1
|
Stanley J, Xanthopoulou E, Finšgar M, Zemljič LF, Klonos PA, Kyritsis A, Koltsakidis S, Tzetzis D, Lambropoulou DA, Baciu D, Steriotis TA, Charalambopoulou G, Bikiaris DN. Synthesis of Poly(ethylene furanoate) Based Nanocomposites by In Situ Polymerization with Enhanced Antibacterial Properties for Food Packaging Applications. Polymers (Basel) 2023; 15:4502. [PMID: 38231946 PMCID: PMC10708257 DOI: 10.3390/polym15234502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce-bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements. The nanocomposites' structure was investigated by depth profiling using time-of-flight secondary ion mass spectrometry (ToF-SIMS), while color measurements showed a low-to-moderate increase in the color concentration of all the nanocomposites compared to neat PEF. The thermal properties and crystallinity behavior of the synthesized materials were also examined. The neat PEF and PEF-based nanocomposites show a crystalline fraction of 0-5%, and annealed samples of both PEF and PEF-based nanocomposites exhibit a crystallinity above 20%. Furthermore, scanning electron microscopy (SEM) micrographs revealed that active agent nanoparticles are well dispersed in the PEF matrix. Contact angle measurements showed that incorporating nanoparticles into the PEF matrix significantly reduces the wetting angle due to increased roughness and introduction of the polar -OH groups. Antimicrobial studies indicated a significant increase in inhibition of bacterial strains of about 9-22% for Gram-positive bacterial strains and 5-16% for Gram-negative bacterial strains in PEF nanocomposite films, respectively. Finally, nanoindentation tests showed that the ZnO-based nanocomposite exhibits improved hardness and elastic modulus values compared to neat PEF.
Collapse
Affiliation(s)
- Johan Stanley
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| | - Eleftheria Xanthopoulou
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Savvas Koltsakidis
- Digital Manufacturing and Materials Characterization Laboratory, International Hellenic University, GR-57001 Thessaloniki, Greece; (S.K.); (D.T.)
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, International Hellenic University, GR-57001 Thessaloniki, Greece; (S.K.); (D.T.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-57001 Thessaloniki, Greece
| | - Diana Baciu
- National Center for Scientific Research “Demokritos”, GR-15341 Ag. Paraskevi Attikis, Greece; (D.B.); (T.A.S.); (G.C.)
| | - Theodore A. Steriotis
- National Center for Scientific Research “Demokritos”, GR-15341 Ag. Paraskevi Attikis, Greece; (D.B.); (T.A.S.); (G.C.)
| | - Georgia Charalambopoulou
- National Center for Scientific Research “Demokritos”, GR-15341 Ag. Paraskevi Attikis, Greece; (D.B.); (T.A.S.); (G.C.)
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| |
Collapse
|
2
|
Fredi G, Zonta E, Dussin A, Bikiaris DN, Papageorgiou GZ, Fambri L, Dorigato A. Toughening Effect of 2,5-Furandicaboxylate Polyesters on Polylactide-Based Renewable Fibers. Molecules 2023; 28:4811. [PMID: 37375367 DOI: 10.3390/molecules28124811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
This work presents the successful preparation and characterization of polylactide/poly(propylene 2,5-furandicarboxylate) (PLA/PPF) and polylactide/poly(butylene 2,5-furandicarboxylate) (PLA/PBF) blends in form of bulk and fiber samples and investigates the influence of poly(alkylene furanoate) (PAF) concentration (0 to 20 wt%) and compatibilization on the physical, thermal, and mechanical properties. Both blend types, although immiscible, are successfully compatibilized by Joncryl (J), which improves the interfacial adhesion and reduces the size of PPF and PBF domains. Mechanical tests on bulk samples show that only PBF is able to effectively toughen PLA, as PLA/PBF blends with 5-10 wt% PBF showed a distinct yield point, remarkable necking propagation, and increased strain at break (up to 55%), while PPF did not show significant plasticizing effects. The toughening ability of PBF is attributed to its lower glass transition temperature and greater toughness than PPF. For fiber samples, increasing the PPF and PBF amount improves the elastic modulus and mechanical strength, particularly for PBF-containing fibers collected at higher take-up speeds. Remarkably, in fiber samples, plasticizing effects are observed for both PPF and PBF, with significantly higher strain at break values compared to neat PLA (up to 455%), likely due to a further microstructural homogenization, enhanced compatibility, and load transfer between PLA and PAF phases following the fiber spinning process. SEM analysis confirms the deformation of PPF domains, which is probably due to a "plastic-rubber" transition during tensile testing. The orientation and possible crystallization of PPF and PBF domains contribute to increased tensile strength and elastic modulus. This work showcases the potential of PPF and PBF in tailoring the thermo-mechanical properties of PLA in both bulk and fiber forms, expanding their applications in the packaging and textile industry.
