1
|
Holzdörfer U, Ali W, Schollmeyer E, Gutmann JS, Mayer-Gall T, Textor T. Novel Approach for the Preparation of a Highly Hydrophobic Coating Material Exhibiting Self-Healing Properties. Molecules 2024; 29:3766. [PMID: 39202846 PMCID: PMC11357608 DOI: 10.3390/molecules29163766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
A concept to prepare a highly hydrophobic composite with self-healing properties has been designed and verified. The new material is based on a composite of a crystalline hydrophobic fluoro wax, synthesized from montan waxes and perfluoroethylene alcohols, combined with spherical silica nanoparticles equipped with a hydrophobic shell. Highly repellent layers were prepared using this combination of a hydrophobic crystalline wax and silica nanoparticles. The novel aspect of our concept was to prepare a ladder-like structure of the hydrophobic shell allowing the inclusion of a certain share of wax molecules. Wax molecules trapped in the hydrophobic structure during mixing are hindered from crystallizing; therefore, these molecules maintain a higher mobility compared to crystallized molecules. When a thin layer of the composite material is mechanically damaged, the mobile wax molecules can migrate and heal the defects to a certain extent. The general preparation of the composite is described and XRD analysis demonstrated that a certain share of wax molecules in the composite are hindered to crystallize. Furthermore, we show that the resulting material can recovery its repellent properties after surface damage.
Collapse
Affiliation(s)
- Uwe Holzdörfer
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798 Krefeld, Germany
| | - Wael Ali
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798 Krefeld, Germany
- Physikalische Chemie, Center for Nanointegration Duisburg-Essen, Universität Duisburg-Essen, Universitätsstraße 2, 45117 Essen, Germany
| | - Eckhard Schollmeyer
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798 Krefeld, Germany
| | - Jochen S. Gutmann
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798 Krefeld, Germany
- Physikalische Chemie, Center for Nanointegration Duisburg-Essen, Universität Duisburg-Essen, Universitätsstraße 2, 45117 Essen, Germany
| | - Thomas Mayer-Gall
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798 Krefeld, Germany
- Physikalische Chemie, Center for Nanointegration Duisburg-Essen, Universität Duisburg-Essen, Universitätsstraße 2, 45117 Essen, Germany
| | - Torsten Textor
- TEXOVERSUM School of Textiles, Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
| |
Collapse
|
2
|
Wu J, Sheng X, Li L, Liang J, Li Y, Zhao Z, Cui F. Rational Design of a Multifunctional Hydrogel Trap for Water and Fertilizer Capture: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17176-17190. [PMID: 39067070 DOI: 10.1021/acs.jafc.4c03207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Water scarcity and land infertility pose significant challenges to agricultural development, particularly in arid and semiarid regions. Improving soil-water-retention capacity and fertilizer utilization efficiency through the application of soil additives has become a pivotal approach in agricultural practices. Hydrogels exhibit exceptional water absorption and fertilizer retention capabilities, making them extensively utilized in the fields of agriculture, forestry, and desert control. Currently, most reviews primarily focus on the raw materials, classification, synthesis methods, and application prospects of hydrogels, with limited attention given to strategies for enhancing water-retention performance, mechanisms underlying fertilizer absorption, and environmental risks. This review covers the commonly used cross-linking methods in hydrogel synthesis and the structure-activity relationship between hydrogels and water as well as fertilizer. Additionally, a thorough analysis of the ecological benefits and risks associated with hydrogels is presented. Finally, future prospects and challenges are delineated from the perspectives of material design and engineering applications.
