1
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hooman Fallahi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104 USA
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Maurice N. Collins
- School of Engineering, Bernal Institute and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 16635-148, Iran
| | - Hermann Seitz
- Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
2
|
Gorgol D, Mrlík M, Mikulka F, Víchová Z, Mahelová L, Ilčíková M, Minařík A. Smart Biopolymer Scaffolds Based on Hyaluronic Acid and Carbonyl Iron Microparticles: 3D Printing, Magneto-Responsive, and Cytotoxicity Study. ACS APPLIED BIO MATERIALS 2024; 7:7483-7493. [PMID: 39417485 DOI: 10.1021/acsabm.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study deals with utilization of the hyaluronic acid (HA) and carbonyl iron (CI) microparticles to fabricate the magneto-responsive hydrogel scaffolds that can provide triggered functionality upon application of an external magnetic field. The various combinations of the HA and CI were investigated from the rheological and viscoelastic point of view to clearly show promising behavior in connection to 3D printing. Furthermore, the swelling capabilities with water diffusion kinetics were also elucidated. Magneto-responsive performance of bulk hydrogels and their noncytotoxic nature were investigated,, and all hydrogels showed cell viability in the range 75-85%. The 3D printing of such developed systems was successful, and fundamental characterization of the scaffolds morphology (SEM and CT) has been presented. The magnetic activity of the final scaffolds was confirmed at a very low magnetic field strength of 140 kA/m, and such a scaffold also provides very good biocompatibility with NIH/3T3 fibroblasts.
Collapse
Affiliation(s)
- Danila Gorgol
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Miroslav Mrlík
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Filip Mikulka
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, 70 01 Zlin, Czech Republic
| | - Zdenka Víchová
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Leona Mahelová
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Markéta Ilčíková
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, 70 01 Zlin, Czech Republic
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 45 Bratislava, Slovakia
| | - Antonín Minařík
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, 70 01 Zlin, Czech Republic
| |
Collapse
|
3
|
Zhang W, Zha K, Hu W, Xiong Y, Knoedler S, Obed D, Panayi AC, Lin Z, Cao F, Mi B, Liu G. Multifunctional hydrogels: advanced therapeutic tools for osteochondral regeneration. Biomater Res 2023; 27:76. [PMID: 37542353 PMCID: PMC10403923 DOI: 10.1186/s40824-023-00411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023] Open
Abstract
Various joint pathologies such as osteochondritis dissecans, osteonecrosis, rheumatic disease, and trauma, may result in severe damage of articular cartilage and other joint structures, ranging from focal defects to osteoarthritis (OA). The osteochondral unit is one of the critical actors in this pathophysiological process. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of OA treatment. Hydrogel scaffolds, a component of tissue engineering, play an indispensable role in osteochondral regeneration. In this review, tissue engineering strategies regarding osteochondral regeneration were highlighted and summarized. The application of hydrogels for osteochondral regeneration within the last five years was evaluated with an emphasis on functionalized physical and chemical properties of hydrogel scaffolds, functionalized delivery hydrogel scaffolds as well as functionalized intelligent response hydrogel scaffolds. Lastly, to serve as guidance for future efforts in the creation of bioinspired hydrogel scaffolds, a succinct summary and new views for specific mechanisms, applications, and existing limitations of the newly designed functionalized hydrogel scaffolds were offered.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Doha Obed
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Adriana C Panayi
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071, Ludwigshafen/Rhine, Germany
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
4
|
Jiang Q, Zhang S. Stimulus-Responsive Drug Delivery Nanoplatforms for Osteoarthritis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206929. [PMID: 36905239 DOI: 10.1002/smll.202206929] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
Osteoarthritis (OA) is one of the most prevalent age-related degenerative diseases. With an increasingly aging global population, greater numbers of OA patients are providing clear economic and societal burdens. Surgical and pharmacological treatments are the most common and conventional therapeutic strategies for OA, but often fall considerably short of desired or optimal outcomes. With the development of stimulus-responsive nanoplatforms has come the potential for improved therapeutic strategies for OA. Enhanced control, longer retention time, higher loading rates, and increased sensitivity are among the potential benefits. This review summarizes the advanced application of stimulus-responsive drug delivery nanoplatforms for OA, categorized by either those that depend on endogenous stimulus (reactive oxygen species, pH, enzyme, and temperature), or those that depend on exogenous stimulus (near-infrared ray, ultrasound, magnetic fields). The opportunities, restrictions, and limitations related to these various drug delivery systems, or their combinations, are discussed in areas such as multi-functionality, image guidance, and multi-stimulus response. The remaining constraints and potential solutions that are represented by the clinical application of stimulus-responsive drug delivery nanoplatforms are finally summarized.