Collapse
Affiliation(s)
- Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Edoardo Zonta
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Alessandro Dussin
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Luca Fambri
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
3
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Incorporating Graphene Nanoplatelets and Carbon Nanotubes in Biobased Poly(ethylene 2,5-furandicarboxylate): Fillers' Effect on the Matrix's Structure and Lifetime. Polymers (Basel) 2023; 15:polym15020401. [PMID: 36679281 PMCID: PMC9863989 DOI: 10.3390/polym15020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with Graphene nanoplatelets (GNPs) and Carbon nanotubes (CNTs) were in situ synthesized in this work. PEF is a biobased polyester with physical properties and is the sustainable counterpart of Polyethylene Terephthalate (PET). Its low crystallizability affects the processing of the material, limiting its use to packaging, films, and textile applications. The crystallization promotion and the reinforcement of PEF can lead to broadening its potential applications. Therefore, PEF nanocomposites reinforced with various loadings of GNPs, CNTs, and hybrids containing both fillers were prepared, and the effect of each filler on their structural characteristics was investigated by X-ray Diffraction (XRD), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and X-Ray Photoelectron Spectroscopy (XPS). The morphology and structural properties of a hybrid PEF nanocomposite were evaluated by Transmission Electron Microscopy (TEM). The thermo-oxidative degradation, as well as lifetime predictions of PEF nanocomposites, in an ambient atmosphere, were studied using Thermogravimetric Analysis (TGA). Results showed that the fillers' incorporation in the PEF matrix induced changes in the lamellar thickness and increased crystallinity up to 27%. TEM analysis indicated the formation of large CNTs aggregates in the case of the hybrid PEF nanocomposite as a result of the ultrasonication process. Finally, the presence of CNTs caused the retardation of PEF's carbonization process. This led to a slightly longer lifetime under isothermal conditions at higher temperatures, while at ambient temperature the PEF nanocomposites' lifetime is shorter, compared to neat PEF.
Collapse
|
5
|
Chen M, Jiang Z, Qiu Z. Synthesis, thermal, and mechanical properties of fully biobased Poly(hexamethylene 2,5-furandicarboxylate-co-diglycolate) copolyesters. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Pan S, Jiang Z, Qiu Z. Crystallization and mechanical property of fully biobased poly(hexamethylene 2,5-furandicarboxylate)/cellulose nanocrystals composites. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Compatibilization of Polylactide/Poly(ethylene 2,5-furanoate) (PLA/PEF) Blends for Sustainable and Bioderived Packaging. Molecules 2022; 27:molecules27196371. [PMID: 36234907 PMCID: PMC9572422 DOI: 10.3390/molecules27196371] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the advantages of polylactide (PLA), its inadequate UV-shielding and gas-barrier properties undermine its wide application as a flexible packaging film for perishable items. These issues are addressed in this work by investigating the properties of melt-mixed, fully bioderived blends of polylactide (PLA) and poly(ethylene furanoate) (PEF), as a function of the PEF weight fraction (1–30 wt %) and the amount of the commercial compatibilizer/chain extender Joncryl ADR 4468 (J, 0.25–1 phr). J mitigates the immiscibility of the two polymer phases by decreasing and homogenizing the PEF domain size; for the blend containing 10 wt % of PEF, the PEF domain size drops from 0.67 ± 0.46 µm of the uncompatibilized blend to 0.26 ± 0.14 with 1 phr of J. Moreover, the increase in the complex viscosity of PLA and PLA/PEF blends with the J content evidences the effectiveness of J as a chain extender. This dual positive contribution of J is reflected in the mechanical properties of PLA/PEF blends. Whereas the uncompatibilized blend with 10 wt % of PEF shows lower mechanical performance than neat PLA, all the compatibilized blends show higher tensile strength and strain at break, while retaining their high elastic moduli. The effects of PEF on the UV- and oxygen-barrier properties of PLA are also remarkable. Adding only 1 wt % of PEF makes the blend an excellent barrier for UV rays, with the transmittance at 320 nm dropping from 52.8% of neat PLA to 0.4% of the sample with 1 wt % PEF, while keeping good transparency in the visible region. PEF is also responsible for a sensible decrease in the oxygen transmission rate, which decreases from 189 cc/m2·day for neat PLA to 144 cc/m2·day with only 1 wt % of PEF. This work emphasizes the synergistic effects of PEF and J in enhancing the thermal, mechanical, UV-shielding, and gas-barrier properties of PLA, which results in bioderived blends that are very promising for packaging applications.
