A, Kabdrakhmanova S, Nauryzova S, Kudaibergenov S. Preparation and study of the physicochemical characteristics of multilayer polymer composites based on poly(ethyleneimine)-stabilized copper nanoparticles and poly(sodium 2-acrylamide-2-methyl-1-propanesulfonate). CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2021. [DOI: 10.15328/cb1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multilayer films were synthesized from a complex of branched polyethyleneimine (PEI) with copper nanoparticles (PEI-CuNPs) and sodium poly-2-acrylamide-2-methyl-1-propanesulfonate (PAMPSNa), applied layer-by-layer (LbL) on a solid support in an acidic medium. Protonation of the amino groups of PEI in an acidic medium increases the positive charge of the PEI-CuNPs system to +43.5 mV and promotes the formation of an interpolyelectrolyte complex between the positively charged PEI-CuNPs and the highly charged anionic polyelectrolyte PAMPS, the ζ-potential of which was -141 mV. AFM images and SEM micrographs showed a uniform distribution of spherical copper nanoparticles in the homogeneous structure of the multilayer film. The optical characteristics and hydrodynamic dimensions of PEI-CuNPs indicate the formation of PEI-CuNPs nanoparticles with sizes of 60-300 nm, with an average size of up to 100 nm. Copper nanoparticles distributed uniformly in a multilayer PEI-CuNPs/PAMPS film may be of interest for applications in the field of membrane catalysis, biochips, sensor membranes, and controlled drug delivery.
Collapse
|
9
|
Stala Ł, Ulatowska J, Polowczyk I. A review of polyampholytic ion scavengers for toxic metal ion removal from aqueous systems. WATER RESEARCH 2021; 203:117523. [PMID: 34388492 DOI: 10.1016/j.watres.2021.117523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Pollution by heavy metal ions in aqueous systems gained researchers attention gradually. Toxic metal ions were always present in the environment and the living organisms could get used to specific concentrations of contaminants with given time, however, sudden concentration rise we are observing can make it impossible for the living organisms to adapt. Many ion removal technologies were developed and optimised over the years to cope with this problem, including chemical precipitation, adsorption, membrane filtration and ion-exchange. Adsorption and ion exchange are processes that employ certain materials, that can be collectively named ion scavengers, to remove ions from aqueous solutions. Some of the scavenger materials are still barely studied, in particular polyampholytes - polymeric zwitterionic materials. This review showcases papers published on toxic metal ion removal by polyampholytes, both commercial and experimental, over last two decades. Many recent publications show promising properties of experimental materials that match or even outperform commercial scavengers. This review was prepared to encourage other researchers to investigate this broad and still not well-studied class of materials especially in context of their ion-scavenging properties. Polyamphytes which may be especially worth the attention and further research have been highlighted as literature studies show that the most unexplored materials in the class of polyamphytes are those containing aminomethylphosphonate, aminomethylsulfonate or hypophosphorous acid group.
Collapse
Affiliation(s)
- Łukasz Stala
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland.
| | - Justyna Ulatowska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland
| | - Izabela Polowczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland
| |
Collapse
|
10
|
Posey N, Ma Y, Lueckheide M, Danischewski J, Fagan JA, Prabhu VM. Tuning Net Charge in Aliphatic Polycarbonates Alters Solubility and Protein Complexation Behavior. ACS OMEGA 2021; 6:22589-22602. [PMID: 34514231 PMCID: PMC8427630 DOI: 10.1021/acsomega.1c02523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
A synthetic strategy yielded polyelectrolytes and polyampholytes with tunable net charge for complexation and protein binding. Organocatalytic ring-opening polymerizations yielded aliphatic polycarbonates that were functionalized with both carboxylate and ammonium side chains in a post-polymerization, radical-mediated thiol-ene reaction. Incorporating net charge into the polymer architecture altered the chain dimensions in phosphate buffered solution in a manner consistent with self-complexation and complexation behavior with model proteins. A net cationic polyampholyte with 5% of carboxylate side chains formed large clusters rather than small complexes with bovine serum albumin, while 50% carboxylate polyampholyte was insoluble. Overall, the aliphatic polycarbonates with varying net charge exhibited different macrophase solution behaviors when mixed with protein, where self-complexation appears to compete with protein binding and larger-scale complexation.
