1
|
Blanco JCG, Macías-García A, Rodríguez-Rego JM, Mendoza-Cerezo L, Sánchez-Margallo FM, Marcos-Romero AC, Pagador-Carrasco JB. Optimising Bioprinting Nozzles through Computational Modelling and Design of Experiments. Biomimetics (Basel) 2024; 9:460. [PMID: 39194439 DOI: 10.3390/biomimetics9080460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
3D bioprinting is a promising technique for creating artificial tissues and organs. One of the main challenges of bioprinting is cell damage, due to high pressures and tensions. During the biofabrication process, extrusion bioprinting usually results in low cell viability, typically ranging from 40% to 80%, although better printing performance with higher cell viability can be achieved by optimising the experimental design and operating conditions, with nozzle geometry being a key factor. This article presents a review of studies that have used computational fluid dynamics (CFD) to optimise nozzle geometry. They show that the optimal ranges for diameter and length are 0.2 mm to 1 mm and 8 mm to 10 mm, respectively. In addition, it is recommended that the nozzle should have an internal angle of 20 to 30 degrees, an internal coating of ethylenediaminetetraacetic acid (EDTA), and a shear stress of less than 10 kPa. In addition, a design of experiments technique to obtain an optimal 3D bioprinting configuration for a bioink is also presented. This experimental design would identify bioprinting conditions that minimise cell damage and improve the viability of the printed cells.
Collapse
Affiliation(s)
- Juan C Gómez Blanco
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, km41.8, 10071 Cáceres, Spain
| | - Antonio Macías-García
- Department of Mechanical, Energy and Materials Engineering, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain
| | - Jesús M Rodríguez-Rego
- Department of Mechanical, Energy and Materials Engineering, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain
| | - Laura Mendoza-Cerezo
- Department of Mechanical, Energy and Materials Engineering, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain
| | | | - Alfonso C Marcos-Romero
- Department of Mechanical, Energy and Materials Engineering, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain
| | | |
Collapse
|
2
|
Bandyopadhyay A, Ghibhela B, Mandal BB. Current advances in engineering meniscal tissues: insights into 3D printing, injectable hydrogels and physical stimulation based strategies. Biofabrication 2024; 16:022006. [PMID: 38277686 DOI: 10.1088/1758-5090/ad22f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The knee meniscus is the cushioning fibro-cartilage tissue present in between the femoral condyles and tibial plateau of the knee joint. It is largely avascular in nature and suffers from a wide range of tears and injuries caused by accidents, trauma, active lifestyle of the populace and old age of individuals. Healing of the meniscus is especially difficult due to its avascularity and hence requires invasive arthroscopic approaches such as surgical resection, suturing or implantation. Though various tissue engineering approaches are proposed for the treatment of meniscus tears, three-dimensional (3D) printing/bioprinting, injectable hydrogels and physical stimulation involving modalities are gaining forefront in the past decade. A plethora of new printing approaches such as direct light photopolymerization and volumetric printing, injectable biomaterials loaded with growth factors and physical stimulation such as low-intensity ultrasound approaches are being added to the treatment portfolio along with the contemporary tear mitigation measures. This review discusses on the necessary design considerations, approaches for 3D modeling and design practices for meniscal tear treatments within the scope of tissue engineering and regeneration. Also, the suitable materials, cell sources, growth factors, fixation and lubrication strategies, mechanical stimulation approaches, 3D printing strategies and injectable hydrogels for meniscal tear management have been elaborated. We have also summarized potential technologies and the potential framework that could be the herald of the future of meniscus tissue engineering and repair approaches.
Collapse
Affiliation(s)
- Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Baishali Ghibhela
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Hatamikia S, Jaksa L, Kronreif G, Birkfellner W, Kettenbach J, Buschmann M, Lorenz A. Silicone phantoms fabricated with multi-material extrusion 3D printing technology mimicking imaging properties of soft tissues in CT. Z Med Phys 2023:S0939-3889(23)00076-4. [PMID: 37380561 DOI: 10.1016/j.zemedi.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/30/2023]
Abstract
Recently, 3D printing has been widely used to fabricate medical imaging phantoms. So far, various rigid 3D printable materials have been investigated for their radiological properties and efficiency in imaging phantom fabrication. However, flexible, soft tissue materials are also needed for imaging phantoms for simulating several clinical scenarios where anatomical deformations is important. Recently, various additive manufacturing technologies have been used to produce anatomical models based on extrusion techniques that allow the fabrication of soft tissue materials. To date, there is no systematic study in the literature investigating the radiological properties of silicone rubber materials/fluids for imaging phantoms fabricated directly by extrusion using 3D printing techniques. The aim of this study was to investigate the radiological properties of 3D printed phantoms made of silicone in CT imaging. To achieve this goal, the radiodensity as described as Hounsfield Units (HUs) of several samples composed of three different silicone printing materials were evaluated by changing the infill density to adjust their radiological properties. A comparison of HU values with a Gammex Tissue Characterization Phantom was performed. In addition, a reproducibility analysis was performed by creating several replicas for specific infill densities. A scaled down anatomical model derived from an abdominal CT was also fabricated and the resulting HU values were evaluated. For the three different silicone materials, a spectrum ranging from -639 to +780 HU was obtained on CT at a scan setting of 120 kVp. In addition, using different infill densities, the printed materials were able to achieve a similar radiodensity range as obtained in different tissue-equivalent inserts in the Gammex phantom (238 HU to -673 HU). The reproducibility results showed good agreement between the HU values of the replicas compared to the original samples, confirming the reproducibility of the printed materials. A good agreement was observed between the HU target values in abdominal CT and the HU values of the 3D-printed anatomical phantom in all tissues.
