1
|
Zheng X, Xu L, Douglas JF, Xia W. Role of additive size in the segmental dynamics and mechanical properties of cross-linked polymers. NANOSCALE 2024; 16:16919-16932. [PMID: 39189325 DOI: 10.1039/d4nr02631d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Thermoset materials often involve the addition of molecular and nanoparticle additives to alter various chemo-physical properties of importance in their ultimate applications. The resulting compositional heterogeneities can lead to either enhancement or degradation of thermoset properties, depending on the additive chemical structure and concentration. We tentatively explore this complex physical phenomenon through the consideration of a model polymeric additive to our coarse-grained (CG) thermoset investigated in previous works by simply varying the size of additive segments compared to those of polymer melt. We find that the additive modified thermoset material becomes chemically heterogeneous from additive aggregation when the additive segments become much smaller than those of the thermoset molecules, and a clear evidence is observed in the spatial distribution of local molecular stiffness estimated from Debye-Waller factor 〈u2〉. Despite the non-monotonic variation trends observed in dynamical and mechanical properties with decreasing additive segmental size, both the structural relaxation time and moduli (i.e., shear modulus and bulk modulus) exhibit scaling laws with 〈u2〉. The present work highlights the complex role of additive size played in the dynamical and mechanical properties of thermoset polymers, which should provide a better understanding for the glass formation process of cross-linked polymer composites.
Collapse
Affiliation(s)
- Xiangrui Zheng
- Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lan Xu
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
2
|
Ali AH, Sultan HA, Hassan QMA, Emshary CA. Thermal and Nonlinear Optical Properties of Sudan III. J Fluoresc 2024; 34:635-653. [PMID: 37338725 DOI: 10.1007/s10895-023-03312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
We report the experimental and theoretical study of the diffraction patterns (DPs) and thermal properties of Sudan III. DPs are used in the calculation of the Sudan III nonlinear refractive index (NLRI), n 2 . As high as n 2 = 7.69 ×10-6 cm2/W is obtained. The study of the Sudan III thermal conductivity, TC, shows the reduction of the TC against the increase of the Sudan III temperature. The property, all-optical switching (AOS), is studied in details, both static and dynamic ones, using two, cw, visible, single mode laser beams of wavelengths 473 and 635 nm.
Collapse
Affiliation(s)
- Amir Hussein Ali
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - H A Sultan
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| | - Qusay M A Hassan
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq.
| | - C A Emshary
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq
| |
Collapse
|
3
|
Ponomarenko AD, Nikulova UV, Shapagin AV. Phase Equilibria and Interdiffusion in the Ternary System Epoxy Oligomer-Polysulfone-Alkyl Glycidyl Ether. Polymers (Basel) 2023; 16:130. [PMID: 38201795 PMCID: PMC10780338 DOI: 10.3390/polym16010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Phase equilibria, interdiffusion and structure in the initial uncured mixtures of epoxy oligomer-polysulfone-alkyl glycidyl ether were studied. Binodal curves were constructed on isothermal sections of the ternary phase diagram. Thermodynamic mixing parameters were calculated and spinodal curves were plotted. The interdiffusion coefficients of components, establishing the technological modes of mixing the components, were determined. To validate the phase diagram, the phase structure of mixtures, the composition of which at a temperature of 40 °C corresponds to heterogeneous and homogeneous regions, was studied.
Collapse
Affiliation(s)
| | | | - Aleksey V. Shapagin
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS), 31, bld.4 Leninsky Prospect, Moscow 119071, Russia; (A.D.P.); (U.V.N.)