Collapse
Affiliation(s)
- Jinxiang Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Xin Sheng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Li Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Zhiwei Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Fuyi Cui
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| |
Collapse
|
3
|
Bednarczyk P, Irska I, Gziut K, Mozelewska K, Ossowicz-Rupniewska P. Synthesis of Hybrid Epoxy Methacrylate Resin Based on Diglycidyl Ethers and Coatings Preparation via Cationic and Free-Radical Photopolymerization. Int J Mol Sci 2022; 23:ijms232415592. [PMID: 36555232 PMCID: PMC9779419 DOI: 10.3390/ijms232415592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
A series of difunctional epoxy methacrylate resins (EAs) containing at least one epoxy and at least one methacrylate group were synthesized by means of an addition reaction between epoxy-terminated diglycidyl ethers and methacrylic acid. In order to investigate the impact of polymer architecture on the course of addition reactions and further coating properties, several different types of diglycidyl ethers, i.e., linear, containing aliphatic or aromatic rings, with a short or polymeric backbone, were employed in the synthesis. The carboxyl-epoxide addition esterification reactions have been found to, in a relatively straightforward manner, control the extent of acrylation depending on the substrate feed ratio and reaction time. The structure of obtained pre-polymers was evaluated by FT-IR and NMR methods. At the same time, the extent of addition reactions was validated via quantitative analysis, including non-volatile matter content (NV), acid value (PAVs), and epoxy equivalent value (EE) analysis. The modification was carried out in a manner likely to create a compound with one epoxy and one carbon-carbon pendant group. Hence, due to the presence of both functionalities, it is possible to crosslink compositions based on synthesized EAs via two distinct mechanisms: (i) cationic polymerization or (ii) free-radical polymerization. Synthesized epoxy methacrylate pre-polymers were further employed for use in formulate photocurable coating compositions by the cationic or radical process. Furthermore, the photopolymerization behavior and properties of cured coatings were explored regarding some structural factors and parameters. The investigated polymeric materials cure in a short time to obtain coatings with good properties, which is why they can be successfully used to produce protective and decorative coatings for many industries.
Collapse
Affiliation(s)
- Paulina Bednarczyk
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
- Correspondence:
| | - Izabela Irska
- Department of Materials Technology, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, Piastów 19 Avenue, 70-310 Szczecin, Poland
| | - Konrad Gziut
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Karolina Mozelewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| |
Collapse
|
4
|
Ribeiro AI, Shvalya V, Cvelbar U, Silva R, Marques-Oliveira R, Remião F, Felgueiras HP, Padrão J, Zille A. Stabilization of Silver Nanoparticles on Polyester Fabric Using Organo-Matrices for Controlled Antimicrobial Performance. Polymers (Basel) 2022; 14:1138. [PMID: 35335469 PMCID: PMC8950105 DOI: 10.3390/polym14061138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial textiles are helpful tools to fight against multidrug-resistant pathogens and nosocomial infections. The deposition of silver nanoparticles (AgNPs) onto textiles has been studied to achieve antimicrobial properties. Yet, due to health and environmental safety concerns associated with such formulations, processing optimizations have been introduced: biocompatible materials, environmentally friendly agents, and delivery platforms that ensure a controlled release. In particular, the functionalization of polyester (PES) fabric with antimicrobial agents is a formulation in high demand in medical textiles. However, the lack of functional groups on PES fabric hinders the development of cost-effective, durable systems that allow a controlled release of antimicrobial agents. In this work, PES fabric was functionalized with AgNPs using one or two biocompatible layers of chitosan or hexamethyldisiloxane (HMDSO). The addition of organo-matrices stabilized the AgNPs onto the fabrics, protected AgNPs from further oxidation, and controlled their release. In addition, the layered samples were efficient against Staphylococcus aureus and Escherichia coli. The sample with two layers of chitosan showed the highest efficacy against S. aureus (log reduction of 2.15 ± 1.08 after 3 h of contact). Against E. coli, the sample with two layers of chitosan showed the best properties. Chitosan allowed to control the antimicrobial activity of AgNPs, avoid the complete loss of AgNPs after washings and act in synergy with AgNPs. After 3 h of incubation, this sample presented a log reduction of 4.81, and 7.27 of log reduction after 5 h of incubation. The antimicrobial results after washing showed a log reduction of 3.47 and 4.88 after 3 h and 5 h of contact, respectively. Furthermore, the sample with a final layer of HMDSO also presented a controlled antimicrobial effect. The antimicrobial effect was slower than the sample with just an initial layer of HMDSO, with a log reduction of 4.40 after 3 h of incubation (instead of 7.22) and 7.27 after 5 h. The biocompatibility of the composites was confirmed through the evaluation of their cytotoxicity towards HaCaT cells (cells viability > 96% in all samples). Therefore, the produced nanocomposites could have interesting applications in medical textiles once they present controlled antimicrobial properties, high biocompatibility and avoid the complete release of AgNPs to the environment.