Collapse
|
8
|
Chen M, Jiang Z, Qiu Z. In Situ Synthesis, Crystallization Behavior, and Mechanical Property of Biobased Poly(hexamethylene 2,5-furandicarboxylate)/Multiwalled Carbon Nanotube Nanocomposites. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingkun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiguo Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhaobin Qiu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Fredi G, Karimi Jafari M, Dorigato A, Bikiaris DN, Pegoretti A. Improving the Thermomechanical Properties of Poly(lactic acid) via Reduced Graphene Oxide and Bioderived Poly(decamethylene 2,5-furandicarboxylate). MATERIALS (BASEL, SWITZERLAND) 2022; 15:1316. [PMID: 35207860 PMCID: PMC8877404 DOI: 10.3390/ma15041316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022]
Abstract
Polylactide (PLA) is the most widely used biopolymer, but its poor ductility and scarce gas barrier properties limit its applications in the packaging field. In this work, for the first time, the properties of PLA solvent-cast films are improved by the addition of a second biopolymer, i.e., poly(decamethylene 2,5-furandicarboxylate) (PDeF), added in a weight fraction of 10 wt%, and a carbon-based nanofiller, i.e., reduced graphene oxide (rGO), added in concentrations of 0.25-2 phr. PLA and PDeF are immiscible, as evidenced by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, with PDeF spheroidal domains showing poor adhesion to PLA. The addition of 0.25 phr of rGO, which preferentially segregates in the PDeF domains, makes them smaller and considerably rougher and improves the interfacial interaction. Differential scanning calorimetry (DSC) confirms the immiscibility of the two polymer phases and highlights that rGO enhances the crystallinity of both polymer phases (especially of PDeF). Thermogravimetric analysis (TGA) highlights the positive impact of rGO and PDeF on the thermal degradation resistance of PLA. Quasi-static tensile tests evidence that adding 10 wt% of PDeF and a small fraction of rGO (0.25 phr) to PLA considerably enhances the strain at break, which raises from 5.3% of neat PLA to 10.0% by adding 10 wt% of PDeF, up to 75.8% by adding also 0.25 phr of rGO, thereby highlighting the compatibilizing role of rGO on this blend. On the other hand, a further increase in rGO concentration decreases the strain at break due to agglomeration but enhances the mechanical stiffness and strength up to an rGO concentration of 1 phr. Overall, these results highlight the positive and synergistic contribution of PDeF and rGO in enhancing the thermomechanical properties of PLA, and the resulting nanocomposites are promising for packaging applications.
Collapse
Affiliation(s)
- Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (A.P.)
| | - Mahdi Karimi Jafari
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (A.P.)
