1
|
Ling Z, Xu Q, Song Y, Zhang W, Xu H. Fluorescent biosensor based on magnetic separation platform and spore-like breakable organosilica nanocapsules controlled-release carbon dots for the detection of Escherichia coli O157:H7. Talanta 2024; 276:126273. [PMID: 38776775 DOI: 10.1016/j.talanta.2024.126273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Ultrasensitive and rapid detection of low concentration of Escherichia coli O157: H7 (E. coli O157:H7) in food is essential for food safety and public health. In this study, A novel fluorescence signal amplification biosensor based on magnetic separation platform and red fluorescent carbon dots (R-CDs)-encapsulated breakable organosilica nanocapsules (BONs) for ultrasensitive detection of E. coli O157:H7 was established. Wulff-type boronic acid functionalized magnetic nanoparticles (MNPs@B-N/APBA) with broad-spectrum bacterial recognition ability were synthesized for the first time to recognize and capture E. coli O157: H7 in food samples. R-CDs@BONs labeled with anti-E. coli O157:H7 monoclonal antibody (mAb@R-CDs@BONs-NH2) were used as the second recognition element to ensure the specificity for E. coli O157:H7 and form MNPs@B-N/APBA∼ E. coli O157:H7∼mAb@R-CDs@BONs-NH2 sandwich complexes, followed by releasing R-CDs to generate amplified fluorescence response signals for quantitative detection of E. coli O157:H7. The proposed method had a limit of detection with 25 CFU/mL in pure culture and contaminated lettuce samples, which the whole detection process took about 120 min. This fluorescence signal amplification biosensor has the potential to detect other pathogens in food by altering specific antibodies.
Collapse
Affiliation(s)
- Zhiming Ling
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Qian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Yang Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Wanqing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330200, PR China.
| |
Collapse
|
2
|
Attia MS, Yahya A, Monaem NA, Sabry SA. Mesoporous silica nanoparticles: Their potential as drug delivery carriers and nanoscavengers in Alzheimer's and Parkinson's diseases. Saudi Pharm J 2023; 31:417-432. [PMID: 37026045 PMCID: PMC10071366 DOI: 10.1016/j.jsps.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Worldwide, populations face significant burdens from neurodegenerative disorders (NDDs), especially Alzheimer's and Parkinson's diseases. Although there are many proposed etiologies for neurodegenerative disorders, including genetic and environmental factors, the exact pathogenesis for these disorders is not fully understood. Most patients with NDDs are given lifelong treatment to improve their quality of life. There are myriad treatments for NDDs; however, these agents are limited by their side effects and difficulty in passing the blood-brain barrier (BBB). Furthermore, the central nervous system (CNS) active pharmaceuticals could offer symptomatic relief for the patient's condition without providing a complete cure or prevention by targeting the disease's cause. Recently, Mesoporous silica nanoparticles (MSNs) have gained interest in treating NDDs since their physicochemical properties and inherent ability to pass BBB make them possible drug carriers for several drugs for NDDs treatment. This paper provides insight into the pathogenesis and treatment of NDDs, along with the recent advances in applying MSNs as fibril scavengers. Moreover, the application of MSNs-based formulations in enhancing or sustaining drug release rate, and brain targeting via their responsive release properties, besides the neurotoxicity of MSNs, have been reviewed.
Collapse
Affiliation(s)
- Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Corresponding author.