Collapse
Affiliation(s)
- Sepideh Hatamikia
- Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria; Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, Danube Private University, Krems, Austria.
| | - Laszlo Jaksa
- Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria
| | - Gernot Kronreif
- Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria
| | - Wolfgang Birkfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Joachim Kettenbach
- Institute of Diagnostic, Interventional Radiology and Nuclear Medicine, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Martin Buschmann
- Department of Radiation Oncology, Medical University of Vienna/AKH Wien, Vienna, Austria
| | - Andrea Lorenz
- Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria
| |
Collapse
|
4
|
Wu L, Dong Z. Interfacial Regulation for 3D Printing based on Slice-Based Photopolymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300903. [PMID: 37147788 DOI: 10.1002/adma.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Indexed: 05/07/2023]
Abstract
3D printing, also known as additive manufacturing, can turn computer-aided designs into delicate structures directly and on demand by eliminating expensive molds, dies, or lithographic masks. Among the various technical forms, light-based 3D printing mainly involved the control of polymer-based matter fabrication and realized a field of manufacturing with high tunability of printing format, speed, and precision. Emerging slice- and light-based 3D-printing methods have prosperously advanced in recent years but still present challenges to the versatility of printing continuity, printing process, and printing details control. Herein, the field of slice- and light-based 3D printing is discussed and summarized from the view of interfacial regulation strategies to improve the printing continuity, printing process control, and the character of printed results, and several potential strategies to construct complex 3D structures of distinct characteristics with extra external fields, which are favorable for the further improvement and development of 3D printing, are proposed.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Kyser AJ, Masigol M, Mahmoud MY, Ryan M, Lewis WG, Lewis AL, Frieboes HB, Steinbach-Rankins JM. Fabrication and characterization of bioprints with Lactobacillus crispatus for vaginal application. J Control Release 2023; 357:545-560. [PMID: 37076014 PMCID: PMC10696519 DOI: 10.1016/j.jconrel.2023.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Bacterial vaginosis (BV) is characterized by low levels of lactobacilli and overgrowth of potential pathogens in the female genital tract. Current antibiotic treatments often fail to treat BV in a sustained manner, and > 50% of women experience recurrence within 6 months post-treatment. Recently, lactobacilli have shown promise for acting as probiotics by offering health benefits in BV. However, as with other active agents, probiotics often require intensive administration schedules incurring difficult user adherence. Three-dimensional (3D)-bioprinting enables fabrication of well-defined architectures with tunable release of active agents, including live mammalian cells, offering the potential for long-acting probiotic delivery. One promising bioink, gelatin alginate has been previously shown to provide structural stability, host compatibility, viable probiotic incorporation, and cellular nutrient diffusion. This study formulates and characterizes 3D-bioprinted Lactobacillus crispatus-containing gelatin alginate scaffolds for gynecologic applications. Different weight to volume (w/v) ratios of gelatin alginate were bioprinted to determine formulations with highest printing resolution, and different crosslinking reagents were evaluated for effect on scaffold integrity via mass loss and swelling measurements. Post-print viability, sustained-release, and vaginal keratinocyte cytotoxicity assays were conducted. A 10:2 (w/v) gelatin alginate formulation was selected based on line continuity and resolution, while degradation and swelling experiments demonstrated greatest structural stability with dual genipin and calcium crosslinking, showing minimal mass loss and swelling over 28 days. 3D-bioprinted L. crispatus-containing scaffolds demonstrated sustained release and proliferation of live bacteria over 28 days, without impacting viability of vaginal epithelial cells. This study provides in vitro evidence for 3D-bioprinted scaffolds as a novel strategy to sustain probiotic delivery with the ultimate goal of restoring vaginal lactobacilli following microbiological disturbances.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohammadali Masigol
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mark Ryan
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
6
|
Kilian D, Holtzhausen S, Groh W, Sembdner P, Czichy C, Lode A, Stelzer R, Gelinsky M. 3D extrusion printing of density gradients by variation of sinusoidal printing paths for tissue engineering and beyond. Acta Biomater 2023; 158:308-323. [PMID: 36563775 DOI: 10.1016/j.actbio.2022.12.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
During extrusion printing of pasty biomaterials, internal geometries are mainly adjusted by positioning of straightly deposited strands which does not allow realization of spatially adaptable density gradients in x-, y- and z-direction for anisotropic scaffolds or anatomically shaped constructs. Herein, an alternative concept for printing patterns based on sinusoidal curves was evaluated using a clinically approved calcium phosphate cement (CPC). Infill density in scaffolds was adjusted by varying wavelength and amplitude of a sinus curve. Both wavelength and amplitude factors were defined by multitudes of the applied nozzle diameter. For CPC as a biomaterial ink in bone application, porosity, mechanical stiffness and biological response by seeded immortalized human mesenchymal stem cells - adhesion and pore bridging behavior - were investigated. The internal structure of a xyz-gradient scaffold was proven via X-ray based micro computed tomography (µCT). Silicone was used as a model material to investigate the impact of printing velocity and strand distance on the shape fidelity of the sinus pattern for soft matter printing. The impact of different sinus patterns on mechanical properties was assessed. Density and mechanical properties of CPC scaffolds were successfully adjusted without an adverse effect on adhesion and cell number development. In a proof-of-concept experiment, a sinus-adjusted density gradient in an anatomically shaped construct (human vertebral body) defined via clinical computed tomography (CT) data was demonstrated. This fills a technological gap for extrusion-based printing of freely adjustable, continuously guidable infill density gradients in all spatial directions. STATEMENT OF SIGNIFICANCE: 3D extrusion printing of biomaterials allows the generation of anatomically shaped, patient-specific implants or tissue engineering scaffolds. The density of such a structure is typically adjusted by the strand-to-strand distance of parallel, straight-meandered strands in each deposited layer. By printing in a sinusoidal pattern, design of density gradients is possible with a free, spatial resolution in x-, y- and z-direction. We demonstrated that porosity and mechanical properties can be freely adapted in this way without an adverse effect on cell adhesion. With the example of a CT dataset of a human spine, the anisotropic pattern of a vertebral body was resembled by this printing technique that can be translated to various patterns, materials and application.