Collapse
Affiliation(s)
- Ana Isabel Ribeiro
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimaraes, Portugal; (A.I.R.); (H.P.F.); (J.P.)
| | - Vasyl Shvalya
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (V.S.); (U.C.)
| | - Uroš Cvelbar
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (V.S.); (U.C.)
- Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (R.S.); (R.M.-O.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Rita Marques-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (R.S.); (R.M.-O.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (R.S.); (R.M.-O.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimaraes, Portugal; (A.I.R.); (H.P.F.); (J.P.)
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimaraes, Portugal; (A.I.R.); (H.P.F.); (J.P.)
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimaraes, Portugal; (A.I.R.); (H.P.F.); (J.P.)
| |
Collapse
|
5
|
Lorusso E, Feng Y, Schneider J, Kamps L, Parasothy N, Mayer‐Gall T, Gutmann JS, Ali W. Investigation of aminolysis routes on PET fabrics using different amine‐based materials. NANO SELECT 2021. [DOI: 10.1002/nano.202100121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Emanuela Lorusso
- Deutsches Textilforschungszentrum Nord‐West ÖP GmbH Adlerstr. 1 Krefeld 47798 Germany
- Department of Physical Chemistry and Center of Nanointegration (CENIDE) University of Duisburg‐Essen Universitätsstr. 2 Essen 45141 Germany
| | - Ying Feng
- Department of Physical Chemistry and Center of Nanointegration (CENIDE) University of Duisburg‐Essen Universitätsstr. 2 Essen 45141 Germany
| | - Jessica Schneider
- Deutsches Textilforschungszentrum Nord‐West gGmbH Adlerstr. 1 Krefeld 47798 Germany
| | - Leonie Kamps
- Deutsches Textilforschungszentrum Nord‐West gGmbH Adlerstr. 1 Krefeld 47798 Germany
| | - Nirtharsan Parasothy
- Department of Physical Chemistry and Center of Nanointegration (CENIDE) University of Duisburg‐Essen Universitätsstr. 2 Essen 45141 Germany
| | - Thomas Mayer‐Gall
- Deutsches Textilforschungszentrum Nord‐West ÖP GmbH Adlerstr. 1 Krefeld 47798 Germany
- Deutsches Textilforschungszentrum Nord‐West gGmbH Adlerstr. 1 Krefeld 47798 Germany
| | - Jochen S. Gutmann
- Deutsches Textilforschungszentrum Nord‐West ÖP GmbH Adlerstr. 1 Krefeld 47798 Germany
- Department of Physical Chemistry and Center of Nanointegration (CENIDE) University of Duisburg‐Essen Universitätsstr. 2 Essen 45141 Germany
- Deutsches Textilforschungszentrum Nord‐West gGmbH Adlerstr. 1 Krefeld 47798 Germany
| | - Wael Ali
- Deutsches Textilforschungszentrum Nord‐West ÖP GmbH Adlerstr. 1 Krefeld 47798 Germany
- Deutsches Textilforschungszentrum Nord‐West gGmbH Adlerstr. 1 Krefeld 47798 Germany
| |
Collapse
|
6
|
Novel Multifunctional Epoxy (Meth)Acrylate Resins and Coatings Preparation via Cationic and Free-Radical Photopolymerization. Polymers (Basel) 2021; 13:polym13111718. [PMID: 34074023 PMCID: PMC8197387 DOI: 10.3390/polym13111718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
In this work, a series of novel multifunctional epoxy (meth)acrylate resins based on a low-viscosity aliphatic triepoxide triglycidyl ether of trimethylolethane (TMETGE) and acrylic acid (AA) or methacrylic acid (MMA) have been synthesized. Thanks to the performed modification, the obtained prepolymers have both epoxides as well as carbon–carbon double bonds and differ in their amount. The obtained results indicate that the carboxyl-epoxide addition esterification occurs in the presence of a catalyst (triphenylphosphine) at a temperature of 90 °C, whilst the required degree of conversion can be achieved simply by varying both the reagents ratio and reaction time. The structure of synthesized copolymers was confirmed by spectroscopic analyses (FT-IR, 1H NMR, 13C NMR) and studied regarding its nonvolatile matter content (NV), acid value (PAVs), as well as its epoxy equivalent value (EE). Due to the presence of both epoxy and double carbon–carbon pendant groups, one can apply two distinct mechanisms: (i) cationic ring-opening polymerization or (ii) free-radical polymerization to crosslink polymer chains. Synthesized epoxy (meth)acrylate prepolymers were further employed to formulate photocurable coating compositions. Hence, when cationic photoinitiators were applied, polyether-type polymer chains with pending acrylate or methacrylate groups were formed. In the case of free-radical polymerization, epoxy (meth)acrylates certainly formed a poly(meth)acrylate backbone with pending epoxy groups. Further, photopolymerization behavior and properties of cured coatings were investigated regarding some structural factors and parameters. Moreover, reaction rate coefficients of photo-cross-linking by both cationic ring-opening and free-radical photopolymerization of the received epoxy (meth)acrylate resins were determined via real-time infrared spectroscopy (RT-IR). Lastly, basic physicomechanical properties, such as tack-free time, hardness, adhesion, gloss, and yellowness index of cured coatings, were evaluated.