| | - Ahmed Yahya
- Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria 21934, Egypt
| | - Nada Abdel Monaem
- Department of chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Shereen A. Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
3
|
A soluble pH-responsive host-guest-based nanosystem for homogeneous exosomes capture with high-efficiency. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Organically surface engineered mesoporous silica nanoparticles control the release of quercetin by pH stimuli. Sci Rep 2022; 12:20661. [PMID: 36450792 PMCID: PMC9712501 DOI: 10.1038/s41598-022-25095-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Controlling the premature release of hydrophobic drugs like quercetin over physiological conditions remains a challenge motivating the development of smart and responsive drug carriers in recent years. This present work reported a surface modification of mesoporous silica nanoparticles (MSN) by a functional compound having both amines (as a positively charged group) and carboxylic (negatively charged group), namely 4-((2-aminoethyl)amino)-4-oxobut-2-enoic acid (AmEA) prepared via simple mechanochemistry approach. The impact of MSN surface modification on physical, textural, and morphological features was evaluated by TGA, N2 adsorption-desorption, PSA-zeta, SEM, and TEM. The BET surface area of AmEA-modified MSN (MSN-AmEA) was found to be 858.41 m2 g-1 with a pore size of 2.69 nm which could accommodate a high concentration of quercetin 118% higher than MSN. In addition, the colloidal stability of MSN-AmEA was greatly improved as indicated by high zeta potential especially at pH 4 compared to MSN. In contrast to MSN, MSN-AmEA has better in controlling quercetin release triggered by pH, thanks to the presence of the functional groups that have a pose-sensitive interaction hence it may fully control the quercetin release, as elaborated by the DFT study. Therefore, the controlled release of quercetin over MSN-AmEA verified its capability of acting as a smart drug delivery system.
Collapse
|
5
|
Shah IU, Jadhav SA, Belekar VM, Patil PS. Smart polymer grafted silica based drug delivery systems. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ishika U. Shah
- School of Nanoscience and Technology Shivaji University Kolhapur Maharashtra India
| | | | - Vedika M. Belekar
- School of Nanoscience and Technology Shivaji University Kolhapur Maharashtra India
| | - Pramod S. Patil
- School of Nanoscience and Technology Shivaji University Kolhapur Maharashtra India
- Department of Physics Shivaji University Kolhapur Maharashtra India
| |
Collapse
|
6
|
Imaging Intracellular Drug/siRNA Co-Delivery by Self-Assembly Cross-Linked Polyethylenimine with Fluorescent Core-Shell Silica Nanoparticles. Polymers (Basel) 2022; 14:polym14091813. [PMID: 35566982 PMCID: PMC9102585 DOI: 10.3390/polym14091813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Multifunctional theranostic nanomaterial represents one type of emerging agent with the potential to offer both sensitive diagnosis and effective therapy. Herein, we report a novel drug/siRNA co-delivery nanocarrier, which is based on fluorescent mesoporous core-shell silica nanoparticles coated by cross-linked polyethylenimine. The fluorescent mesoporous core-shell silica nanoparticles can provide numerous pores for drug loading and negative charged surface to assemble cross-linked polyethylenimine via electrostatic interaction. Disulfide cross-linked polyethylenimine can be absorbed on the surface of silica nanoparticles which provide the feasibility to bind with negatively charged siRNA and release drug "on-demand". In addition, the hybrid nanoparticles can be easily internalized into cells to realize drug/siRNA co-delivery and therapeutic effect imaging. This work would stimulate interest in the use of self-assembled cross-linked polyethylenimine with fluorescent mesoporous core-shell silica nanoparticles to construct multifunctional nanocomposites for tumor therapy.
Collapse
|
7
|
Saputra OA, Apriansyah F, Puspitasari MP, Hanifah S, Prakoso A, Wibowo FR. Antioxidant activity and
controlled‐release
feature of Quercetin loaded
amines‐functionalized
magnetically porous cellulose. J Appl Polym Sci 2022. [DOI: 10.1002/app.51744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ozi Adi Saputra
- Master Program of Chemistry, Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia
| | - Fiqri Apriansyah
- Chemistry Department, Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia
| | - Melani Puji Puspitasari
- Chemistry Department, Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia
| | - Syifa Hanifah
- Chemistry Department, Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia
| | - Agung Prakoso
- Chemistry Department, Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia
| | - Fajar Rakhman Wibowo
- Chemistry Department, Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Surakarta Indonesia
| |
Collapse
|
8
|
Epoxy coating with excellent anticorrosion and pH-responsive performances based on DEAEMA modified mesoporous silica nanomaterials. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Corbin DA, Miyake GM. Photoinduced Organocatalyzed Atom Transfer Radical Polymerization (O-ATRP): Precision Polymer Synthesis Using Organic Photoredox Catalysis. Chem Rev 2022; 122:1830-1874. [PMID: 34842426 PMCID: PMC9815475 DOI: 10.1021/acs.chemrev.1c00603] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) has received considerable attention since its introduction in 2014. Expanding on many of the advantages of traditional ATRP, O-ATRP allows well-defined polymers to be produced under mild reaction conditions using organic photoredox catalysts. As a result, O-ATRP has opened access to a range of sensitive applications where the use of a metal catalyst could be of concern, such as electronics, certain biological applications, and the polymerization of coordinating monomers. However, key limitations of this method remain and necessitate further investigation to continue the development of this field. As such, this review details the achievements made to-date as well as future research directions that will continue to expand the capabilities and application landscape of O-ATRP.