Collapse
Affiliation(s)
- David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Holtzhausen
- Institute of Machine Elements and Machine Design, Faculty of Mechanical Engineering, Technische Universität Dresden, Dresden, Germany
| | - Wolfram Groh
- Institute of Machine Elements and Machine Design, Faculty of Mechanical Engineering, Technische Universität Dresden, Dresden, Germany
| | - Philipp Sembdner
- Institute of Machine Elements and Machine Design, Faculty of Mechanical Engineering, Technische Universität Dresden, Dresden, Germany
| | - Charis Czichy
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ralph Stelzer
- Institute of Machine Elements and Machine Design, Faculty of Mechanical Engineering, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Sing SL, Yeong WY. Emerging Materials for Additive Manufacturing. MATERIALS (BASEL, SWITZERLAND) 2022; 16:127. [PMID: 36614465 PMCID: PMC9821646 DOI: 10.3390/ma16010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Additive manufacturing (AM) has grown and evolved rapidly in recent years [...].
Collapse
Affiliation(s)
- Swee Leong Sing
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| |
Collapse
|
8
|
Sing SL, Yeong WY. Recent Progress in Research of Additive Manufacturing for Polymers. Polymers (Basel) 2022; 14:polym14112267. [PMID: 35683939 PMCID: PMC9183186 DOI: 10.3390/polym14112267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Affiliation(s)
- Swee Leong Sing
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
- Correspondence: or
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| |
Collapse
|
9
|
Brusa da Costa Linn L, Danas K, Bodelot L. Towards 4D Printing of Very Soft Heterogeneous Magnetoactive Layers for Morphing Surface Applications via Liquid Additive Manufacturing. Polymers (Basel) 2022; 14:polym14091684. [PMID: 35566854 PMCID: PMC9105100 DOI: 10.3390/polym14091684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/16/2023] Open
Abstract
This work explores the use of liquid additive manufacturing (LAM) to print heterogeneous magnetoactive layers. A general method is proposed where, by studying the printing of pure silicone lines, the successful printing of closed shapes, open shapes, and a combination thereof, can be achieved while accounting for the continuous deposition that is specific to LAM. The results of this characterization are subsequently exploited for the printing of a heterogeneous layer composed of four magnetoactive discs embedded in a pure silicone square. Such a layer, when affixed to a softer silicone substrate, yields a system that produces truly three-dimensional surface patterns upon application of a magnetic field. Hence, this work demonstrates that LAM is a promising approach for the rapid 4D printing of morphing surfaces exhibiting 3D surface patterns that can be actuated remotely and reversibly via a magnetic field. Such heterogenous layers have a wide range of applications, ranging from haptics to camouflage to differential cell growth.
Collapse
|
10
|
A Parametric Study for Tensile Properties of Silicone Rubber Specimen Using the Bowden-Type Silicone Printer. MATERIALS 2022; 15:ma15051729. [PMID: 35268961 PMCID: PMC8911474 DOI: 10.3390/ma15051729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Silicone printing can enable a lot more accessibility and customizability towards utilizing silicone in different applications, including medicine for its biocompatibility. However, challenges existed for printing in specific geometries due to the lack of guidelines and studies on the mechanical properties. To support the understanding of printing three-dimensional silicone structure having different infill patterns and gel-like material, this paper conducted a parametric study for the specimens printed using a Bowden-type silicone printer and measurements of the tensile properties. Four printing parameters of print speed, infill density, flow rate, and infill pattern, are categorized following the Taguchi L9 method, and arranged into the four-parameter-three-level orthogonal array. The signal-to-noise (S/N) ratio was calculated based on the principle of the-larger-the-better, and analysis of variance (ANOVA) was also obtained. Tensile performance was further discussed with the characterization of internal structure, using the cross-sections of the printed specimens. It was found that the change of flow rate is the most significant to the tensile stress; and for the tensile strain, infill pattern was found to be the most significant parameter. The Line infill pattern consistently presented the highest tensile stress. Agglomeration can be seen inside the printed structure, hence optimal printing parameters play an important role for complicated geometry, while ensuring the flow rate and infill density do not exceed a reasonable value. This study would serve as the guideline for printing three-dimensional silicone structures.