Collapse
Affiliation(s)
| | - Yuanchi Ma
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Michael Lueckheide
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Julia Danischewski
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jeffrey A. Fagan
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
11
|
Polyampholyte poly[2-(dimethylamino)ethyl methacrylate]-star-poly(methacrylic acid) star copolymers as colloidal drug carriers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Niskanen J, Peltekoff AJ, Bullet JR, Lessard BH, Winnik FM. Enthalpy of the Complexation in Electrolyte Solutions of Polycations and Polyzwitterions of Different Structures and Topologies. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jukka Niskanen
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Alexander J. Peltekoff
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Jean-Richard Bullet
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Benoît H. Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Françoise M. Winnik
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
- International Center for Materials Nanoarchitectonics (WPN-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
13
|
Cazorla-Luna R, Martín-Illana A, Notario-Pérez F, Ruiz-Caro R, Veiga MD. Naturally Occurring Polyelectrolytes and Their Use for the Development of Complex-Based Mucoadhesive Drug Delivery Systems: An Overview. Polymers (Basel) 2021; 13:2241. [PMID: 34301004 PMCID: PMC8309414 DOI: 10.3390/polym13142241] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Biopolymers have several advantages for the development of drug delivery systems, since they are biocompatible, biodegradable and easy to obtain from renewable resources. However, their most notable advantage may be their ability to adhere to biological tissues. Many of these biopolymers have ionized forms, known as polyelectrolytes. When combined, polyelectrolytes with opposite charges spontaneously form polyelectrolyte complexes or multilayers, which have great functional versatility. Although only one natural polycation-chitosan has been widely explored until now, it has been combined with many natural polyanions such as pectin, alginate and xanthan gum, among others. These polyelectrolyte complexes have been used to develop multiple mucoadhesive dosage forms such as hydrogels, tablets, microparticles, and films, which have demonstrated extraordinary potential to administer drugs by the ocular, nasal, buccal, oral, and vaginal routes, improving both local and systemic treatments. The advantages observed for these formulations include the increased bioavailability or residence time of the formulation in the administration zone, and the avoidance of invasive administration routes, leading to greater therapeutic compliance.
Collapse
Affiliation(s)
| | | | | | | | - María-Dolores Veiga
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.C.-L.); (A.M.-I.); (F.N.-P.); (R.R.-C.)
| |
Collapse
|
14
|
Kudaibergenov SE, Okay O. Behaviors of quenched polyampholytes in solution and gel state. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sarkyt E. Kudaibergenov
- Laboratory of Engineering Profile Satbayev University Almaty Republic of Kazakhstan
- Department of Functional Polymers Institute of Polymer Materials and Technology Almaty Republic of Kazakhstan
| | - Oguz Okay
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| |
Collapse
|
15
|
Nicolas M, Beyou E, Fumagalli M. Two-step synthesis of polystyrene sulfonate based copolymers bearing pendant primary amines. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Bairagi U, Jacob J. Macroporous Polyzwitterionic Gels As Versatile Intermediates for the Fixation and Release of Anions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5424-5435. [PMID: 33891417 DOI: 10.1021/acs.langmuir.1c00888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new stable and functional polyzwitterion poly[1-(carboxymethyl)-4-methacrylamidopyridin-1-ium] was synthesized. The zwitterionic polymer shows its isoelectric point at a pH of 4.2, bidirectional pH responsiveness, and formation of dendritic fractal self-aggregated structures. Using this as a common intermediate, a simple, direct, and scalable single-step protocol was established to introduce various elementary anions like NO3-, HSO4-, H2PO4-, F-, Cl-, Br-, I-, CH3COO-, and HCOO- in their salt forms by reaction with the corresponding acids. FESEM studies on cross-linked polymeric hydrogels established the macroporous nature of these materials with their pore size in the range of 10-15 μm. Bidirectional swelling behavior was observed in these hydrogels from gel swelling kinetics and pH studies. Anion release studies in deionized water and buffer solutions showed ∼82 and ∼95% cumulative release for nitrate and phosphate anions, respectively, in 72 h. Our studies suggest that multifunctional polyzwitterionic gels are promising intermediates in the fixation and release of anions like nitrate and phosphate with potential applications in agriculture and healthcare.