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (A.P.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Alessandro Pegoretti
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (A.P.)
| |
Collapse
|
10
|
Xanthopoulou E, Klonos PA, Zamboulis A, Terzopoulou Z, Kyritsis A, Pissis P, Bikiaris DN, Papageorgiou GZ. Molecular mobility investigation of the biobased Poly(ethylene vanillate) and Poly(propylene vanillate). POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Kourtidou D, Klonos PA, Papadopoulos L, Kyritsis A, Bikiaris DN, Chrissafis K. Molecular mobility and crystallization of renewable poly(ethylene furanoate) in situ filled with carbon nanotubes and graphene nanoparticles. SOFT MATTER 2021; 17:5815-5828. [PMID: 34037062 DOI: 10.1039/d1sm00592h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigate the thermal transitions and molecular mobility in new nanocomposites of biobased poly(ethylene furanoate) (PEF), by calorimetry and dielectric spectroscopy, supplemented by X-ray diffraction, Fourier transform infra-red spectroscopy and polarized light microscopy. The emphasis is placed on the facilitation of the crystallization of PEF, which is in general low and slow due to structural limitations that result in poor nucleation. Tuning of the crystalline fraction (CF) and semicrystalline morphology are important for optimization of the mechanical performance and manipulation of the permeation of small molecules (e.g., in packaging applications). The nucleation and CF are successfully improved here by the in situ filling of PEF with 0.5-2.5 wt% of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). The improvements are discussed in connection with weak or absent interfacial polymer-filler interactions. CNTs were found to be more effective in facilitating crystallization, as compared with GNPs, possibly due to their larger aspect ratio. The segmental dynamics of PEF are both accelerated and decelerated by the addition of GNP and CNT, respectively, with complex phenomena contributing to the effects, namely, nucleation, changes in molar mass and changes in the free volume. The molecular mobility of PEF is moderately affected 'directly' by the particles, whereas stronger effects are induced by crystallization (an indirect effect) and, furthermore, by the increase in the length of alkylene sequences on the chain. Local dynamics exhibit time scale disturbances when the temperature approaches that of the glass transition, which is proposed here to be a common characteristic in the case of mobilities originating from the polymer backbone for these as well as different polyesters. Despite the weak effects on molecular mobility, the role of the fillers as nucleating agents seems to be further exploitable in the frame of envisaged applications, as the use of such fillers in combination with thermal treatment offer possibilities for manipulating the semicrystalline morphology, ion transport and, subsequently, permeation of small molecules.
Collapse
Affiliation(s)
- Dimitra Kourtidou
- School of Physics, Advanced Material and Devices Laboratory, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece. and Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece
| | - Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Konstantinos Chrissafis
- School of Physics, Advanced Material and Devices Laboratory, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
12
|
Fredi G, Karimi Jafari M, Dorigato A, Bikiaris DN, Checchetto R, Favaro M, Brusa RS, Pegoretti A. Multifunctionality of Reduced Graphene Oxide in Bioderived Polylactide/Poly(Dodecylene Furanoate) Nanocomposite Films. Molecules 2021; 26:2938. [PMID: 34063331 PMCID: PMC8155896 DOI: 10.3390/molecules26102938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
This work reports on the first attempt to prepare bioderived polymer films by blending polylactic acid (PLA) and poly(dodecylene furanoate) (PDoF). This blend, containing 10 wt% PDoF, was filled with reduced graphene oxide (rGO) in variable weight fractions (from 0.25 to 2 phr), and the resulting nanocomposites were characterized to assess their microstructural, thermal, mechanical, optical, electrical, and gas barrier properties. The PLA/PDoF blend resulted as immiscible, and the addition of rGO, which preferentially segregated in the PDoF phase, resulted in smaller (from 2.6 to 1.6 µm) and more irregularly shaped PDoF domains and in a higher PLA/PDoF interfacial interaction, which suggests the role of rGO as a blend compatibilizer. rGO also increased PLA crystallinity, and this phenomenon was more pronounced when PDoF was also present, thus evidencing a synergism between PDoF and rGO in accelerating the crystallization kinetics of PLA. Dynamic mechanical thermal analysis (DMTA) showed that the glass transition of PDoF, observed at approx. 5 °C, shifted to a higher temperature upon rGO addition. The addition of 10 wt% PDoF in PLA increased the strain at break from 5.3% to 13.0% (+145%), and the addition of 0.25 phr of rGO increased the tensile strength from 35.6 MPa to 40.2 MPa (+13%), without significantly modifying the strain at break. Moreover, rGO decreased the electrical resistivity of the films, and the relatively high percolation threshold (between 1 and 2 phr) was probably linked to the low aspect ratio of rGO nanosheets and their preferential distribution inside PDoF domains. PDoF and rGO also modified the optical transparency of PLA, resulting in a continuous decrease in transmittance in the visible/NIR range. Finally, rGO strongly modified the gas barrier properties, with a remarkable decrease in diffusivity and permeability to gases such as O2, N2, and CO2. Overall, the presented results highlighted the positive and sometimes synergistic role of PDoF and rGO in tuning the thermomechanical and functional properties of PLA, with simultaneous enhancement of ductility, crystallization kinetics, and gas barrier performance, and these novel polymer nanocomposites could thus be promising for packaging applications.