Collapse
Affiliation(s)
- Qi Jiang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
5
|
Li Z, Xue L, Wang P, Ren X, Zhang Y, Wang C, Sun J. Biological Scaffolds Assembled with Magnetic Nanoparticles for Bone Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1429. [PMID: 36837058 PMCID: PMC9961196 DOI: 10.3390/ma16041429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are widely used in bone tissue engineering because of their unique physical and chemical properties and their excellent biocompatibility. Under the action of a magnetic field, SPIONs loaded in a biological scaffold can effectively promote osteoblast proliferation, differentiation, angiogenesis, and so on. SPIONs have very broad application prospects in bone repair, bone reconstruction, bone regeneration, and other fields. In this paper, several methods for forming biological scaffolds via the biological assembly of SPIONs are reviewed, and the specific applications of these biological scaffolds in bone tissue engineering are discussed.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Le Xue
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Peng Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Xueqian Ren
- Clinical Medical Engineering Department, The Affiliated Zhongda Hospital of Southeast University Medical School, Nanjing 210009, China
| | - Yunyang Zhang
- Center of Modern Analysis, Nanjing University, Nanjing 210000, China
| | - Chuan Wang
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
6
|
Ding SL, Liu X, Zhao XY, Wang KT, Xiong W, Gao ZL, Sun CY, Jia MX, Li C, Gu Q, Zhang MZ. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact Mater 2022; 17:81-108. [PMID: 35386447 PMCID: PMC8958326 DOI: 10.1016/j.bioactmat.2022.01.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Successful regeneration of cartilage tissue at a clinical scale has been a tremendous challenge in the past decades. Microcarriers (MCs), usually used for cell and drug delivery, have been studied broadly across a wide range of medical fields, especially the cartilage tissue engineering (TE). Notably, microcarrier systems provide an attractive method for regulating cell phenotype and microtissue maturations, they also serve as powerful injectable carriers and are combined with new technologies for cartilage regeneration. In this review, we introduced the typical methods to fabricate various types of microcarriers and discussed the appropriate materials for microcarriers. Furthermore, we highlighted recent progress of applications and general design principle for microcarriers. Finally, we summarized the current challenges and promising prospects of microcarrier-based systems for medical applications. Overall, this review provides comprehensive and systematic guidelines for the rational design and applications of microcarriers in cartilage TE.
Collapse
Affiliation(s)
- Sheng-Long Ding
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Tao Wang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei Xiong
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Li Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng-Yi Sun
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Min-Xuan Jia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming-Zhu Zhang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
7
|
Naghdi M, Ghovvati M, Rabiee N, Ahmadi S, Abbariki N, Sojdeh S, Ojaghi A, Bagherzadeh M, Akhavan O, Sharifi E, Rabiee M, Saeb MR, Bolouri K, Webster TJ, Zare EN, Zarrabi A. Magnetic nanocomposites for biomedical applications. Adv Colloid Interface Sci 2022; 308:102771. [PMID: 36113311 DOI: 10.1016/j.cis.2022.102771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mina Naghdi
- Department of Chemistry, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Keivan Bolouri
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| |
Collapse
|
8
|
Jiang XC, Zhang T, Gao JQ. The in vivo fate and targeting engineering of crossover vesicle-based gene delivery system. Adv Drug Deliv Rev 2022; 187:114324. [PMID: 35640803 DOI: 10.1016/j.addr.2022.114324] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
Exosomes and biomimetic vesicles are widely used for gene delivery because of their excellent gene loading capacity and stability and their natural targeting delivery potential. These vesicles take advantages of both cell-based bioactive delivery system and synthetical lipid-derived nanovectors to form crossover characteristics. To further optimize the specific targeting properties of crossover vesicles, studies of their in vivo fate and various engineering approaches including nanobiotechnology are required. This review describes the preparation process of exosomes and biomimetic vesicles, and summarizes the mechanism of loading and delivery of nucleic acids or gene editing systems. We provide a comprehensive overview of the techniques employed for preparing the targeting crossover vesicles based on their cellular uptake and targeting mechanism. To delineate the future prospects of crossover vesicle gene delivery systems, various challenges and clinical applications of vesicles have also been discussed.