Collapse
|
11
|
Stocco E, Porzionato A, De Rose E, Barbon S, Caro RD, Macchi V. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives. J Tissue Eng 2022; 13:20417314211065860. [PMID: 35096363 PMCID: PMC8793124 DOI: 10.1177/20417314211065860] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023] Open
Abstract
Meniscal tears are a frequent orthopedic injury commonly managed by conservative
strategies to avoid osteoarthritis development descending from altered
biomechanics. Among cutting-edge approaches in tissue engineering, 3D printing
technologies are extremely promising guaranteeing for complex biomimetic
architectures mimicking native tissues. Considering the anisotropic
characteristics of the menisci, and the ability of printing over structural
control, it descends the intriguing potential of such vanguard techniques to
meet individual joints’ requirements within personalized medicine. This
literature review provides a state-of-the-art on 3D printing for meniscus
reconstruction. Experiences in printing materials/technologies, scaffold types,
augmentation strategies, cellular conditioning have been compared/discussed;
outcomes of pre-clinical studies allowed for further considerations. To date,
translation to clinic of 3D printed meniscal devices is still a challenge:
meniscus reconstruction is once again clear expression of how the integration of
different expertise (e.g., anatomy, engineering, biomaterials science, cell
biology, and medicine) is required to successfully address native tissues
complexities.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Enrico De Rose
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Silvia Barbon
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| |
Collapse
|
12
|
Wang W, Sun S, Hu S, Yang B, He S, Wang R, Zhang L. Unprecedented Strength Polysiloxane-Based Polyurethane for 3D Printing and Shape Memory. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3324-3333. [PMID: 34984903 DOI: 10.1021/acsami.1c22353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thermoplastic polysiloxane-based polyurethane (Si-TPU) has been attracting a great deal of attention because of the dual advantages of polysiloxane and polyurethane. However, the strength of Si-TPU with a traditional structure is low, and improvement is urgently needed for diverse applications. Herein, we design a polysiloxane-based soft segment (SS) with two urethane groups at the end of the polysiloxane chain, and then we prepare a series of Si-TPUs through a designed SS, isophorone diisocyanate and 1,4-butanediol. Such structural design improves the polarity of the SS and endows more regular hydrogen bonds to the polymer molecular chain. As a result, the prepared Si-TPUs exhibit a good microphase separation structure, unprecedentedly high strength, repeatable processing, noncytotoxicity, shape memory properties, and three-dimensional printing capabilities. Moreover, a maximum tensile strength of Si-TPUs can reach 20.3 MPa, exceeding that of other existing Si-based polymer materials. Si-TPUs show great potential for biomedical applications.
Collapse
Affiliation(s)
- Wencai Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Siao Sun
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shikai Hu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Bin Yang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaoyun He
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Runguo Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| |
Collapse
|
13
|
Engel KE, Kilmartin PA, Diegel O. Recent advances in the 3D printing of ionic electroactive polymers and core ionomeric materials. Polym Chem 2022. [DOI: 10.1039/d1py01297e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent advances in the 3D printing, or additive manufacturing, of ionic electroactive polymers (EAP) and their future applications.
Collapse
Affiliation(s)
- Kyle Edward Engel
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies, Auckland 1010, New Zealand
| | - Paul A. Kilmartin
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Olaf Diegel
- School of Mechanical Engineering, The University of Auckland, Auckland 1010, New Zealand
- Creative Design and Additive Manufacturing Lab, The University of Auckland, Auckland 1010, New Zealand
- MedTech CoRE, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
14
|
Jaksa L, Pahr D, Kronreif G, Lorenz A. Development of a Multi-Material 3D Printer for Functional Anatomic Models. Int J Bioprint 2021; 7:420. [PMID: 34805598 PMCID: PMC8600298 DOI: 10.18063/ijb.v7i4.420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/19/2023] Open
Abstract
Anatomic models are important in medical education and pre-operative planning as they help students or doctors prepare for real scenarios in a risk-free way. Several experimental anatomic models were made with additive manufacturing techniques to improve geometric, radiological, or mechanical realism. However, reproducing the mechanical behavior of soft tissues remains a challenge. To solve this problem, multi-material structuring of soft and hard materials was proposed in this study, and a three-dimensional (3D) printer was built to make such structuring possible. The printer relies on extrusion to deposit certain thermoplastic and silicone rubber materials. Various objects were successfully printed for testing the feasibility of geometric features such as thin walls, infill structuring, overhangs, and multi-material interfaces. Finally, a small medical image-based ribcage model was printed as a proof of concept for anatomic model printing. The features enabled by this printer offer a promising outlook on mimicking the mechanical properties of various soft tissues.