Collapse
|
10
|
Okten Besli NS, Orakdogen N. Exploring the role of Muscovite in poly(alkyl methacrylate)-based ternary nanocomposite cryogels with selective functional groups: formation via cryogelling with the aid of inorganic clay. SOFT MATTER 2021; 17:9371-9386. [PMID: 34605525 DOI: 10.1039/d1sm00950h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Easy fabrication of inorganic clay muscovite (MUS) embedded poly(2-acrylamido-2-methyl-1-propane sulfonic acid-co-diethylaminoethyl methacrylate-co-hydroxyethyl methacrylate) (PADH) nanocomposite cryogels with dual temperature/pH dependent catalytic potential was reported. Nanocomposite cryogels were fabricated by a method involving cryogelation and free radical crosslinking of aqueous systems containing MUS ranging from 0% to 1.50% (w/v). The changes in the properties of polybasic PADH networks were investigated to explain how the network parameters and gel properties were affected by the addition of clay, with the formation of a single terpolymer-MUS structure. The potential of the addition of different amounts of MUS to strengthen the prepared terpolymer matrix was investigated by uniaxial compression tests. By lowering the polymerization temperature or increasing the MUS content, the PADH/MUS nanocomposite cryogels became more elastic and compressible with stronger entanglement of terpolymer chains between the clay layers. With the addition of 1.50% (w/v) MUS, the swelling capacity was reduced by 50%, resulting in a two-fold increase in compression elasticity. The nanocomposite gels showed a strong pH-dependence, and when the pH of the swelling medium decreased from 9.8 to 2.1, there was a significant increase in the degree of swelling with increasing protonation of tertiary amine groups. Under an acidic environment, the swelling capacity of the nanocomposite gel containing 1.10% (w/v) MUS increased by 49.5%. In temperature dependent swelling between 15 and 75 °C, all ternary PADH/MUS-Ngels showed a tendency to swell at low and high swelling temperatures, by the predominance of DEAEM units at low temperatures and HEMA monomers at high temperatures, respectively. As the temperature was increased to 55 °C, the swelling decreased and reached a minimum, and then the nanocomposite gels tended to swell again. The obtained results provide an insight into the effect of MUS addition on the properties of poly(alkyl methacrylate)-based ternary nanocomposite gels and demonstrate a simple and efficient way to produce multiple response systems with enhanced elasticity.
Collapse
Affiliation(s)
- Nur Sena Okten Besli
- Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, 34469, Istanbul, Maslak, Turkey.
| | - Nermin Orakdogen
- Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, 34469, Istanbul, Maslak, Turkey.
| |
Collapse
|
11
|
Li H, Chen X, Shen D, Wu F, Pleixats R, Pan J. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. NANOSCALE 2021; 13:15998-16016. [PMID: 34546275 DOI: 10.1039/d1nr04048k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology is rapidly sweeping through all the vital fields of science and technology such as electronics, aerospace, defense, medicine, and catalysis. It involves the design, synthesis, characterization, and applications of materials and devices on the nanometer scale. At the nanoscale, physical and chemical properties differ from the properties of the individual atoms and molecules of bulk matter. In particular, the design and development of silica nanomaterials have captivated the attention of several researchers worldwide. The applications of hybrid silicas are still limited by the lack of control on the morphology and particle size. The ability to control both the size and morphology of the materials and to obtain nano-sized silica particles has broadened the spectrum of applications of mesoporous organosilicas and/or has improved their performances. On the other hand, adsorption is a widely used technique for the separation and removal of pollutants (metal ions, dyes, organics,...) from wastewater. Silica nanoparticles have specific advantages over other materials for adsorption applications due to their unique structural characteristics: a stable structure, a high specific surface area, an adjustable pore structure, the presence of silanol groups on the surface which allow easy modification, less environmental harm, simple synthesis, low cost, etc. Silica nanoparticles are potential adsorbents for pollutants. We present herein an overview of the different types of silica nanoparticles going from the definitions to properties, synthetic approaches and the mention of potential applications. We focus mainly on the recent advances in the adsorption of different target substances (metal ions, dyes and other organics).