| |
Collapse
|
4
|
Barra G, Guadagno L, Raimondo M, Santonicola MG, Toto E, Vecchio Ciprioti S. A Comprehensive Review on the Thermal Stability Assessment of Polymers and Composites for Aeronautics and Space Applications. Polymers (Basel) 2023; 15:3786. [PMID: 37765641 PMCID: PMC10535285 DOI: 10.3390/polym15183786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
This review article provides an exhaustive survey on experimental investigations regarding the thermal stability assessment of polymers and polymer-based composites intended for applications in the aeronautical and space fields. This review aims to: (1) come up with a systematic and critical overview of the state-of-the-art knowledge and research on the thermal stability of various polymers and composites, such as polyimides, epoxy composites, and carbon-filled composites; (2) identify the key factors, mechanisms, methods, and challenges that affect the thermal stability of polymers and composites, such as the temperature, radiation, oxygen, and degradation; (3) highlight the current and potential applications, benefits, limitations, and opportunities of polymers and composites with high thermal stability, such as thermal control, structural reinforcement, protection, and energy conversion; (4) give a glimpse of future research directions by providing indications for improving the thermal stability of polymers and composites, such as novel materials, hybrid composites, smart materials, and advanced processing methods. In this context, thermal analysis plays a crucial role in the development of polyimide-based materials for the radiation shielding of space solar cells or spacecraft components. The main strategies that have been explored to improve the processability, optical transparency, and radiation resistance of polyimide-based materials without compromising their thermal stability are highlighted. The combination of different types of polyimides, such as linear and hyperbranched, as well as the incorporation of bulky pendant groups, are reported as routes for improving the mechanical behavior and optical transparency while retaining the thermal stability and radiation shielding properties. Furthermore, the thermal stability of polymer/carbon nanocomposites is discussed with particular reference to the role of the filler in radiation monitoring systems and electromagnetic interference shielding in the space environment. Finally, the thermal stability of epoxy-based composites and how it is influenced by the type and content of epoxy resin, curing agent, degree of cross-linking, and the addition of fillers or modifiers are critically reviewed. Some studies have reported that incorporating mesoporous silica micro-filler or microencapsulated phase change materials (MPCM) into epoxy resin can enhance its thermal stability and mechanical properties. The mesoporous silica composite exhibited the highest glass transition temperature and activation energy for thermal degradation among all the epoxy-silica nano/micro-composites. Indeed, an average activation energy value of 148.86 kJ/mol was recorded for the thermal degradation of unfilled epoxy resin. The maximum activation energy range was instead recorded for composites loaded with mesoporous microsilica. The EMC-5p50 sample showed the highest mean value of 217.6 kJ/mol. This remarkable enhancement was ascribed to the polymer invading the silica pores and forging formidable interfacial bonds.
Collapse
Affiliation(s)
- Giuseppina Barra
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (G.B.); (L.G.)
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (G.B.); (L.G.)
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (G.B.); (L.G.)
| | - Maria Gabriella Santonicola
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| | - Elisa Toto
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| | - Stefano Vecchio Ciprioti
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
| |
Collapse
|
5
|
Qiu X, Lin Z, Zhao Y, Zhang J, Hu X, Bai H. Self-Compositing: A Efficient Method of Improving the Electrical Conductivity of Graphene Nanoplatelet/Thermosetting Resin Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300931. [PMID: 37093183 DOI: 10.1002/smll.202300931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Conductive composites based on thermosetting resins have broad applications in various fields. In this paper, a new self-compositing strategy is developed for improving the conductivity of graphene nanoplatelet/thermosetting resin composites by optimizing the transport channels. To implement this strategy, conventional graphene nanoplatelet/thermosetting resin is crushed into micron-sized composite powders, which are mixed with graphene nanoplatelets to form novel complex fillers to prepare the self-composited materials with thermosetting resins. A highly conductive compact graphene layer is formed on the surface of the crushed composite powders, while the addition of the micron-sized powder induces the orientation of graphene nanoplatelets in the resin matrix. Therefore, a highly conductive network is constructed inside the self-composited material, significantly enhancing the electrical conductivity. The composite materials based on epoxy resin, cyanate resin, and unsaturated polyester are prepared with this method, reflecting that the method is universal for preparing composites based on thermosetting resins. The highest electrical conductivity of the self-composited material based on unsaturated polyester is as high as 25.9 S m-1 . This self-compositing strategy is simple, efficient, and compatible with large-scale industrial production, thus it is a promising and general way to enhance the conductivity of thermosetting resin matrix composites.