Collapse
|
9
|
Babaniamansour P, Salimi M, Dorkoosh F, Mohammadi M. Magnetic Hydrogel for Cartilage Tissue Regeneration as well as a Review on Advantages and Disadvantages of Different Cartilage Repair Strategies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7230354. [PMID: 35434125 PMCID: PMC9012656 DOI: 10.1155/2022/7230354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 01/21/2023]
Abstract
There is a clear clinical need for efficient cartilage healing strategies for treating cartilage defects which burdens millions of patients physically and financially. Different strategies including microfracture technique, osteochondral transfer, and scaffold-based treatments have been suggested for curing cartilage injuries. Although some improvements have been achieved in several facets, current treatments are still less than satisfactory. Recently, different hydrogel-based biomaterials have been suggested as a therapeutic candidate for cartilage tissue regeneration due to their biocompatibility, high water content, and tunability. Specifically, magnetic hydrogels are becoming more attractive due to their smart response to magnetic fields remotely. We seek to outline the context-specific regenerative potential of magnetic hydrogels for cartilage tissue repair. In this review, first, we explained conventional techniques for cartilage repair and then compared them with new scaffold-based approaches. We illustrated various hydrogels used for cartilage regeneration by highlighting the magnetic hydrogels. Also, we gathered in vitro and in vivo studies of how magnetic hydrogels promote chondrogenesis as well as studied the biological mechanism which is responsible for cartilage repair due to the application of magnetic hydrogel.
Collapse
Affiliation(s)
- Parto Babaniamansour
- Department of Biomedical Engineering, AmirKabir University of Technology, Tehran, Iran
| | - Maryam Salimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Dorkoosh
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi
- Department of Biomedical Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
10
|
Yang SW, Chen YJ, Chen CJ, Liu JT, Yang CY, Tsai JH, Lu HE, Chen SY, Chang SJ. High-Density Horizontal Stacking of Chondrocytes via the Synergy of Biocompatible Magnetic Gelatin Nanocarriers and Internal Magnetic Navigation for Enhancing Cartilage Repair. Polymers (Basel) 2022; 14:809. [PMID: 35215722 PMCID: PMC8963011 DOI: 10.3390/polym14040809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a globally occurring articular cartilage degeneration disease that adversely affects both the physical and mental well-being of the patient, including limited mobility. One major pathological characteristic of OA is primarily related to articular cartilage defects resulting from abrasion and catabolic and proinflammatory mediators in OA joints. Although cell therapy has hitherto been regarded as a promising treatment for OA, the therapeutic effects did not meet expectations due to the outflow of implanted cells. Here, we aimed to explore the repair effect of magnetized chondrocytes using magnetic amphiphilic-gelatin nanocarrier (MAGNC) to enhance cellular anchored efficiency and cellular magnetic guidance (MG) toward the superficial zone of damaged cartilage. The results of in vitro experiments showed that magnetized chondrocytes could be rapidly guided along the magnetic force line to form cellular amassment. Furthermore, the Arg-Gly-Asp (RGD) motif of gelatin in MAGNC could integrate the interaction among cells to form cellular stacking. In addition, MAGNCs upregulated the gene expression of collagen II (Col II), aggrecan, and downregulated that of collagen I (Col I) to reduce cell dedifferentiation. In animal models, the magnetized chondrocytes can be guided into the superficial zone with the interaction between the internal magnetic field and MAGNC to form cellular stacking. In vivo results showed that the intensity of N-sulfated-glycosaminoglycans (sGAG) and Col II in the group of magnetized cells with magnetic guiding was higher than that in the other groups. Furthermore, smooth closure of OA cartilage defects was observed in the superficial zone after 8 weeks of implantation. The study revealed the significant potential of MAGNC in promoting the high-density stacking of chondrocytes into the cartilage surface and retaining the biological functions of implanted chondrocytes for OA cartilage repair.
Collapse
Affiliation(s)
- Shan-Wei Yang
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung City 813414, Taiwan;
| | - Yong-Ji Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| | - Ching-Jung Chen
- School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Jen-Tsai Liu
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Chin-Yi Yang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| | - Jen-Hao Tsai
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| | - Huai-En Lu
- Food Industry Research and Development Institute, Hsinchu 300193, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung City 406040, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City 813414, Taiwan
| | - Shwu-Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| |
Collapse
|
11
|
Sharma K, Porat Z, Gedanken A. Designing Natural Polymer-Based Capsules and Spheres for Biomedical Applications-A Review. Polymers (Basel) 2021; 13:4307. [PMID: 34960858 PMCID: PMC8708131 DOI: 10.3390/polym13244307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Natural polymers, such as polysaccharides and polypeptides, are potential candidates to serve as carriers of biomedical cargo. Natural polymer-based carriers, having a core-shell structural configuration, offer ample scope for introducing multifunctional capabilities and enable the simultaneous encapsulation of cargo materials of different physical and chemical properties for their targeted delivery and sustained and stimuli-responsive release. On the other hand, carriers with a porous matrix structure offer larger surface area and lower density, in order to serve as potential platforms for cell culture and tissue regeneration. This review explores the designing of micro- and nano-metric core-shell capsules and porous spheres, based on various functions. Synthesis approaches, mechanisms of formation, general- and function-specific characteristics, challenges, and future perspectives are discussed. Recent advances in protein-based carriers with a porous matrix structure and different core-shell configurations are also presented in detail.