Collapse
Affiliation(s)
- Laszlo Jaksa
- Austrian Center for Medical Innovation and Technology (ACMIT Gmbh), Viktor-Kaplan-Strasse 2/A, 2700 Wiener Neustadt, Austria.,Technical University of Vienna, Institute of Lightweight Design and Structural Biomechanics, Object 8, Gumpendorfer Strasse 7, 1060 Vienna, Austria
| | - Dieter Pahr
- Technical University of Vienna, Institute of Lightweight Design and Structural Biomechanics, Object 8, Gumpendorfer Strasse 7, 1060 Vienna, Austria.,Karl Landsteiner University of Health Sciences, Department of Anatomy and Biomechanics, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| | - Gernot Kronreif
- Austrian Center for Medical Innovation and Technology (ACMIT Gmbh), Viktor-Kaplan-Strasse 2/A, 2700 Wiener Neustadt, Austria
| | - Andrea Lorenz
- Austrian Center for Medical Innovation and Technology (ACMIT Gmbh), Viktor-Kaplan-Strasse 2/A, 2700 Wiener Neustadt, Austria
| |
Collapse
|
15
|
Biomaterials and Meniscal Lesions: Current Concepts and Future Perspective. Pharmaceutics 2021; 13:pharmaceutics13111886. [PMID: 34834301 PMCID: PMC8617690 DOI: 10.3390/pharmaceutics13111886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Menisci are crucial structures for knee homeostasis. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible; only the meniscus tissue that is identified as unrepairable should be excised, and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The aim of this literature review is to analyze possible therapeutic and surgical options that go beyond traditional meniscal surgery: from scaffolds, which are made of different kind of polymers, such as natural, synthetic or hydrogel components, to new technologies, such as 3-D printing construct or hybrid biomaterials made of scaffolds and specific cells. These recent advances show that there is great interest in the development of new materials for meniscal reconstruction and that, with the development of new biomaterials, there will be the possibility of better management of meniscal injuries
Collapse
|
16
|
Li W, Yang Y, Ehrhardt CJ, Lewinski N, Gascoyne D, Lucas G, Zhao H, Wang X. 3D Printing of Antibacterial Polymer Devices Based on Nitric Oxide Release from Embedded S-Nitrosothiol Crystals. ACS APPLIED BIO MATERIALS 2021; 4:7653-7662. [PMID: 35006705 DOI: 10.1021/acsabm.1c00887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Controlled release of drugs from medical implants is an effective approach to reducing foreign body reactions and infections. We report here on a one-step 3D printing strategy to create drug-eluting polymer devices with a drug-loaded bulk and a drug-free coating. The spontaneously formed drug-free coating dramatically reduces the surface roughness of the implantable devices and serves as a protective layer to suppress the burst release of drugs. A high viscosity liquid silicone that can be extruded based on its shear-thinning property and quickly vulcanize upon exposure to ambient moisture is used as the ink for 3D printing. S-Nitrosothiol type nitric oxide (NO) donors in their crystalline forms are selected as model drugs because of the potent antimicrobial, antithrombotic, and anti-inflammatory properties of NO. Direct ink writing of the homogenized polymer-drug mixtures generates rough and ill-defined device surfaces because of the exposed S-nitrosothiol microparticles. When a low-viscosity silicone (polydimethylsiloxane) is added into the ink, this silicone diffuses outward upon deposition to form a drug-free outermost layer without compromising the integrity of the printed structures. S-Nitrosoglutathione (GSNO) or S-nitroso-N-acetylpenicillamine (SNAP) embedded in the printed silicone matrix releases NO under physiological conditions from days to about one month. The microsized drug crystals are well-preserved in the ink preparation and printing processes, which is one reason for the sustained NO release. Biofilm and cytotoxicity experiments confirmed the antibacterial property and safety of the printed NO-releasing devices. This additive manufacturing platform does not require dissolution of drugs and involves no thermal or UV processes and, therefore, offers unique opportunities to produce drug-eluting silicone devices in a customized manner.
Collapse
Affiliation(s)
- Wuwei Li
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Yuanhang Yang
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, BioTech One, 800 East Leigh Street, Richmond, Virginia 23219, United States
| | - Christopher J Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, 1015 Floyd Avenue, Richmond, Virginia 23284, United States
| | - Nastassja Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, Virginia 23284, United States
| | - David Gascoyne
- Momentive Performance Materials Inc., 260 Hudson River Road, Waterford, New York 12188, United States
| | - Gary Lucas
- Momentive Performance Materials Inc., 260 Hudson River Road, Waterford, New York 12188, United States
| | - Hong Zhao
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, BioTech One, 800 East Leigh Street, Richmond, Virginia 23219, United States
| | - Xuewei Wang
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
17
|
Wang J, Zhang Y, Aghda NH, Pillai AR, Thakkar R, Nokhodchi A, Maniruzzaman M. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv Drug Deliv Rev 2021; 174:294-316. [PMID: 33895212 DOI: 10.1016/j.addr.2021.04.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
The 'one-size-fits-all' approach followed by conventional drug delivery platforms often restricts its application in pharmaceutical industry, due to the incapability of adapting to individual pharmacokinetic traits. Driven by the development of additive manufacturing (AM) technology, three-dimensional (3D) printed drug delivery medical devices have gained increasing popularity, which offers key advantages over traditional drug delivery systems. The major benefits include the ability to fabricate 3D structures with customizable design and intricate architecture, and most importantly, ease of personalized medication. Furthermore, the emergence of multi-material printing and four-dimensional (4D) printing integrates the benefits of multiple functional materials, and thus provide widespread opportunities for the advancement of personalized drug delivery devices. Despite the remarkable progress made by AM techniques, concerns related to regulatory issues, scalability and cost-effectiveness remain major hurdles. Herein, we provide an overview on the latest accomplishments in 3D printed drug delivery devices as well as major challenges and future perspectives for AM enabled dosage forms and drug delivery systems.