Collapse
Affiliation(s)
- Xiaowen Qiu
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zewen Lin
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Yanan Zhao
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jinmeng Zhang
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaolan Hu
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Hua Bai
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
6
|
Tretyakov IV, Petrova TV, Kireynov AV, Korokhin RA, Platonova EO, Alexeeva OV, Gorbatkina YA, Solodilov VI, Yurkov GY, Berlin AA. Fracture of Epoxy Matrixes Modified with Thermo-Plastic Polymers and Winding Glass Fibers Reinforced Plastics on Their Base under Low-Velocity Impact Condition. Polymers (Basel) 2023; 15:2958. [PMID: 37447603 DOI: 10.3390/polym15132958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The work is aimed at studying the impact resistance of epoxy oligomer matrices (EO) modified with polysulfone (PSU) or polyethersulfone (PES) and glass fibers reinforced plastics (GFRP) based on them under low-velocity impact conditions. The concentration dependences of strength and fracture energy of modified matrices and GFRP were determined. It has been determined that the type of concentration curves of the fracture energy of GFRP depends on the concentration and type of the modifying polymer. It is shown that strength σ and fracture energy EM of thermoplastic-modified epoxy matrices change little in the concentration range from 0 to 15 wt.%. However, even with the introduction of 20 wt.% PSU into EO, the strength increases from 164 MPa to 200 MPa, and the fracture energy from 32 kJ/m2 to 39 kJ/m2. The effect of increasing the strength and fracture energy of modified matrices is retained in GFRP. The maximum increase in shear strength (from 72 MPa to 87 MPa) is observed for GFRP based on the EO + 15 wt.% PSU matrix. For GFRP based on EO + 20 wt.% PES, the shear strength is reduced to 69 MPa. The opposite effect is observed for the EO + 20 wt.% PES matrix, where the strength value decreases from 164 MPa to 75 MPa, and the energy decreases from 32 kJ/m2 to 10 kJ/m2. The reference value for the fracture energy of GFRP 615 is 741 kJ/m2. The maximum fracture energy for GFRP is based on EO + 20 wt.% PSU increases to 832 kJ/m2 for GFRP based on EO + 20 wt.% PES-up to 950 kJ/m2. The study of the morphology of the fracture surfaces of matrices and GFRP confirmed the dependence of impact characteristics on the microstructure of the modified matrices and the degree of involvement in the process of crack formation. The greatest effect is achieved for matrices with a phase structure "thermoplastic matrix-epoxy dispersion." Correlations between the fracture energy and strength of EO + PES matrices and GFRP have been established.
Collapse
Affiliation(s)
- Ilya V Tretyakov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tuyara V Petrova
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Aleksey V Kireynov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Roman A Korokhin
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena O Platonova
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, 119334 Moscow, Russia
| | - Olga V Alexeeva
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia A Gorbatkina
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vitaliy I Solodilov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gleb Yu Yurkov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander Al Berlin
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Ma J, Zhou S, Lai Y, Wang Z, Ni N, Dai F, Xu Y, Yang X. Ionic Liquids Facilitate the Dispersion of Branched Polyethylenimine Grafted ZIF-8 for Reinforced Epoxy Composites. Polymers (Basel) 2023; 15:polym15081837. [PMID: 37111984 PMCID: PMC10146677 DOI: 10.3390/polym15081837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) have been previously shown as an emerging modified class of epoxy resin. In this work, we report a simple strategy for preventing zeolitic imidazolate framework (ZIF-8) nanoparticles from agglomerating in epoxy resin (EP). Branched polyethylenimine grafted ZIF-8 in ionic liquid (BPEI-ZIF-8) nanofluid with good dispersion was prepared successfully using an ionic liquid as both the dispersant and curing agent. Results indicated that the thermogravimetric curve of the composite material had no noticeable change with increasing BPEI-ZIF-8/IL content. The glass transition temperature (Tg) of the epoxy composite was reduced with the addition of BPEI-ZIF-8/IL. The addition of 2 wt% BPEI-ZIF-8/IL into EP effectively improved the flexural strength to about 21.7%, and the inclusion of 0.5 wt% of BPEI-ZIF-8/IL EP composites increased the impact strength by about 83% compared to pure EP. The effect of adding BPEI-ZIF-8/IL on the Tg of epoxy resin was explored, and its toughening mechanism was analyzed in combination with SEM images showing fractures in the EP composites. Moreover, the damping and dielectric properties of the composites were improved by adding BPEI-ZIF-8/IL.