Collapse
|
7
|
Sustained-release antibacterial pads based on nonwovens polyethylene terephthalate modified by β-cyclodextrin embedded with cinnamaldehyde for cold fresh pork preservation. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100554] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Topa M, Ortyl J. Moving Towards a Finer Way of Light-Cured Resin-Based Restorative Dental Materials: Recent Advances in Photoinitiating Systems Based on Iodonium Salts. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4093. [PMID: 32942676 PMCID: PMC7560344 DOI: 10.3390/ma13184093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
The photoinduced polymerization of monomers is currently an essential tool in various industries. The photopolymerization process plays an increasingly important role in biomedical applications. It is especially used in the production of dental composites. It also exhibits unique properties, such as a short time of polymerization of composites (up to a few seconds), low energy consumption, and spatial resolution (polymerization only in irradiated areas). This paper describes a short overview of the history and classification of different typical monomers and photoinitiating systems such as bimolecular photoinitiator system containing camphorquinone and aromatic amine, 1-phenyl-1,2-propanedione, phosphine derivatives, germanium derivatives, hexaarylbiimidazole derivatives, silane-based derivatives and thioxanthone derivatives used in the production of dental composites with their limitations and disadvantages. Moreover, this article represents the challenges faced when using the latest inventions in the field of dental materials, with a particular focus on photoinitiating systems based on iodonium salts. The beneficial properties of dental composites cured using initiation systems based on iodonium salts have been demonstrated.
Collapse
Affiliation(s)
- Monika Topa
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| |
Collapse
|
9
|
No YJ, Tarafder S, Reischl B, Ramaswamy Y, Dunstan C, Friedrich O, Lee CH, Zreiqat H. High-Strength Fiber-Reinforced Composite Hydrogel Scaffolds as Biosynthetic Tendon Graft Material. ACS Biomater Sci Eng 2020; 6:1887-1898. [PMID: 33455306 DOI: 10.1021/acsbiomaterials.9b01716] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of suitable synthetic scaffolds for use as human tendon grafts to repair tendon ruptures remains a significant engineering challenge. Previous synthetic tendon grafts have demonstrated suboptimal tissue ingrowth and synovitis due to wear particles from fiber-to-fiber abrasion. In this study, we present a novel fiber-reinforced hydrogel (FRH) that mimics the hierarchical structure of the native human tendon for synthetic tendon graft material. Ultrahigh molecular weight polyethylene (UHMWPE) fibers were impregnated with either biosynthetic polyvinyl alcohol/gelatin hydrogel (FRH-PG) or with polyvinyl alcohol/gelatin + strontium-hardystonite (Sr-Ca2ZnSi2O7, Sr-HT) composite hydrogel (FRH-PGS). The scaffolds were fabricated and assessed to evaluate their suitability for tendon graft applications. The microstructure of both FRH-PG and FRH-PGS showed successful impregnation of the hydrogel component, and the tendon scaffolds exhibited equilibrium water content of ∼70 wt %, similar to the values reported for native human tendon, compared to ∼50 wt % water content retained in unmodified UHMWPE fibers. The tensile strength of FRH-PG and FRH-PGS (77.0-81.8 MPa) matched the range of human Achilles' tendon tensile strengths reported in the literature. In vitro culture of rat tendon stem cells showed cell and tissue infiltration into both FRH-PG and FRH-PGS after 2 weeks, and the presence of Sr-HT ceramic particles influenced the expression of tenogenic markers. On the other hand, FRH-PG supported the proliferation of murine C2C12 myoblasts, whereas FRH-PGS seemingly did not support it under static culture conditions. In vivo implantation of FRH-PG and FRH-PGS scaffolds into full-thickness rat patellar tendon defects showed good collagenous tissue ingrowth into these scaffolds after 6 weeks. This study demonstrates the potential viability for our FRH-PG and FRH-PGS scaffolds to be used for off-the-shelf biosynthetic tendon graft material.
