1
|
da Silva EM, Amaral CM, Jardim RN, Barbosa MP, Rabello TB. Influence of Specimen Dimension, Water Immersion Protocol, and Surface Roughness on Water Sorption and Solubility of Resin-Based Restorative Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:984. [PMID: 38473457 DOI: 10.3390/ma17050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
The evaluation of water sorption and solubility is pivotal for the development of new resin-based restorative materials with the potential for clinical application. The purpose of the present study was to evaluate the influence of the specimen dimension, water immersion protocol, and surface roughness on the water sorption and solubility of three resin-based restorative materials. Disk-shaped specimens of 15 mm × 1 mm, 10 mm × 1 mm, and 6 mm × 1 mm were produced with a composite resin (Z100), a resin cement (RelyX ARC), and an adhesive system (Single Bond 2-SB2). The specimens were immersed in distilled water according to four protocols: ISO (all the specimens for each group were vertically immersed in 50 mL); IV-10 (the specimens were individually and vertically immersed in 10 mL); IH-10 (the specimens were individually and horizontally immersed in 10 mL); and IH-2 (the specimens were individually and horizontally immersed in 2 mL). The surface roughness (Sa and Sp) was evaluated using an atomic force microscope, and the degree of conversion was determined using FT-IR spectrometry. The specimen dimension and water immersion protocol had no effect on water sorption and solubility. For the three resin-based restorative materials, Sp was higher than Sa. The degree of conversion was not influenced by the specimen dimension. The variations in the specimen dimension and water immersion protocol compared to those determined by ISO 4049 did not prevent the comparison between the values of water sorption and solubility obtained for a given resin-based restorative material.
Collapse
Affiliation(s)
- Eduardo Moreira da Silva
- Analytical Laboratory of Restorative Biomaterials-LABiom-R, Faculdade de Odontologia, Universidade Federal Fluminense, Niterói 24040-110, Brazil
| | - Cristiane Mariote Amaral
- Analytical Laboratory of Restorative Biomaterials-LABiom-R, Faculdade de Odontologia, Universidade Federal Fluminense, Niterói 24040-110, Brazil
| | - Renata Nunes Jardim
- Analytical Laboratory of Restorative Biomaterials-LABiom-R, Faculdade de Odontologia, Universidade Federal Fluminense, Niterói 24040-110, Brazil
| | - Marianna Pires Barbosa
- Analytical Laboratory of Restorative Biomaterials-LABiom-R, Faculdade de Odontologia, Universidade Federal Fluminense, Niterói 24040-110, Brazil
| | - Tiago Braga Rabello
- Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
2
|
Gallicchio V, Spinelli V, Russo T, Marino C, Spagnuolo G, Rengo C, De Santis R. Highly Reinforced Acrylic Resins for Hard Tissue Engineering and Their Suitability to Be Additively Manufactured through Nozzle-Based Photo-Printing. MATERIALS (BASEL, SWITZERLAND) 2023; 17:37. [PMID: 38203891 PMCID: PMC10779947 DOI: 10.3390/ma17010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Mineralized connective tissues represent the hardest materials of human tissues, and polymer based composite materials are widely used to restore damaged tissues. In particular, light activated resins and composites are generally considered as the most popular choice in the restorative dental practice. The first purpose of this study is to investigate novel highly reinforced light activated particulate dental composites. An innovative additive manufacturing technique, based on the extrusion of particle reinforced photo-polymers, has been recently developed for processing composites with a filler fraction (w/w) only up to 10%. The second purpose of this study is to explore the feasibility of 3D printing highly reinforced composites. A variety of composites based on 2,2-bis(acryloyloxymethyl)butyl acrylate and trimethylolpropane triacrylate reinforced with silica, titanium dioxide, and zirconia nanoparticles were designed and investigated through compression tests. The composite showing the highest mechanical properties was processed through the 3D bioplotter AK12 equipped with the Enfis Uno Air LED Engine. The composite showing the highest stiffness and strength was successfully processed through 3D printing, and a four-layer composite scaffold was realized. Mechanical properties of particulate composites can be tailored by modifying the type and amount of the filler fraction. It is possible to process highly reinforced photopolymerizable composite materials using additive manufacturing technologies consisting of 3D fiber deposition through extrusion in conjunction with photo-polymerization.
Collapse
Affiliation(s)
- Vito Gallicchio
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.G.); (V.S.); (G.S.)
| | - Vincenzo Spinelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.G.); (V.S.); (G.S.)
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54, Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Ciro Marino
- University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.G.); (V.S.); (G.S.)
| | - Carlo Rengo
- Department of Prosthodontics and Dental Materials, University of Siena, 53100 Siena, Italy;
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54, Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| |
Collapse
|
3
|
Yan S, Wang K, Wang Z. A Comparative Study on the Microscale and Macroscale Mechanical Properties of Dental Resin Composites. Polymers (Basel) 2023; 15:polym15051129. [PMID: 36904370 PMCID: PMC10007216 DOI: 10.3390/polym15051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Dental resin composites are universal restorative materials, and various kinds of fillers are used to reinforce their mechanical properties. However, a combined study on the microscale and macroscale mechanical properties of dental resin composites is missing, and the reinforcing mechanism of the composites is still not fully clarified. In this work, the effects of the nano-silica particle on the mechanical properties of dental resin composites were studied by combined dynamic nanoindentation tests and macroscale tensile tests. The reinforcing mechanism of the composites was explored by combining near-infrared spectroscopy, scanning electron microscope, and atomic force microscope characterizations. It was found that the tensile modulus increased from 2.47 GPa to 3.17 GPa, and the ultimate tensile strength increased from 36.22 MPa to 51.75 MPa, with the particle contents increasing from 0% to 10%. From the nanoindentation tests, the storage modulus and hardness of the composites increased by 36.27% and 40.90%, respectively. The storage modulus and hardness were also found to increase by 44.11% and 46.46% when the testing frequency increased from 1 Hz to 210 Hz. Moreover, based on a modulus mapping technique, we found a boundary layer in which the modulus gradually decreased from the edge of the nanoparticle to the resin matrix. Finite element modeling was adopted to illustrate the role of this gradient boundary layer in alleviating the shear stress concentration on the filler-matrix interface. The present study validates mechanical reinforcement and provides a potential new insight for understanding the reinforcing mechanism of dental resin composites.