Collapse
Affiliation(s)
- Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
- Anhui Laboratory of Molecules-Based Materials, College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241002, Anhui, China
| | - Xueping Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Danqing Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Fan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
12
|
de Ávila Gonçalves S, R Rodrigues P, Pioli Vieira R. Metal-Free Organocatalyzed Atom Transfer Radical Polymerization: Synthesis, Applications, and Future Perspectives. Macromol Rapid Commun 2021; 42:e2100221. [PMID: 34223686 DOI: 10.1002/marc.202100221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well-defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O-ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O-ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O-ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O-ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields.
Collapse
Affiliation(s)
- Sayeny de Ávila Gonçalves
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Plínio R Rodrigues
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| |
Collapse
|
13
|
Örüm SM. Novel cyclomatrix polyphosphazene nanospheres: preparation, characterization and dual anticancer drug release application. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03654-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Beagan AM, Alghamdi AA, Lahmadi SS, Halwani MA, Almeataq MS, Alhazaa AN, Alotaibi KM, Alswieleh AM. Folic Acid-Terminated Poly(2-Diethyl Amino Ethyl Methacrylate) Brush-Gated Magnetic Mesoporous Nanoparticles as a Smart Drug Delivery System. Polymers (Basel) 2020; 13:polym13010059. [PMID: 33375759 PMCID: PMC7795197 DOI: 10.3390/polym13010059] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
Currently, chemotherapy is an important method for the treatment of various cancers. Nevertheless, it has many limitations, such as poor tumour selectivity and multi-drug resistance. It is necessary to improve this treatment method by incorporating a targeted drug delivery system aimed to reduce side effects and drug resistance. The present work aims to develop pH-sensitive nanocarriers containing magnetic mesoporous silica nanoparticles (MMSNs) coated with pH-responsive polymers for tumour-targeted drug delivery via the folate receptor. 2-Diethyl amino ethyl methacrylate (DEAEMA) was successfully grafted on MMSNs via surface initiated ARGET atom transfer radical polymerization (ATRP), with an average particle size of 180 nm. The end groups of poly (2-(diethylamino)ethyl methacrylate) (PDEAEMA) brushes were converted to amines, followed by a covalent bond with folic acid (FA) as a targeting agent. FA conjugated to the nanoparticle surface was confirmed by X-ray photoelectron spectroscopy (XPS). pH-Responsive behavior of PDEAEMA brushes was investigated by Dynamic Light Scattering (DLS). The nanoparticles average diameters ranged from ca. 350 nm in basic media to ca. 650 in acidic solution. Multifunctional pH-sensitive magnetic mesoporous nanoparticles were loaded with an anti-cancer drug (Doxorubicin) to investigate their capacity and long-circulation time. In a cumulative release pattern, doxorubicin (DOX) release from nano-systems was ca. 20% when the particle exposed to acidic media, compared to ca. 5% in basic media. The nano-systems have excellent biocompatibility and are minimally toxic when exposed to MCF-7, and -MCF-7 ADR cells.
Collapse
Affiliation(s)
- Abeer M. Beagan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (S.S.L.); (K.M.A.)
- Correspondence: (A.M.B.); (A.M.A.)
| | - Ahlam A. Alghamdi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (S.S.L.); (K.M.A.)
| | - Shatha S. Lahmadi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (S.S.L.); (K.M.A.)
| | - Majed A. Halwani
- King Abdullah International Medical Research Center, Nanomedicine Department, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11451, Saudi Arabia;
| | | | - Abdulaziz N. Alhazaa
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Khalid M. Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (S.S.L.); (K.M.A.)
| | - Abdullah M. Alswieleh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (S.S.L.); (K.M.A.)