Collapse
Affiliation(s)
- Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Yu Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Niloofar Heshmati Aghda
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Amit Raviraj Pillai
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Rishi Thakkar
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Hsueh MH, Lai CJ, Wang SH, Zeng YS, Hsieh CH, Pan CY, Huang WC. Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling. Polymers (Basel) 2021; 13:1758. [PMID: 34072038 PMCID: PMC8199453 DOI: 10.3390/polym13111758] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Fused Deposition Modeling (FDM) can be used to manufacture any complex geometry and internal structures, and it has been widely applied in many industries, such as the biomedical, manufacturing, aerospace, automobile, industrial, and building industries. The purpose of this research is to characterize the polylactic acid (PLA) and polyethylene terephthalate glycol (PETG) materials of FDM under four loading conditions (tension, compression, bending, and thermal deformation), in order to obtain data regarding different printing temperatures and speeds. The results indicated that PLA and PETG materials exhibit an obvious tensile and compression asymmetry. It was observed that the mechanical properties (tension, compression, and bending) of PLA and PETG are increased at higher printing temperatures, and that the effect of speed on PLA and PETG shows different results. In addition, the mechanical properties of PLA are greater than those of PETG, but the thermal deformation is the opposite. The above results will be a great help for researchers who are working with polymers and FDM technology to achieve sustainability.
Collapse
Affiliation(s)
- Ming-Hsien Hsueh
- Department of Industrial Engineering and Management, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (S.-H.W.); (Y.-S.Z.); (C.-H.H.)
| | - Chao-Jung Lai
- Department of Fashion Design and Management, Tainan University of Technology, Tainan 71002, Taiwan
| | - Shi-Hao Wang
- Department of Industrial Engineering and Management, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (S.-H.W.); (Y.-S.Z.); (C.-H.H.)
| | - Yu-Shan Zeng
- Department of Industrial Engineering and Management, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (S.-H.W.); (Y.-S.Z.); (C.-H.H.)
| | - Chia-Hsin Hsieh
- Department of Industrial Engineering and Management, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (S.-H.W.); (Y.-S.Z.); (C.-H.H.)
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Wen-Chen Huang
- Department of Information Management, National Kaohsiung University of Science and Technology, Kaohsiung 824005, Taiwan
| |
Collapse
|
19
|
Zare M, Ghomi ER, Venkatraman PD, Ramakrishna S. Silicone‐based biomaterials for biomedical applications: Antimicrobial strategies and 3D printing technologies. J Appl Polym Sci 2021. [DOI: 10.1002/app.50969] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| | | | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| |
Collapse
|
20
|
Sing SL, Yeong WY. Process-Structure-Properties in Polymer Additive Manufacturing. Polymers (Basel) 2021; 13:polym13071098. [PMID: 33808258 PMCID: PMC8036763 DOI: 10.3390/polym13071098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 01/05/2023] Open
Abstract
Additive manufacturing (AM) methods have grown and evolved rapidly in recent years [...].
Collapse
|
21
|
Grigore R, Popescu B, Berteşteanu ŞVG, Nichita C, Oașă ID, Munteanu GS, Nicolaescu A, Bejenaru PL, Simion-Antonie CB, Ene D, Ene R. The Role of Biomaterials in Upper Digestive Tract Transoral Reconstruction. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1436. [PMID: 33809490 PMCID: PMC8001622 DOI: 10.3390/ma14061436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/17/2021] [Accepted: 03/12/2021] [Indexed: 11/18/2022]
Abstract
This study aims to establish whether the use of biomaterials, particularly polydimethylsiloxane (PDMS), for surgical reconstruction of the esophagus with templates, Montgomery salivary tube, after radical oncology surgery for malignant neoplasia is an optimal choice for patients' safety and for optimal function preservation and organ rehabilitation. Structural analysis by Raman spectrometry and biomechanical properties with dynamic mechanical analysis are performed for fatigue strength and toughness, essential factors in durability of a prosthesis in the reconstruction practice of the esophagus. Nanocomposites with silicone elastomers and nanoparticles used in implantable devices and in reconstruction surgery present risks of infection and fatigue strength when required to perform a mechanical effort for long periods of time. This report takes into account the effect of silver (Ag) nanoparticles on the fatigue strength using polydimethylsiloxane (PDMS) matrix, representative for silicon elastomers used in implantable devices. PDMS with 5% (wt) Ag nanoparticles of 100-150 nm during mechanical fatigue testing at shear strength loses elasticity properties after 400 loading-unloading cycles and up to 15% shear strain. The fatigue strength, toughness, maximum shear strength, as well as clinical properties are key issues in designing Montgomery salivary tube and derivates with appropriate biomechanical behavior for each patient. Prosthesis design needs to indulge both clinical outcomes as well as design methods and research in the field of biomaterials.
Collapse
Affiliation(s)
- Raluca Grigore
- Otorhynolaryngology Department, Colțea Clinical Hospital, 917151 Bucharest, Romania; (R.G.); (Ş.V.G.B.); (I.D.O.)
- Department 12-Otorhynolaryngology, Ophtalmology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.S.M.); (A.N.); (P.L.B.); (C.B.S.-A.)
| | - Bogdan Popescu
- Otorhynolaryngology Department, Colțea Clinical Hospital, 917151 Bucharest, Romania; (R.G.); (Ş.V.G.B.); (I.D.O.)
- Department 12-Otorhynolaryngology, Ophtalmology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.S.M.); (A.N.); (P.L.B.); (C.B.S.-A.)
| | - Şerban Vifor Gabriel Berteşteanu
- Otorhynolaryngology Department, Colțea Clinical Hospital, 917151 Bucharest, Romania; (R.G.); (Ş.V.G.B.); (I.D.O.)