Collapse
Affiliation(s)
- Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (M.F.); (A.P.)
| | - Mahdi Karimi Jafari
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (M.F.); (A.P.)
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (M.F.); (A.P.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Riccardo Checchetto
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (R.C.); (R.S.B.)
| | - Matteo Favaro
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (M.F.); (A.P.)
- Trento Institute of Fundamental Physics and Applications, Via Sommarive 14, 38123 Trento, Italy
| | - Roberto Sennen Brusa
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (R.C.); (R.S.B.)
| | - Alessandro Pegoretti
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (M.F.); (A.P.)
| |
Collapse
|
13
|
Sisti L, Totaro G, Celli A, Giorgini L, Ligi S, Vannini M. Bio-Based Furan-Polyesters/Graphene Nanocomposites Prepared by In Situ Polymerization. Polymers (Basel) 2021; 13:polym13091377. [PMID: 33922501 PMCID: PMC8122970 DOI: 10.3390/polym13091377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022] Open
Abstract
In situ intercalative polymerization has been investigated as a strategic way to obtain poly(propylene 2,5-furandicarboxylate) (PPF) and poly(hexamethylene 2,5-furandicarboxylate) (PHF) nanocomposites with different graphene types and amounts. Graphene (G) has been dispersed in surfactant stabilized water suspensions. The loading range in composites was 0.25–0.75 wt %. For the highest composition, a different type of graphene (XT500) dispersed in 1,3 propanediol, containing a 6% of oxidized graphene and without surfactant has been also tested. The results showed that the amorphous PPF is able to crystallize during heating scan in DSC and graphene seems to affect such capability: G hinders the polymer chains in reaching an ordered state, showing even more depressed cold crystallization and melting. On the contrary, such hindering effect is absent with XT500, which rather induces the opposite. Concerning the thermal stability, no improvement has been induced by graphene, even if the onset degradation temperatures remain high for all the materials. A moderate enhancement in mechanical properties is observed in PPF composite with XT500, and especially in PHF composite, where a significative increase of 10–20% in storage modulus E’ is maintained in almost all the temperature range. Such an increase is also reflected in a slightly higher heat distortion temperature. These preliminary results can be useful in order to further address the field of application of furan-based polyesters; in particular, they could be promising as packaging materials.
Collapse
Affiliation(s)
- Laura Sisti
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, DICAM, Università di Bologna, via Terracini 28, 40131 Bologna, Italy; (L.S.); (A.C.); (M.V.)
| | - Grazia Totaro
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, DICAM, Università di Bologna, via Terracini 28, 40131 Bologna, Italy; (L.S.); (A.C.); (M.V.)
- Correspondence: ; Tel.: +39-051-209-0425
| | - Annamaria Celli
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, DICAM, Università di Bologna, via Terracini 28, 40131 Bologna, Italy; (L.S.); (A.C.); (M.V.)
| | - Loris Giorgini
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Simone Ligi
- Graphene-XT srl Via d’Azeglio, 40123 Bologna, Italy;
| | - Micaela Vannini
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, DICAM, Università di Bologna, via Terracini 28, 40131 Bologna, Italy; (L.S.); (A.C.); (M.V.)