Collapse
Affiliation(s)
- Shuogeng Yan
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Kun Wang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zhengzhi Wang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518108, China
- Correspondence:
| |
Collapse
|
4
|
Nanocomposites Materials of PLA Reinforced with Nanoclays Using a Masterbatch Technology: A Study of the Mechanical Performance and Its Sustainability. Polymers (Basel) 2021; 13:polym13132133. [PMID: 34209704 PMCID: PMC8272186 DOI: 10.3390/polym13132133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Packaging consumes around 40% of the total plastic production. One of the most important fields with high requirements is food packaging. Food packaging products have been commonly produced with petrol polymers, but due to environmental concerns, the market is being moved to biopolymers. Poly (lactic acid) (PLA) is the most promising biopolymer, as it is bio-based and biodegradable, and it is well established in the market. Nonetheless, its barrier properties need to be enhanced to be competitive with other polymers such as polyethylene terephthalate (PET). Nanoclays improve the barrier properties of polymeric materials if correct dispersion and exfoliation are obtained. Thus, it marks a milestone to obtain an appropriate dispersion. A predispersed methodology is proposed as a compounding process to improve the dispersion of these composites instead of common melt procedures. Afterwards, the effect of the polarity of the matrix was analyzing using polar and surface modified nanoclays with contents ranging from 2 to 8% w/w. The results showed the suitability of the predispersed and concentrated compound, technically named masterbatch, to obtain intercalated structures and the higher dispersion of polar nanoclays. Finally, the mechanical performance and sustainability of the prepared materials were simulated in a food tray, showing the best assessment of these materials and their lower fingerprint.
Collapse
|
5
|
Physical and mechanical evaluation of dental resin composite after modification with two different types of Montmorillonite nanoclay. J Dent 2021; 112:103731. [PMID: 34192560 DOI: 10.1016/j.jdent.2021.103731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Evaluation of degree of conversion (DC), flexural properties, micro-hardness and color change (ΔE00) of dental resin composite after modification with two types of organo-modified Montmorillonite (MMT) nanoclay; an experimentally synthesized polymethyl-methacrylate modified MMT nanoclay (PMMA/MMT), and a commercially available one (Cloisite20A). METHODS MMT was synthesized by sol-gel technique, organo-modified with polymethyl-methacrylate and characterized using EDX, XRD and FTIR. PMMA/MMT and Cloisite20A nanoclay were added to flowable resin composite in 0.5, 1 and 1.5 wt% concentrations. Unmodified resin composite was used as control group. DC was assessed by FTIR, flexural properties were tested by three-point bending test using a universal testing machine, micro-hardness was analyzed by Vickers micro-hardness tester and color change (ΔE00) was evaluated using a reflective spectrophotometer. SEM and elemental mapping assessment were performed to evaluate nanoclay distribution in resin composite. Data were analyzed using One-way ANOVA followed by Tukey's post hoc test, in addition to Two-way ANOVA (p ≤ 0.05). Weibull analysis was used to analyze flexural strength results. RESULTS Characterization results revealed successful preparation of PMMA/MMT. DC results showed insignificant difference up to 1 wt% of nanoclay concentration. Addition of 0.5 wt% of PMMA/MMT significantly increased flexural properties, while addition of 1.5 wt% of PMMA/MMT significantly decreased flexural properties. Micro-hardness results revealed a significant increase in PMMA/MMT groups in all tested concentrations. ΔE00 results showed that color change was clinically acceptable on adding 0.5 wt% nanoclay. CONCLUSION PMMA/MMT in 0.5 wt% is a promising nanofiller for resin composite that significantly enhanced flexural strength and micro-hardness without compromising DC and color.
Collapse
|
6
|
Szewczyk A, Skwira A, Ginter M, Tajer D, Prokopowicz M. Microwave-Assisted Fabrication of Mesoporous Silica-Calcium Phosphate Composites for Dental Application. Polymers (Basel) 2020; 13:E53. [PMID: 33375650 PMCID: PMC7796352 DOI: 10.3390/polym13010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Herein, the microwave-assisted wet precipitation method was used to obtain materials consisting of mesoporous silica (SBA-15) and calcium orthophosphates (CaP). Composites were prepared through immersion of mesoporous silica in different calcification coating solutions and then exposed to microwave radiation. The composites were characterized in terms of molecular structure, crystallinity, morphology, chemical composition, and mineralization potential by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX). The application of microwave irradiation resulted in the formation of different types of calcium orthophosphates such as calcium deficient hydroxyapatite (CDHA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP) on the SBA-15 surface, depending on the type of coating solution. The composites for which the progressive formation of hydroxyapatite during incubation in simulated body fluid was observed were further used in the production of final pharmaceutical forms: membranes, granules, and pellets. All of the obtained pharmaceutical forms preserved mineralization properties.
Collapse
Affiliation(s)
- Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| | - Adrianna Skwira
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| | - Marta Ginter
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
- Scientific Circle of Students, Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Polland
| | - Donata Tajer
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
- Scientific Circle of Students, Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Polland
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| |
Collapse
|