Collapse
Affiliation(s)
- Junchi Ma
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Shihao Zhou
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yuanchang Lai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Zhaodi Wang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Nannan Ni
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Feng Dai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yahong Xu
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Xin Yang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
8
|
Yang J, Zhang Y, Hao M, Zhi J, Qian X. Synergistically toughened epoxy resin based on modified-POSS triggered interpenetrating network. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Structure and Properties of Epoxy Polysulfone Systems Modified with an Active Diluent. Polymers (Basel) 2022; 14:polym14235320. [PMID: 36501712 PMCID: PMC9736303 DOI: 10.3390/polym14235320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An epoxy resin modified with polysulfone (PSU) and active diluent furfuryl glycidyl ether (FGE) was studied. Triethanolaminotitanate (TEAT) and iso-methyltetrahydrophthalic anhydride (iso-MTHPA) were used as curing agents. It is shown that during the curing of initially homogeneous mixtures, heterogeneous structures are formed. The type of these structures depends on the concentration of active diluent and the type of hardener. The physico-mechanical properties of the hybrid matrices are determined by the structure formed. The maximum resistance to a growing crack is provided by structures with a thermoplastic-enriched matrix-interpenetrating structures. The main mechanism for increasing the energy of crack propagation is associated with the implementation of microplasticity of extended phases enriched in polysulfone and their involvement in the fracture process.
Collapse
|
10
|
Karoonsit B, Yeetsorn R, Aussawasathien D, Prissanaroon-Ouajai W, Yogesh GK, Maiket Y. Performance Evaluation for Ultra-Lightweight Epoxy-Based Bipolar Plate Production with Cycle Time Reduction of Reactive Molding Process. Polymers (Basel) 2022; 14:polym14235226. [PMID: 36501620 PMCID: PMC9740532 DOI: 10.3390/polym14235226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The commercial viability of fuel cells for vehicle application has been examined in the context of lightweight material options, as well as in combination with improvements in fuel cell powertrain. Investigation into ultra-lightweight bipolar plates (BPs), the main component in terms of the weight effect, is of great importance to enhance energy efficiency. This research aims to fabricate a layered carbon fiber/epoxy composite structure for BPs. Two types of carbon fillers (COOH-MWCNT and COOH-GNP) reinforced with woven carbon fiber sheets (WCFS) have been utilized. The conceptual idea is to reduce molding cycle time by improving the structural, electrical, and mechanical properties of BPs. Reducing the reactive molding cycle time is required for commercial production possibility. The desired crosslink density of 97%, observed at reactive molding time, was reduced by 83% at 140 °C processing temperature. The as-fabricated BPs demonstrate excellent electrical conductivity and mechanical strength that achieved the DOE standard. Under actual fuel cell operation, the as-fabricated BPs show superior performance to commercial furan-based composite BPs in terms of the cell potential and maximum power. This research demonstrates the practical and straightforward way to produce high-performance and reliable BPs with a rapid production rate for actual PEMFC utilization.