Collapse
Affiliation(s)
- Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney 2006, Australia.,Australian Research Council Training Centre for Innovative BioEngineering, Sydney 2006, Australia
| | - Solaiman Tarafder
- Regenerative Engineering Laboratory, Columbia University, New York 10032, New York, United States
| | - Barbara Reischl
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91052, Germany
| | - Yogambha Ramaswamy
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney 2006, Australia.,Australian Research Council Training Centre for Innovative BioEngineering, Sydney 2006, Australia
| | - Colin Dunstan
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney 2006, Australia.,Australian Research Council Training Centre for Innovative BioEngineering, Sydney 2006, Australia
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91052, Germany
| | - Chang Hun Lee
- Regenerative Engineering Laboratory, Columbia University, New York 10032, New York, United States
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney 2006, Australia.,Australian Research Council Training Centre for Innovative BioEngineering, Sydney 2006, Australia
| |
Collapse
|
10
|
Lorusso E, Ali W, Leniart M, Gebert B, Oberthür M, Gutmann JS. Tuning the Density of Zwitterionic Polymer Brushes on PET Fabrics by Aminolysis: Effect on Antifouling Performances. Polymers (Basel) 2019; 12:E6. [PMID: 31861436 PMCID: PMC7023513 DOI: 10.3390/polym12010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 01/05/2023] Open
Abstract
Here, we synthesize zwitterionic polymer brushes on polyester fabrics by atom transfer radical polymerization (ATRP) after a prefunctionalization step involving an aminolysis reaction with ethylenediamine. Aminolysis is an easy method to achieve homogeneous distributions of functional groups on polyester fibers (PET) fabrics. Varying the polymerization time and the prefunctionalization conditions of the reaction, it is possible to tune the amount of water retained over the surface and study its effect on protein adhesion. This study revealed that the polymerization time plays a major role in preventing protein adhesion on the PET surface.
Collapse
Affiliation(s)
- Emanuela Lorusso
- Deutsches Textilforschungszentrum Nord-West ÖP GmbH, 47798 Krefeld, Germany;
- Department of Physical Chemistry and Center of Nanointegration (CENIDE), University Duisburg-Essen, 45141 Essen, Germany;
| | - Wael Ali
- Department of Physical Chemistry and Center of Nanointegration (CENIDE), University Duisburg-Essen, 45141 Essen, Germany;
- Deutsches Textilforschungszentrum Nord-West gGmbH, 47798 Krefeld, Germany; (M.L.); (B.G.)
| | - Michael Leniart
- Deutsches Textilforschungszentrum Nord-West gGmbH, 47798 Krefeld, Germany; (M.L.); (B.G.)
| | - Beate Gebert
- Deutsches Textilforschungszentrum Nord-West gGmbH, 47798 Krefeld, Germany; (M.L.); (B.G.)
| | - Markus Oberthür
- Department of Design, Hochschule für Angewandte Wissenschaften (HAW) Hamburg, 22087 Hamburg, Germany;
| | - Jochen S. Gutmann
- Deutsches Textilforschungszentrum Nord-West ÖP GmbH, 47798 Krefeld, Germany;
- Department of Physical Chemistry and Center of Nanointegration (CENIDE), University Duisburg-Essen, 45141 Essen, Germany;
- Deutsches Textilforschungszentrum Nord-West gGmbH, 47798 Krefeld, Germany; (M.L.); (B.G.)
| |
Collapse
|