- Department 12-Otorhynolaryngology, Ophtalmology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.S.M.); (A.N.); (P.L.B.); (C.B.S.-A.)
| | - Cornelia Nichita
- 3Nano-SAE Res Center, Faculty of Physics, University of Bucharest, 077125 Bucharest-Magurele, Romania;
- National Institute for Chemical-Pharmaceutical Research and Development, 031299 Bucharest, Romania
| | - Irina Doinita Oașă
- Otorhynolaryngology Department, Colțea Clinical Hospital, 917151 Bucharest, Romania; (R.G.); (Ş.V.G.B.); (I.D.O.)
| | - Gloria Simona Munteanu
- Department 12-Otorhynolaryngology, Ophtalmology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.S.M.); (A.N.); (P.L.B.); (C.B.S.-A.)
- Otorhynolaryngology Department, “Carol Davila” Emergency University Military Hospital, 010825 Bucharest, Romania
| | - Alexandru Nicolaescu
- Department 12-Otorhynolaryngology, Ophtalmology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.S.M.); (A.N.); (P.L.B.); (C.B.S.-A.)
| | - Paula Luiza Bejenaru
- Department 12-Otorhynolaryngology, Ophtalmology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.S.M.); (A.N.); (P.L.B.); (C.B.S.-A.)
| | - Catrinel Beatrice Simion-Antonie
- Department 12-Otorhynolaryngology, Ophtalmology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.S.M.); (A.N.); (P.L.B.); (C.B.S.-A.)
| | - Dragoș Ene
- General Surgery Department, Emergency Clinical Hospital, 917151 Bucharest, Romania;
- Department 10-General Surgery, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Răzvan Ene
- Orthopedics and Trauma Department, Emergency Clinical Hospital, 917151 Bucharest, Romania;
- Department 14-Orthopedics, Anaesthesia Intensive Care Unit, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
22
|
Sun Y, Zhang Y, Wu Q, Gao F, Wei Y, Ma Y, Jiang W, Dai K. 3D-bioprinting ready-to-implant anisotropic menisci recapitulate healthy meniscus phenotype and prevent secondary joint degeneration. Theranostics 2021; 11:5160-5173. [PMID: 33859740 PMCID: PMC8039947 DOI: 10.7150/thno.54864] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives: Disruption of anisotropic phenotypes of the meniscus would contribute to OA progression. Exploring phenotype changes of the anisotropic meniscus in joint degeneration would help understand the biologic interaction between the meniscus and OA, and further facilitate the therapeutic strategies of meniscus injury-related joint degeneration. Meanwhile, engineering biomimetic meniscal tissue mimicking the anisotropy of the healthy meniscus remains a challenge. Methods & Results: Meniscal disruption of phenotype anisotropy (PBV growth, cellular phenotype and ECM depositions) was confirmed in OA patient samples. To recapitulate healthy meniscus phenotypes, 3D-bioprinted anisotropic TCM meniscus constructs with PBV growth and regional differential cell and ECM depositions were generated. Transplanted 3D-bioprinted meniscus into rabbit knees recapitulated phenotypes of native healthy meniscus and conferred long-term protection against secondary joint degeneration. Conclusion: 3D-bioprinted TCM meniscus not only restored the anisotropy of native healthy meniscus with PBV infiltration and better shape retention, but better maintained joint function and prevented secondary joint degeneration, which provided a new strategy for the clinical treatment of meniscus injury-related joint degenerative diseases.
Collapse
|
23
|
Kim JE, Choi WH, Lee D, Shin Y, Park SH, Roh BD, Kim D. Color and Translucency Stability of Three-Dimensional Printable Dental Materials for Crown and Bridge Restorations. MATERIALS 2021; 14:ma14030650. [PMID: 33572545 PMCID: PMC7866796 DOI: 10.3390/ma14030650] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to examine and compare color and translucency stability of three-dimensional (3D) printable dental materials for crown and bridge restorations. Five different materials were investigated, and twelve disc-shaped specimens of two different thicknesses (1 and 2 mm) were prepared using a digital light processing 3D printer. Color measurements were made according to the CIELAB color scale (L*, a*, and b*) using a spectrophotometer 1 h, 1 day, 1 week, one month, and six months after post-curing of the materials, and the translucency parameter (TP) was calculated. The L*, a*, b*, and TP values were compared among the different materials and storage periods using repeated measures analysis of variance. Color and translucency changes of the specimens after the different storage periods were compared with 1 h measurements to determine whether they exceeded clinically perceivable thresholds. The L*, a*, b*, and TP values showed significant differences according to the storage periods, as well as among the materials. Until one month, some materials demonstrated distinct color differences, while others showed small color differences below a clinically perceivable threshold. The translucency differences were not clinically perceivable for any specimen. After six months, all specimens demonstrated large color changes, whereas the changes in translucency were relatively small. In conclusion, the color of 3D printable dental materials changed with time, and the differences varied with the materials used. On the contrary, the changes in translucency were small. Overall, the materials became darker, more yellowish, and more opaque after six months of water storage.
Collapse
Affiliation(s)
- Jong-Eun Kim
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea;
| | - Won-Huy Choi
- Department of Conservative Dentistry, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea; (W.-H.C.); (D.L.); (Y.S.); (S.-H.P.); (B.-D.R.)
| | - Dasun Lee
- Department of Conservative Dentistry, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea; (W.-H.C.); (D.L.); (Y.S.); (S.-H.P.); (B.-D.R.)
| | - Yooseok Shin
- Department of Conservative Dentistry, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea; (W.-H.C.); (D.L.); (Y.S.); (S.-H.P.); (B.-D.R.)
| | - Sung-Ho Park
- Department of Conservative Dentistry, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea; (W.-H.C.); (D.L.); (Y.S.); (S.-H.P.); (B.-D.R.)
| | - Byoung-Duck Roh
- Department of Conservative Dentistry, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea; (W.-H.C.); (D.L.); (Y.S.); (S.-H.P.); (B.-D.R.)
| | - Dohyun Kim
- Department of Conservative Dentistry, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea; (W.-H.C.); (D.L.); (Y.S.); (S.-H.P.); (B.-D.R.)