| |
Collapse
|
14
|
Fredi G, Rigotti D, Bikiaris DN, Dorigato A. Tuning thermo-mechanical properties of poly(lactic acid) films through blending with bioderived poly(alkylene furanoate)s with different alkyl chain length for sustainable packaging. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123527] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Promoting Interfacial Interactions with the Addition of Lignin in Poly(Lactic Acid) Hybrid Nanocomposites. Polymers (Basel) 2021; 13:polym13020272. [PMID: 33467623 PMCID: PMC7830551 DOI: 10.3390/polym13020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/06/2023] Open
Abstract
In this paper, the calorimetric response of the amorphous phase was examined in hybrid nanocomposites which were prepared thanks to a facile synthetic route, by adding reduced graphene oxide (rGO), Cloisite 30B (C30B), or multiwalled carbon nanotubes (MWCNT) to lignin-filled poly(lactic acid) (PLA). The dispersion of both lignin and nanofillers was successful, according to a field-emission scanning-electron microscopy (FESEM) analysis. Lignin alone essentially acted as a crystallization retardant for PLA, and the nanocomposites shared this feature, except when MWCNT was used as nanofiller. All systems exhibiting a curtailed crystallization also showed better thermal stability than neat PLA, as assessed from thermogravimetric measurements. As a consequence of favorable interactions between the PLA matrix, lignin, and the nanofillers, homogeneous dispersion or exfoliation was assumed in amorphous samples from the increase of the cooperative rearranging region (CRR) size, being even more remarkable when increasing the lignin content. The amorphous nanocomposites showed a signature of successful filler inclusion, since no rigid amorphous fraction (RAF) was reported at the filler/matrix interface. Finally, the nanocomposites were crystallized up to their maximum extent from the glassy state in nonisothermal conditions. Despite similar degrees of crystallinity and RAF, significant variations in the CRR size were observed among samples, revealing different levels of mobility constraining in the amorphous phase, probably linked to a filler-dimension dependence of space filling.
Collapse
|
16
|
Fredi G, Dorigato A, Bortolotti M, Pegoretti A, Bikiaris DN. Mechanical and Functional Properties of Novel Biobased Poly(decylene-2,5-furanoate)/Carbon Nanotubes Nanocomposite Films. Polymers (Basel) 2020; 12:polym12112459. [PMID: 33114218 PMCID: PMC7690911 DOI: 10.3390/polym12112459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
The present work investigates the microstructural, thermo-mechanical, and electrical properties of a promising, but still not thoroughly studied, biobased polymer, i.e., poly(decylene furanoate) (PDeF), and its performance when multi-walled carbon nanotubes (CNTs) are added. After sample preparation by solution mixing and film casting, the microstructural investigation evidences that the fracture surface becomes smoother and more homogeneous with a small fraction of CNTs, and that the production process is suitable to achieve good disentanglement and dispersion of CNTs within the matrix, although some aggregates are still observable. CNTs act as nucleating agents for PDeF crystals, as evidenced by differential scanning calorimetry, as the crystallinity degree increases from 43.2% of neat PDeF to 55.0% with a CNT content of 2 phr, while the crystallization temperature increases from 68.4 °C of PDeF to 91.7 °C of PDeF-CNT-2. A similar trend in crystallinity is confirmed by X-ray diffraction, after detailed Rietveld analysis with a three-phase model. CNTs also remarkably improve the mechanical performance of the bioderived polymer, as the elastic modulus increases up to 123% and the stress at break up to 131%. The strain at break also increases by +71% when a small amount of 0.25 phr of CNTs are added, which is probably the consequence of a more homogeneous microstructure. The long-term mechanical performance is also improved upon CNT addition, as the creep compliance decreases considerably, which was observed for both the elastic and the viscoelastic component. Finally, the films become electrically dissipative for a CNT content of 1 phr and conductive for a CNT amount of 2 phr. This study contributes to highlight the properties of bioderived furan-based polymer PDeF and evidences the potential of CNTs as a promising nanofiller for this matrix.
Collapse
Affiliation(s)
- Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (A.D.); (M.B.); (A.P.)
- Correspondence: ; Tel.: +39-0461-283-944
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (A.D.); (M.B.); (A.P.)
| | - Mauro Bortolotti
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (A.D.); (M.B.); (A.P.)
| | - Alessandro Pegoretti
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (A.D.); (M.B.); (A.P.)
| | - Dimitrios N. Bikiaris
- Chemistry Department, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|