Collapse
Affiliation(s)
- Ujjawal Bairagi
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Josemon Jacob
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
17
|
Choi W, Park S, Kwon JS, Jang EY, Kim JY, Heo J, Hwang Y, Kim BS, Moon JH, Jung S, Choi SH, Lee H, Ahn HW, Hong J. Reverse Actuation of Polyelectrolyte Effect for In Vivo Antifouling. ACS NANO 2021; 15:6811-6828. [PMID: 33769787 DOI: 10.1021/acsnano.0c10431] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zwitterionic polymers have extraordinary properties, that is, significant hydration and the so-called antipolyelectrolyte effect, which make them suitable for biomedical applications. The hydration induces an antifouling effect, and this has been investigated significantly. The antipolyelectrolyte effect refers to the extraordinary ion-responsive behavior of particular polymers that swell and hydrate considerably in physiological solutions. This actuation begins to attract attention to achieve in vivo antifouling that is challenging for general polyelectrolytes. In this study, we established the sophisticated cornerstone of the antipolyelectrolyte effect in detail, including (i) the essential parameters, (ii) experimental verifications, and (iii) effect of improving antifouling performance. First, we find that both osmotic force and charge screening are essential factors. Second, we identify the antipolyelectrolyte effect by visualizing the swelling and hydration dynamics. Finally, we verify that the antifouling performance can be enhanced by exploiting the antipolyelectrolyte effect and report reduction of 85% and 80% in ex and in vivo biofilm formation, respectively.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Eun-Young Jang
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - YoungDeok Hwang
- Paul H. Chook Department of Information Systems and Statistics, Baruch College CUNY, New York, New York 10010, United States
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Hoi Moon
- Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Hyo-Won Ahn
- Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
18
|
Kudaibergenov SE. Synthetic and natural polyampholytes: Structural and behavioral similarity. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology Atyrau Kazakhstan
- Laboratory of Engineering Profile Satbayev University Almaty Kazakhstan
| |
Collapse
|
19
|
Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, Shahbazi M. Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications. Adv Healthc Mater 2021; 10:e2001571. [PMID: 33274841 DOI: 10.1002/adhm.202001571] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/13/2020] [Indexed: 01/16/2023]
Abstract
The complexity of hard-to-treat diseases strongly undermines the therapeutic potential of available treatment options. Therefore, a paradigm shift from monotherapy toward combination therapy has been observed in clinical research to improve the efficiency of available treatment options. The advantages of combination therapy include the possibility of synchronous alteration of different biological pathways, reducing the required effective therapeutic dose, reducing drug resistance, and lowering the overall costs of treatment. The tunable physical properties, excellent biocompatibility, facile preparation, and ease of administration with minimal invasiveness of injectable hydrogels (IHs) have made them excellent candidates to solve the clinical and pharmacological limitations of present systems for multitherapy by direct delivery of therapeutic payloads and improving therapeutic responses through the formation of depots containing drugs, genes, cells, or a combination of them in the body after a single injection. In this review, currently available methods for the design and fabrication of IHs are systematically discussed in the first section. Next, as a step toward establishing IHs for future multimodal synergistic therapies, recent advances in cancer combination therapy, wound healing, and tissue engineering are addressed in detail in the following sections. Finally, opportunities and challenges associated with IHs for multitherapy are listed and further discussed.
Collapse
Affiliation(s)
- Fatemeh Poustchi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Department of Nanotechnology University of Guilan Rasht Guilan 41996‐13765 Iran
| | - Hamed Amani
- Faculty of Advanced Technologies in Medicine, Department of Medical Nanotechnology Iran University of Medical Science Tehran 14496‐14535 Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center Shiraz University of Medical Sciences Shiraz 71987‐54361 Iran
| | - Soraya Mehrabi
- Faculty of Medicine, Department of Physiology Iran University of Medical Sciences Tehran 14496‐14535 Iran
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| | - Mohammad‐Ali Shahbazi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| |
Collapse
|
20
|
Li M, Zhuang B, Yu J. Functional Zwitterionic Polymers on Surface: Structures and Applications. Chem Asian J 2020; 15:2060-2075. [DOI: 10.1002/asia.202000547] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/29/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Minglun Li
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Bilin Zhuang
- Division of ScienceYale-NUS College Singapore 138527 Singapore
| | - Jing Yu
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
21
|
Revuelta J, Aranaz I, Acosta N, Civera C, Bastida A, Peña N, Monterrey DT, Doncel-Pérez E, Garrido L, Heras Á, García-Junceda E, Fernández-Mayoralas A. Unraveling the Structural Landscape of Chitosan-Based Heparan Sulfate Mimics Binding to Growth Factors: Deciphering Structural Determinants for Optimal Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25534-25545. [PMID: 32426965 DOI: 10.1021/acsami.0c03074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chitosan sulfates have demonstrated the ability to mimic heparan sulfate (HS) function. In this context, it is crucial to understand how the specific structural properties of HS domains determine their functionalities and biological activities. In this study, several HS-mimicking chitosans have been prepared to mimic the structure of HS domains that have proved to be functionally significant in cell processes. The results presented herein are in concordance with the hypothesis that sulfated chitosan-growth factor (GF) interactions are controlled by a combination of two effects: the electrostatic interactions and the conformational adaptation of the polysaccharide. Thus, we found that highly charged O-sulfated S-CS and S-DCS polysaccharides with a low degree of contraction interacted more strongly with GFs than N-sulfated N-DCS, with a higher degree of contraction and a low charge. Finally, the evidence gathered suggests that N-DCS would be able to bind to an allosteric zone and is likely to enhance GF signaling activity. This is because the bound protein remains able to bind to its cognate receptor, promoting an effect on cell proliferation as has been shown for PC12 cells. However, S-CS and S-DCS would sequester the protein, decreasing the GF signaling activity by depleting the protein or locally blocking its active site.