- Correspondence: ; Tel.: +82-2-2228-3150
| |
Collapse
|
24
|
Tan WS, Shi Q, Chen S, Bin Juhari MA, Song J. Recyclable and biocompatible microgel-based supporting system for positive 3D freeform printing of silicone rubber. Biomed Eng Lett 2020; 10:517-532. [PMID: 33194245 PMCID: PMC7655895 DOI: 10.1007/s13534-020-00173-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/06/2023] Open
Abstract
Additive manufacturing (AM) of biomaterials has evolved from a rapid prototyping tool into a viable approach for the manufacturing of patient-specific implants over the past decade. It can tailor to the unique physiological and anatomical criteria of the patient's organs or bones through precise controlling of the structure during the 3D printing. Silicone elastomers, which is a major group of materials in many biomedical implants, have low viscosities and can be printed with a special AM platform, known as freeform 3D printing systems. The freeform 3D printing systems are composed of a supporting bath and a printing material. Current supporting matrices that are either commercially purchased or synthesized were usually disposed of after retrieval of the printed part. In this work, we proposed a new and improved supporting matrix comprises of synthesized calcium alginate microgels produced via encapsulation which can be recycled, reused, and recovered for multiple prints, hence minimizing wastage and cost of materials. The dehydration tolerance of the calcium alginate microgels was improved through physical means by the addition of glycerol and chemical means by developing new calcium alginate microgels encapsulated with glycerol. The recyclability of the heated calcium alginate microgels was also enhanced by a rehydration step with sodium chloride solution and a recovery step with calcium chloride solution via the ion exchange process. We envisaged that our reusable and recyclable biocompatible calcium alginate microgels can save material costs, time, and can be applied in various freeform 3D printing systems.
Collapse
Affiliation(s)
- Wen See Tan
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Qian Shi
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Shengyang Chen
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Muhammad Aidil Bin Juhari
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Juha Song
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| |
Collapse
|
25
|
Hart C, Didier CM, Sommerhage F, Rajaraman S. Biocompatibility of Blank, Post-Processed and Coated 3D Printed Resin Structures with Electrogenic Cells. BIOSENSORS 2020; 10:E152. [PMID: 33105886 PMCID: PMC7690614 DOI: 10.3390/bios10110152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
The widespread adaptation of 3D printing in the microfluidic, bioelectronic, and Bio-MEMS communities has been stifled by the lack of investigation into the biocompatibility of commercially available printer resins. By introducing an in-depth post-printing treatment of these resins, their biocompatibility can be dramatically improved up to that of a standard cell culture vessel (99.99%). Additionally, encapsulating resins that are less biocompatible with materials that are common constituents in biosensors further enhances the biocompatibility of the material. This investigation provides a clear pathway toward developing fully functional and biocompatible 3D printed biosensor devices, especially for interfacing with electrogenic cells, utilizing benchtop-based microfabrication, and post-processing techniques.
Collapse
Affiliation(s)
- Cacie Hart
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (C.H.); (C.M.D.); (F.S.)
- Department of Materials Science & Engineering, University of Central Florida, 12760 Pegasus Dr., Orlando, FL 32816, USA
| | - Charles M. Didier
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (C.H.); (C.M.D.); (F.S.)
- Burnett School of Biomedical Science, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, USA
| | - Frank Sommerhage
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (C.H.); (C.M.D.); (F.S.)
| | - Swaminathan Rajaraman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (C.H.); (C.M.D.); (F.S.)
- Department of Materials Science & Engineering, University of Central Florida, 12760 Pegasus Dr., Orlando, FL 32816, USA
- Burnett School of Biomedical Science, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, USA
- Department of Electrical & Computer Engineering, University of Central Florida, 4328 Scorpius St., Orlando, FL 32816, USA
| |
Collapse
|
26
|
3D Printed Silicone Meniscus Implants: Influence of the 3D Printing Process on Properties of Silicone Implants. Polymers (Basel) 2020; 12:polym12092136. [PMID: 32962059 PMCID: PMC7570003 DOI: 10.3390/polym12092136] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
Osteoarthritis of the knee with meniscal pathologies is a severe meniscal pathology suffered by the aging population worldwide. However, conventional meniscal substitutes are not 3D-printable and lack the customizability of 3D printed implants and are not mechanically robust enough for human implantation. Similarly, 3D printed hydrogel scaffolds suffer from drawbacks of being mechanically weak and as a result patients are unable to execute immediate post-surgical weight-bearing ambulation and rehabilitation. To solve this problem, we have developed a 3D silicone meniscus implant which is (1) cytocompatible, (2) resistant to cyclic loading and mechanically similar to native meniscus, and (3) directly 3D printable. The main focus of this study is to determine whether the purity, composition, structure, dimensions and mechanical properties of silicone implants are affected by the use of a custom-made in-house 3D-printer. We have used the phosphate buffer saline (PBS) absorption test, Fourier transform infrared (FTIR) spectroscopy, surface profilometry, thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) to effectively assess and compare material properties between molded and 3D printed silicone samples.
Collapse
|