Collapse
Affiliation(s)
- Budsaba Karoonsit
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Rungsima Yeetsorn
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
- Correspondence: ; Tel.: +66-2555-2000 (ext. 2921)
| | - Darunee Aussawasathien
- Advanced Polymer Technology Research Group, National Metal, and Materials Technology Center, Khlong Luang, Pathum Thani 12120, Thailand
| | - Walaiporn Prissanaroon-Ouajai
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Gaurav Kumar Yogesh
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Yaowaret Maiket
- Thai-French Innovation Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
11
|
Adhesive and Impact-Peel Strength Improvement of Epoxy Resins Modified with Mono and Diamine Functionalized Elastomers. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/2309235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epoxy resins are widely applied in the automotive and electronic industries. However, pure epoxy resins are brittle and thus possess poor mechanical properties. Herein, we report a facile method for improving the impact-peel and adhesive strengths of epoxy resins via the incorporation of two different types of polyether amines (monoamine-based and diamine-based prepolymers). A comparative study was performed to investigate the potential advantages of incorporating a prepolymer into an epoxy resin matrix. It was discovered that the incorporation of a diamine prepolymer significantly improved the impact-peel strength of the epoxy resin system at low (-40°C) and room (23°C) temperatures. For 15 wt% adhesive loading, the diamine prepolymer-based epoxy system demonstrated a 130% (low temperature) and 32% (room temperature) higher impact-peel strength than the monoamine prepolymer-based epoxy system. Moreover, the 15 wt% diamine prepolymer-based epoxy system exhibited a significantly improved shear strength (~36 MPa) and T-peel strength (260 N/25 mm) owing to the effectively reduced crack propagation and cohesive interactions between the epoxy molecules. Our results suggest that the modification of epoxy resins with an appropriate amount of mono and diamine-functionalized elastomers provides a novel route for the development of highly efficient adhesive materials for various applications.
Collapse
|
12
|
Effect of the Addition of Thermoplastic Resin and Composite on Mechanical and Thermal Properties of Epoxy Resin. Polymers (Basel) 2022; 14:polym14061087. [PMID: 35335418 PMCID: PMC8954698 DOI: 10.3390/polym14061087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
When the thermoplastic composites reach the service limits during the service, the recovery and utilization are the key concerns. Meanwhile, the improvement of strength, toughness and durability of epoxy resin is the effective method to prolong the service life of materials and structures. In the present paper, three kinds of thermoplastic resins (polypropylene-PP, polyamide 6-PA6 and polyether-ether-ketone-PEEK) and composites (carbon fiber-PEEK, glass fiber-PA6 and glass fiber-PP) were adopted as the fillers to reinforce and toughen the epoxy resin (Ts). The mechanical, thermal and microscopic analysis were conducted to reveal the performance improvement mechanism of Ts. It can be found that adding thermoplastic resin and composite fillers at the low mass ratio of 0.5~1.0% brought about the maximum improvement of tensile strength (7~15%), flexural strength (7~15%) and shear strength (20~30%) of Ts resin. The improvement mechanism was because the addition of thermoplastic fillers can prolong the cracking path and delay the failure process through the load bearing of fiber, energy absorption of thermoplastic resin and superior interface bonding. In addition, the thermoplastic composite had better enhancement effect on the mechanical/thermal properties of Ts resin compared to thermoplastic resin. When the mass ratio was increased to 2.0~3.0%, the agglomeration and stress concentration of thermoplastic filler in Ts resin appeared, leading to the decrease of mechanical and thermal properties. The optimal addition ratios of thermoplastic resin were 0.5~1.0% (PEEK), 1.0~2.0% (PA6) and 0.5~1.0% (PP) to obtain the desirable property improvement. In contrast, the optimal mass ratios of three kinds of composite were determined to be 0.5~1.0%. Application prospect analysis indicated adding the thermoplastic resin and composite fillers to Ts resin can promote the recycling and reutilization of thermoplastic composites and improve the performance of Ts resin, which can be used as the resin matrix, interface adhesive and anti-corrosion coating.
Collapse
|
13
|
|
14
|
Epoxyorganosilane Finishing Compositions for Fibrous Fillers of Thermosetting and Thermoplastic Binders. Polymers (Basel) 2021; 14:polym14010059. [PMID: 35012082 PMCID: PMC8747618 DOI: 10.3390/polym14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
The development of universal finishing compositions for fibers of various natures is an urgent task for polymer composite materials science. The developed finishes can be used for the fiber reinforcement of polymer matrices with a wide range of surface free energy characteristics. Epoxy systems modified with diaminesilane in a wide concentration range were examined by optical interferometry, FTIR spectroscopy, DSC and the sessile drop technique. It was shown that the partial curing of epoxy resin by diaminesilane at room temperature under an inert atmosphere, followed by contact with air, leads to a significant increase of the surface free energy of the system. Varying the concentration of diaminesilane allows us to effectively regulate the surface free energy of the composition. This makes it possible to use fibers finished with epoxyaminosilane compositions in composite materials based on a various thermosetting and thermoplastic binders with a surface tension of up to 75 mJ/m2.