Collapse
Affiliation(s)
- Julia Revuelta
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Inmaculada Aranaz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 28040 Madrid, Spain
| | - Niuris Acosta
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 28040 Madrid, Spain
| | - Concepción Civera
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Agatha Bastida
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Nerea Peña
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Dianelis T Monterrey
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ernesto Doncel-Pérez
- Laboratorio de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Leoncio Garrido
- Departamento de Química Física, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ángeles Heras
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 28040 Madrid, Spain
| | - Eduardo García-Junceda
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alfonso Fernández-Mayoralas
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
22
|
Biehl P, Wiemuth P, Lopez JG, Barth MC, Weidner A, Dutz S, Peneva K, Schacher FH. Weak Polyampholytes at the Interface of Magnetic Nanocarriers: A Facile Catch-and-Release Platform for Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6095-6105. [PMID: 32396363 DOI: 10.1021/acs.langmuir.0c00455] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a platform of charge-invertible core-shell hybrid particles for the selective and reversible adsorption of small charged molecules as model systems. The herein employed carrier systems consist of an iron oxide core coated with different pH-responsive polyampholytes which exhibit varying surface charge depending on the surrounding pH value. The resulting materials were used for electrostatically mediated catch-and-release experiments of either cationic or anionic dyes with the perspective to allow the pH-dependent magnetically guided transport of suitable cargo. The use of three different polyampholyte coatings (poly(2-(imidazol-1-yl)acrylic acid) (PImAA), poly(dehydroalanine) (PDha), and poly(N,N-diallylglutamate) (PDAGA)) enables a deeper understanding about how the surface net charge in combination with the charge and charge density of any cargo influences such processes. The size, surface charge, and aggregation behavior of the herein described particles were investigated via dynamic light scattering (DLS), transmission electron microscopy (TEM), and pH-dependent ζ-potential measurements, whereas adsorption and release studies were investigated via UV-vis.
Collapse
Affiliation(s)
- P Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-Universität Jena, Philosophenweg 7, 07743 Jena, Germany
| | - P Wiemuth
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-Universität Jena, Philosophenweg 7, 07743 Jena, Germany
| | - J Garcia Lopez
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-Universität Jena, Philosophenweg 7, 07743 Jena, Germany
| | - M-C Barth
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - A Weidner
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - S Dutz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany
- Department of Nano Biophotonics, Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - K Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-Universität Jena, Philosophenweg 7, 07743 Jena, Germany
| | - F H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-Universität Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
23
|
Panova IG, Khaydapova DD, Ilyasov LO, Umarova AB, Yaroslavov AA. Polyelectrolyte complexes based on natural macromolecules for chemical sand/soil stabilization. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124504] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Abstract
Abstract
The macromolecular complexes of random, regular, graft, block and dendritic polyampholytes with respect to transition metal ions, surfactants, dyes, polyelectrolytes, and proteins are discussed in this review. Application aspects of macromolecular complexes of polyampholytes in biotechnology, medicine, nanotechnology, catalysis are demonstrated.
Collapse
Affiliation(s)
- Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology , Almaty , Kazakhstan
- Laboratory of Engineering Profile, Satbayev University , Almaty , Kazakhstan
| |
Collapse
|
25
|
Potaufeux JE, Odent J, Notta-Cuvier D, Lauro F, Raquez JM. A comprehensive review of the structures and properties of ionic polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py00770f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review focuses on the mechanistic approach, the structure–property relationship and applications of ionic polymeric materials.
