1
|
Zhou D, Han L, Hu L, Yang S, Shen X, Li Y, Tong Y, Wang F, Li Z, Chen L. Bay-Functionalized Perylene Diimide Derivative Cathode Interfacial Layer for High-Performance Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8367-8376. [PMID: 36721874 DOI: 10.1021/acsami.2c22069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The field of organic solar cells (OSCs) has acquired rapid progress with the development of nonfullerene acceptors. Interfacial engineering is also significant for the enhancement of the power conversion efficiency (PCE) in OSCs. Among the cathode interfacial materials (CIMs), perylene diimide (PDI) small molecules are promising owing to the excellent electron affinity and electron mobility. Although the well-known PDINN molecule has excellent properties, it has a high planarity formed by an extensive rigid π-conjugated backbone. Because the PDI molecular backbone has a strong tendency to aggregate, it causes the problem of excessive molecular aggregation and stacking, which directly leads to excessive crystallinity. Proper accumulation is beneficial for charge transport, but oversized crystals formed by overaggregation will hinder charge transport, ultimately affecting the film morphology and charge transport efficiency. Modifying the bay position of PDINN is an effective strategy to reduce the planarity, modulate the molecular aggregation, optimize the morphology, and enhance the charge-collecting efficiency. Therefore, PDINN-S was synthesized from PDINN by substituting the hydrogen with thiophene. The optimal PCE in the PM6:Y6 active layer was 16.18% and remained at 80% of the initial value after 720 h in a glovebox. This provides some guidance for exploring CIMs and preparing large-scale OSCs in the future.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang330063, China
| | - Liangjing Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang330063, China
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, 899 Guangqiong Avenue, Jiaxing314001, China
| | - Lin Hu
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, 899 Guangqiong Avenue, Jiaxing314001, China
| | - Shu Yang
- College of Chemical Engineering, Hebei Normal University of Science & Technology, Qinhuangdao066004, China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science & Technology, Qinhuangdao066004, China
| | - Yubing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang330063, China
| | - Yongfen Tong
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang330063, China
| | - Fang Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang330063, China
| | - Zaifang Li
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, 899 Guangqiong Avenue, Jiaxing314001, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| |
Collapse
|
2
|
Zhou D, You W, Yang F, Chen R, Xu H, Tong Y, Hu B, Hu L, Xie Y, Chen L. N-Type Self-Doped Hyperbranched Conjugated Polyelectrolyte as Electron Transport Layer for Efficient Nonfullerene Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50187-50196. [PMID: 34651503 DOI: 10.1021/acsami.1c13394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electron transport layer (ETL) exerts a dramatic influence on the power conversion efficiency (PCE) of the nonfullerene organic solar cells (NOSCs). Currently, the majority of the organic ETLs possess a relatively poor conductivity, which is not conducive to carrier transport and collection. Herein, we design and develop a novel hyperbranched conjugated polyelectrolyte (CPE) based on n-type perylene diimide (PDI) as the center core and quaternary ammonium salt as the side polar groups. The lone pair electrons of the nitrogen atoms can transfer to the electron deficient PDI core and endow the molecule with an efficient n-type self-doping effect. Moreover, the hyperbranched structure makes the molecule functionalized with more side polar groups, favoring forming more dipoles and stronger dipole moments. Therefore, the CPE PTPAPDINO possesses a high conductivity and can notably decrease the work function (WF) of the electrode, contributing to the carrier transport and collection of the device. The NOSC with PTPAPDINO as ETL delivers an excellent PCE of 15.62%, which is even superior to the device using the classical PDINO ETL. Moreover, the PCE can retain 82.6% of the optimal device when the thickness has been increased to 28 nm. These results manifest that it is a feasible strategy to design an n-type self-doping hyperbranched CPE as efficient ETL, and PTPAPDINO is a promising alternative ETL for high performance NOSCs.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Wen You
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Fei Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Rui Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Haitao Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Yongfen Tong
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Bin Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Lin Hu
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing 314001, China
| | - Yu Xie
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| |
Collapse
|
3
|
Zink-Lorre N, Font-Sanchis E, Sastre-Santos Á, Fernández-Lázaro F. Perylenediimides as more than just non-fullerene acceptors: versatile components in organic, hybrid and perovskite solar cells. Chem Commun (Camb) 2020; 56:3824-3838. [DOI: 10.1039/d0cc00337a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The most recent advances in the incorporation of perylenediimides in photovoltaic devices are highlighted.
Collapse
Affiliation(s)
- Nathalie Zink-Lorre
- Área de Química Orgánica
- Instituto de Bioingeniería
- Universidad Miguel Hernández de Elche
- 03202 Elche
- Spain
| | - Enrique Font-Sanchis
- Área de Química Orgánica
- Instituto de Bioingeniería
- Universidad Miguel Hernández de Elche
- 03202 Elche
- Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica
- Instituto de Bioingeniería
- Universidad Miguel Hernández de Elche
- 03202 Elche
- Spain
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica
- Instituto de Bioingeniería
- Universidad Miguel Hernández de Elche
- 03202 Elche
- Spain
| |
Collapse
|