Collapse
|
15
|
Du B, Xue D, Luo R, Yang K, Li H, Zhou S. Preparation and properties of
CNTs
loaded bisphenol F epoxy nanocomposites modified by noncovalent dispersant and nonionic surfactant. J Appl Polym Sci 2021. [DOI: 10.1002/app.51906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bin Du
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering Xi'an University of Technology Xi'an China
| | - Daodao Xue
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Rubai Luo
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering Xi'an University of Technology Xi'an China
| | - Kenan Yang
- Faculty of Mechanical and Precision Instrument Engineering Xi'an University of Technology Xi'an China
| | - Huailin Li
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering Xi'an University of Technology Xi'an China
| | - Shisheng Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering Xi'an University of Technology Xi'an China
| |
Collapse
|
16
|
Ismail AS, Jawaid M, Hamid NH, Yahaya R, Hassan A. Mechanical and Morphological Properties of Bio-Phenolic/Epoxy Polymer Blends. Molecules 2021; 26:molecules26040773. [PMID: 33546097 PMCID: PMC7913153 DOI: 10.3390/molecules26040773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 11/18/2022] Open
Abstract
Polymer blends is a well-established and suitable method to produced new polymeric materials as compared to synthesis of a new polymer. The combination of two different types of polymers will produce a new and unique material, which has the attribute of both polymers. The aim of this work is to analyze mechanical and morphological properties of bio-phenolic/epoxy polymer blends to find the best formulation for future study. Bio-phenolic/epoxy polymer blends were fabricated using the hand lay-up method at different loading of bio-phenolic (5 wt%, 10 wt%, 15 wt%, 20 wt%, and 25 wt%) in the epoxy matrix whereas neat bio-phenolic and epoxy samples were also fabricated for comparison. Results indicated that mechanical properties were improved for bio-phenolic/epoxy polymer blends compared to neat epoxy and phenolic. In addition, there is no sign of phase separation in polymer blends. The highest tensile, flexural, and impact strength was shown by P-20(biophenolic-20 wt% and Epoxy-80 wt%) whereas P-25 (biophenolic-25 wt% and Epoxy-75 wt%) has the highest tensile and flexural modulus. Based on the finding, it is concluded that P-20 shows better overall mechanical properties among the polymer blends. Based on this finding, the bio-phenolic/epoxy blend with 20 wt% will be used for further study on flax-reinforced bio-phenolic/epoxy polymer blends.
Collapse
Affiliation(s)
- Ahmad Safwan Ismail
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.S.I.); (N.H.H.)
| | - Mohammad Jawaid
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.S.I.); (N.H.H.)
- Correspondence: ; Tel.: +603-8946-6960
| | - Norul Hisham Hamid
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.S.I.); (N.H.H.)