Collapse
Affiliation(s)
- Jean-Emile Potaufeux
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Delphine Notta-Cuvier
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Franck Lauro
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| |
Collapse
|
26
|
Kubarkov AV, Turkina PI, Shepeleva AS, Pyshkina OA, Zakharova YA, Sergeyev VG. Interpolyelectrolyte Complexes of Polyaniline and Sulfonated Poly(phenylene oxide). POLYMER SCIENCE SERIES B 2019. [DOI: 10.1134/s1560090419060083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Crosstalk between responsivities to various stimuli in multiresponsive polymers: change in polymer chain and external environment polarity as the key factor. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04576-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Grinberg VY, Burova TV, Grinberg NV, Alvarez-Lorenzo C, Khokhlov AR. Protein-like energetics of conformational transitions in a polyampholyte hydrogel. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Gao S, Holkar A, Srivastava S. Protein-Polyelectrolyte Complexes and Micellar Assemblies. Polymers (Basel) 2019; 11:E1097. [PMID: 31261765 PMCID: PMC6680422 DOI: 10.3390/polym11071097] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
In this review, we highlight the recent progress in our understanding of the structure, properties and applications of protein-polyelectrolyte complexes in both bulk and micellar assemblies. Protein-polyelectrolyte complexes form the basis of the genetic code, enable facile protein purification, and have emerged as enterprising candidates for simulating protocellular environments and as efficient enzymatic bioreactors. Such complexes undergo self-assembly in bulk due to a combined influence of electrostatic interactions and entropy gains from counterion release. Diversifying the self-assembly by incorporation of block polyelectrolytes has further enabled fabrication of protein-polyelectrolyte complex micelles that are multifunctional carriers for therapeutic targeted delivery of proteins such as enzymes and antibodies. We discuss research efforts focused on the structure, properties and applications of protein-polyelectrolyte complexes in both bulk and micellar assemblies, along with the influences of amphoteric nature of proteins accompanying patchy distribution of charges leading to unique phenomena including multiple complexation windows and complexation on the wrong side of the isoelectric point.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Advait Holkar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Cationic electrolyte copolymers of diallyldimethylammonium chloride with carboxybetaine 2-(diallyl(methyl) ammonio) acetate of various compositions in water solutions of different ionic strengths. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1755-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Horn JM, Kapelner RA, Obermeyer AC. Macro- and Microphase Separated Protein-Polyelectrolyte Complexes: Design Parameters and Current Progress. Polymers (Basel) 2019; 11:E578. [PMID: 30960562 PMCID: PMC6523202 DOI: 10.3390/polym11040578] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 01/02/2023] Open
Abstract
Protein-containing polyelectrolyte complexes (PECs) are a diverse class of materials, composed of two or more oppositely charged polyelectrolytes that condense and phase separate near overall charge neutrality. Such phase-separation can take on a variety of morphologies from macrophase separated liquid condensates, to solid precipitates, to monodispersed spherical micelles. In this review, we present an overview of recent advances in protein-containing PECs, with an overall goal of defining relevant design parameters for macro- and microphase separated PECs. For both classes of PECs, the influence of protein characteristics, such as surface charge and patchiness, co-polyelectrolyte characteristics, such as charge density and structure, and overall solution characteristics, such as salt concentration and pH, are considered. After overall design features are established, potential applications in food processing, biosensing, drug delivery, and protein purification are discussed and recent characterization techniques for protein-containing PECs are highlighted.
Collapse
Affiliation(s)
- Justin M Horn
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Rachel A Kapelner
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
32
|
Kudaibergenov SE. Physicochemical, Complexation and Catalytic Properties of Polyampholyte Cryogels. Gels 2019; 5:gels5010008. [PMID: 30795568 PMCID: PMC6473870 DOI: 10.3390/gels5010008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022] Open
Abstract
Polyampholyte cryogels are a less considered subject in comparison with cryogels based on nonionic, anionic and cationic precursors. This review is devoted to physicochemical behavior, complexation ability and catalytic properties of cryogels based on amphoteric macromolecules. Polyampholyte cryogels are able to exhibit the stimuli-responsive behavior and change the structure and morphology in response to temperature, pH of the medium, ionic strength and water–organic solvents. Moreover, they can uptake transition metal ions, anionic and cationic dyes, ionic surfactants, polyelectrolytes, proteins, and enzymes through formation of coordination bonds, hydrogen bonds, and electrostatic forces. The catalytic properties of polyampholyte cryogels themselves and with immobilized metal nanoparticles suspended are outlined following hydrolysis, transesterification, hydrogenation and oxidation reactions of various substrates. Application of polyampholyte cryogels as a protein-imprinted matrix for separation and purification of biomacromolecules and for sustained release of proteins is demonstrated. Comparative analysis of the behavior of polyampholyte cryogels with nonionic, anionic and cationic precursors is given together with concluding remarks.
Collapse
Affiliation(s)
- Sarkyt E Kudaibergenov
- Institute of Polymer Materials and Technology, Microregion "Atyrau 1", house 3/1, Almaty 050019, Kazakhstan.
- Laboratory of Engineering Profile, K.I. Satpayev Kazakh National Research Technical University, Satpayev Str. 22, Almaty 050013, Kazakhstan.
| |
Collapse
|