- Correspondence: (A.M.B.); (A.M.A.)
| |
Collapse
|
15
|
Beagan A, Lahmadi S, Alghamdi A, Halwani M, Almeataq M, Alhazaa A, Alotaibi K, Alswieleh A. Glucosamine Modified the Surface of pH-Responsive Poly(2-(diethylamino)ethyl Methacrylate) Brushes Grafted on Hollow Mesoporous Silica Nanoparticles as Smart Nanocarrier. Polymers (Basel) 2020; 12:polym12112749. [PMID: 33233772 PMCID: PMC7699838 DOI: 10.3390/polym12112749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
This work presents the synthesis of pH-responsive poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) brushes anchored on hollow mesoporous silica nanoparticles (HMSN-PDEAEMA) via a surface-initiated ARGET ATRP technique. The average size of HMSNs was ca. 340 nm, with a 90 nm mesoporous silica shell. The dry thickness of grafted PDEAEMA brushes was estimated to be ca 30 nm, as estimated by SEM and TEM. The halogen group on the surface of PDEAMA brushes was successfully derivatized with glucosamine, as confirmed by XPS. The effect of pH on the size of the hybrid nanoparticles was investigated by DLS. The size of fabricated nanoparticle decreased from ca. 950 nm in acidic media to ca. 500 nm in basic media due to the deprotonation of tertiary amine in the PDEAEMA. The PDEAEMA modified HMSNs nanocarrier was efficiently loaded with doxorubicin (DOX) with a loading capacity of ca. 64%. DOX was released in a relatively controlled pH-triggered manner from hybrid nanoparticles. The cytotoxicity studies demonstrated that DOX@HMSN-PDEAEMA-Glucosamine showed a strong ability to kill breast cancer cells (MCF-7 and MCF-7/ADR) at low drug concentrations, in comparison to free DOX.
Collapse
Affiliation(s)
- Abeer Beagan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.L.); (A.A.); (K.A.)
- Correspondence: (A.B.); (A.A.)
| | - Shatha Lahmadi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.L.); (A.A.); (K.A.)
| | - Ahlam Alghamdi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.L.); (A.A.); (K.A.)
| | - Majed Halwani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
| | - Mohammed Almeataq
- King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
| | - Abdulaziz Alhazaa
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Khalid Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.L.); (A.A.); (K.A.)
| | - Abdullah Alswieleh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.L.); (A.A.); (K.A.)
- Correspondence: (A.B.); (A.A.)
| |
Collapse
|
16
|
Yuan M, Cui X, Zhu W, Tang H. Development of Environmentally Friendly Atom Transfer Radical Polymerization. Polymers (Basel) 2020; 12:E1987. [PMID: 32878287 PMCID: PMC7563397 DOI: 10.3390/polym12091987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Atom transfer radical polymerization (ATRP) is one of the most successful techniques for the preparation of well-defined polymers with controllable molecular weights, narrow molecular weight distributions, specific macromolecular architectures, and precisely designed functionalities. ATRP usually involves transition-metal complex as catalyst. As the most commonly used copper complex catalyst is usually biologically toxic and environmentally unsafe, considerable interest has been focused on iron complex, enzyme, and metal-free catalysts owing to their low toxicity, inexpensive cost, commercial availability and environmental friendliness. This review aims to provide a comprehensive understanding of iron catalyst used in normal, reverse, AGET, ICAR, GAMA, and SARA ATRP, enzyme as well as metal-free catalyst mediated ATRP in the point of view of catalytic activity, initiation efficiency, and polymerization controllability. The principle of ATRP and the development of iron ligand are briefly discussed. The recent development of enzyme-mediated ATRP, the latest research progress on metal-free ATRP, and the application of metal-free ATRP in interdisciplinary areas are highlighted in sections. The prospects and challenges of these three ATRP techniques are also described in the review.
Collapse
Affiliation(s)
| | | | | | - Huadong Tang
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; (M.Y.); (X.C.); (W.Z.)
| |
Collapse
|
17
|
Controllable surface-initiated metal-free atom transfer radical polymerization of methyl methacrylate on mesoporous SBA-15 via reductive quenching. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|