Collapse
Affiliation(s)
- Kusha Sharma
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel;
| | - Ze’ev Porat
- Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Department of Chemistry, Nuclear Research Center-Negev, Be’er Sheva 84190, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel;
| |
Collapse
|
12
|
The potential utility of hybrid photo-crosslinked hydrogels with non-immunogenic component for cartilage repair. NPJ Regen Med 2021; 6:54. [PMID: 34508081 PMCID: PMC8433347 DOI: 10.1038/s41536-021-00166-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Finding a suitable biomaterial for scaffolding in cartilage tissue engineering has proved to be far from trivial. Nonetheless, it is clear that biomimetic approaches based on gelatin (Gel) and hyaluronic acid (HA) have particular promise. Herein, a set of formulations consisting of photo-polymerizable Gel; photo-polymerizable HA, and allogenic decellularized cartilage matrix (DCM), is synthesized and characterized. The novelty of this study lies particularly in the choice of DCM, which was harvested from an abnormal porcine with α-1,3-galactose gene knockout. The hybrid hydrogels were prepared and studied extensively, by spectroscopic methods, for their capacity to imbibe water, for their behavior under compression, and to characterize microstructure. Subsequently, the effects of the hydrogels on contacting cells (in vitro) were studied, i.e., cytotoxicity, morphology, and differentiation through monitoring the specific markers ACAN, Sox9, Coll2, and Col2α1, hypertrophy through monitoring the specific markers alkaline phosphatase (ALP) and Col 10A1. In vivo performance of the hydrogels was assessed in a rat knee cartilage defect model. The new data expand our understanding of hydrogels built of Gel and HA, since they reveal that a significant augmenting role can be played by DCM. The data strongly suggest that further experimentation in larger cartilage-defect animal models is worthwhile and has potential utility for tissue engineering and regenerative medicine.
Collapse
|
13
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
14
|
Abstract
Hyaluronic acid (HA) is a natural polyelectrolyte abundant in mammalian connective tissues, such as cartilage and skin. Both endogenous and exogenous HA produced by fermentation have similar physicochemical, rheological, and biological properties, leading to medical and dermo-cosmetic products. Chemical modifications such as cross-linking or conjugation in target groups of the HA molecule improve its properties and in vivo stability, expanding its applications. Currently, HA-based scaffolds and matrices are of great interest in tissue engineering and regenerative medicine. However, the partial oxidation of the proximal hydroxyl groups in HA to electrophilic aldehydes mediated by periodate is still rarely investigated. The introduced aldehyde groups in the HA backbone allow spontaneous cross-linking with adipic dihydrazide (ADH), thermosensitivity, and noncytotoxicity to the hydrogels, which are advantageous for medical applications. This review provides an overview of the physicochemical properties of HA and its usual chemical modifications to better understand oxi-HA/ADH hydrogels, their functional properties modulated by the oxidation degree and ADH concentration, and the current clinical research. Finally, it discusses the development of biomaterials based on oxi-HA/ADH as a novel approach in tissue engineering and regenerative medicine.
Collapse
|
15
|
Bettini S, Bonfrate V, Valli L, Giancane G. Paramagnetic Functionalization of Biocompatible Scaffolds for Biomedical Applications: A Perspective. Bioengineering (Basel) 2020; 7:E153. [PMID: 33260520 PMCID: PMC7711469 DOI: 10.3390/bioengineering7040153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 01/15/2023] Open
Abstract
The burst of research papers focused on the tissue engineering and regeneration recorded in the last years is justified by the increased skills in the synthesis of nanostructures able to confer peculiar biological and mechanical features to the matrix where they are dispersed. Inorganic, organic and hybrid nanostructures are proposed in the literature depending on the characteristic that has to be tuned and on the effect that has to be induced. In the field of the inorganic nanoparticles used for decorating the bio-scaffolds, the most recent contributions about the paramagnetic and superparamagnetic nanoparticles use was evaluated in the present contribution. The intrinsic properties of the paramagnetic nanoparticles, the possibility to be triggered by the simple application of an external magnetic field, their biocompatibility and the easiness of the synthetic procedures for obtaining them proposed these nanostructures as ideal candidates for positively enhancing the tissue regeneration. Herein, we divided the discussion into two macro-topics: the use of magnetic nanoparticles in scaffolds used for hard tissue engineering for soft tissue regeneration.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Innovation Engineering, University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Valentina Bonfrate
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| | - Ludovico Valli
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Biological and Environmental Sciences and Technology (DiSTeBA), University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Gabriele Giancane
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| |
Collapse
|