- Department of Forest Production, Faculty of Forestry, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Ridwan Yahaya
- Science and Technology Research Institute for Defence, Kajang 43000, Selangor, Malaysia;
| | - Azman Hassan
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bharu 81310, Malaysia;
| |
Collapse
|
17
|
Musa A, Alamry K, Hussein M. Polybenzoxazine-modified epoxy resin: thermal properties and coating performance. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2020.1867390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Abdulrahman Musa
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Synthetic Polymer Lab. 122, Assiut University, Assiut, Egypt
| |
Collapse
|
18
|
Wu JT, Li WZ, Wang SL, Gan WJ. Phase separation of ternary epoxy/PEI blends with higher molecular weight of tertiary component polysiloxane. RSC Adv 2021; 11:37830-37841. [PMID: 35498113 PMCID: PMC9044016 DOI: 10.1039/d1ra05979c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
A tertiary component with higher molecular weight of epoxy terminated polysiloxane (DMS-E11) was incorporated into the diglycidyl ether of bisphenol-A (DGEBA)/thermoplastic polyetherimide (PEI) blends. In this ternary DGEBA/PEI/DMS-E11 system, 25 or 30 wt% PEI and no more than 20 wt% DMS-E11 were used to ensure the formation of a continuous PEI-rich phase via reaction induced phase separation for optimum mechanical properties of blends. The results of morphology monitoring by OM and TRLS indicated that the addition of DMS-E11 could accelerate phase separation of DGEBA/PEI. Obvious differences were observed by SEM/EDS in the final morphologies of the blends. DMS-E11 localized in the PEI-rich phase continuously while it separated with DGEBA into spherical particles in the DGEBA-rich phase. DMA measurements found that the storage modulus and Tg decreased with DMS-E11 content but were compensated partly by the presence of PEI. The results of tensile tests confirmed the synergistic strengthening for epoxy resin from PEI and DMS-E11. Effect of higher molecular weight epoxy-terminated polysiloxane DMS-E11 on morphologies and properties of DGEBA/PEI blends.![]()
Collapse
Affiliation(s)
- Jia-ting Wu
- Shanghai University of Engineering Science, College of Chemistry and Chemical Engineering, 333 Longteng Road, Shanghai 201620, People's Republic of China
| | - Wei-zhen Li
- Shanghai University of Engineering Science, College of Chemistry and Chemical Engineering, 333 Longteng Road, Shanghai 201620, People's Republic of China
| | - Shu-long Wang
- Shanghai University of Engineering Science, College of Chemistry and Chemical Engineering, 333 Longteng Road, Shanghai 201620, People's Republic of China
| | - Wen-jun Gan
- Shanghai University of Engineering Science, College of Chemistry and Chemical Engineering, 333 Longteng Road, Shanghai 201620, People's Republic of China
| |
Collapse
|
19
|
Phase Equilibrium, Morphology, and Physico-Mechanics in Epoxy-Thermoplastic Mixtures with Upper and Lower Critical Solution Temperatures. Polymers (Basel) 2020; 13:polym13010035. [PMID: 33374158 PMCID: PMC7795481 DOI: 10.3390/polym13010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
The mutual solubility of epoxy oligomer with polysulfone (PSU) and polyethersulfone (PES) was studied by optical interferometry. Additionally, phase diagrams (PDs) were plotted and their evolution during the curing process was shown. The phase structures of modified hardened systems, as well as their tensile strengths, elastic moduli, and crack resistance, have been studied by scanning electron microscopy and physico-mechanical techniques. The effect of initial components' mutual solubility on the phase structure and, subsequently, on the physico-mechanical properties of the composite material is shown. Differences in the structure and properties of the cured modified compositions depending on the type of PD (with Upper Critical Solution Temperature (UCST) for PSU and Lower Critical Solution Temperature (LCST) for PES) of the initial components are shown.
Collapse
|
20
|
Morphology, thermal and mechanical performance of epoxy/polysulfone composites improved by curing with two different aromatic diamines. J Appl Polym Sci 2020. [DOI: 10.1002/app.49265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Ebrahimabadi Y, Mehrshad M, Mokhtary M, Abdollahi M. Studies of thermal, mechanical properties, and kinetic cure reaction of
carboxyl‐terminated
polybutadiene acrylonitrile liquid rubber with diepoxy octane. J Appl Polym Sci 2020. [DOI: 10.1002/app.49932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yahya Ebrahimabadi
- Department of Chemistry, Rasht Branch Islamic Azad University Rasht Iran
| | - Mohammad Mehrshad
- Department of Chemistry, Sabzevar Branch Islamic Azad University Sabzevar Iran
| | - Masoud Mokhtary
- Department of Chemistry, Rasht Branch Islamic Azad University Rasht Iran
| | - Mahdi Abdollahi
- Polymer Reaction Engineering Department Tarbiat Modares University Tehran Iran
| |
Collapse
|
22
|
Properties of poly (l-lactic acid) reinforced by l-lactic acid grafted nanocellulose crystal. Int J Biol Macromol 2020; 156:314-320. [DOI: 10.1016/j.ijbiomac.2020.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 11/22/2022]
|
23
|
Obtainment and Characterization of Hydrophilic Polysulfone Membranes by N-Vinylimidazole Grafting Induced by Gamma Irradiation. Polymers (Basel) 2020; 12:polym12061284. [PMID: 32512692 PMCID: PMC7362247 DOI: 10.3390/polym12061284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 11/17/2022] Open
Abstract
Polysulfone (PSU) film and N-vinylimidazole (VIM) were used to obtain grafted membranes with high hydrophilic capacity. The grafting process was performed by gamma irradiation under two experiments: (1) different irradiation doses (100-400 kGy) and VIM 50% solution; (2) different concentration of grafted VIM (30-70%) and 300 kGy of irradiation dose. Characteristics of the grafted membranes were determined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), contact angle, swelling degree, desalination test, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Both experiments indicated that the absorbed dose 300 kGy and the VIM concentration, at 50% v/v, were effective to obtain PSU grafted membranes with 14.3% of grafting yield. Nevertheless, experimental conditions, 400 kGy, VIM 50% and 300 kGy, VIM 60-70% promoted possible membrane degradation and VIM homopolymerization on the membrane surface, which was observed by SEM images; meanwhile, 100-200 kGy and VIM 30-50% produced minimal grafting (2 ± 0.5%). Hydrophilic surface of the grafted PSU membranes by 300 kGy and VIM 50% v/v were corroborated by the water contact angle, swelling degree and desalination test, showing a decrease from 90.7° ± 0.3 (PSU film) to 64.3° ± 0.5; an increment of swelling degree of 25 ± 1%, and a rejection-permeation capacity of 75 ± 2%. In addition, the thermal behavior of grafted PSU membranes registered an increment in the degradation of 20%, due to the presence of VIM. However, the normal temperature of the membrane operation did not affect this result; meanwhile, the glass transition temperature (Tg) of the grafted PSU membrane was found at 185.4 ± 0.5 °C, which indicated an increment of 15 ± 1%.
Collapse
|
24
|
|
25
|
Ali F, Ali N, Altaf M, Said A, Shah SS, Bilal M. Epoxy Polyamide Composites Reinforced with Silica Nanorods: Fabrication, Thermal and Morphological Investigations. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01518-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Lu J, Sun C, Yang K, Wang K, Jiang Y, Tusiime R, Yang Y, Fan F, Sun Z, Liu Y, Zhang H, Han K, Yu M. Properties of Polylactic Acid Reinforced by Hydroxyapatite Modified Nanocellulose. Polymers (Basel) 2019; 11:E1009. [PMID: 31174406 PMCID: PMC6631222 DOI: 10.3390/polym11061009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 01/13/2023] Open
Abstract
Polylactic acid (PLA) is one of the most promising bio-based materials, but its inherent hydrophobicity limits its application. Although nanocellulose (NCC) is a desirable reinforcement for PLA, the poor interface compatibility between the two has been a challenge. In this work, hydroxyapatite (HAP) modified NCC was prepared, and the obtained NCC/HAP reinforcement was used to prepare PLA/NCC-HAP composites. Different ratios of NCC to HAP were studied to explore their effects on the mechanical and thermodynamic properties of the composites. When the ratio of NCC to HAP was 30/70, the tensile strength and tensile modulus of the composite film reached 45.6 MPa and 2.34 GPa, respectively. Thermogravimetric analysis results indicate that thermal stability of the composites was significantly improved compared with pure PLA, reaching 346.6 °C. The above revelations show that NCC/HAP significantly improved the interface compatibility with PLA matrix.
Collapse
Affiliation(s)
- Jianxiao Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| | - Chuanyue Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| | - Kexin Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| | - Kaili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| | - Yingyi Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| | - Rogers Tusiime
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| | - Yun Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| | - Fan Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| | - Zeyu Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| | - Yong Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| | - Hui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| | - Keqing Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Key Laboratory of Lightweight Structural Composites, Shanghai 201620, China.
| |
Collapse
|