1
|
Gerardos AM, Foryś A, Trzebicka B, Pispas S. Self-Assembly of Hydrophobic Hyperbranched PLMA Homopolymer with -COOH End Groups as Effective Nanocarriers for Bioimaging Applications. Polymers (Basel) 2024; 16:2166. [PMID: 39125191 PMCID: PMC11314538 DOI: 10.3390/polym16152166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Nanomedicine is a discipline of medicine that applies all aspects of nanotechnology strategies and concepts for treatment and screening possibilities. Synthetic polymer nanostructures are among the many nanomedicine formulations frequently studied for their potential as vectors. Bioimaging is a valuable diagnostic tool, thus, there is always a demand for new excipients/nanocarriers. In this study, hydrophobic hyperbranched poly(lauryl methacrylate) (PLMA) homopolymers comprised of highly hydrophobic LMA moieties with -COOH polar end groups were synthesized by employing reversible addition-fragmentation chain transfer (RAFT) polymerization. Ethylene glycol dimethacrylate (EGDMA) was utilized as the branching agent. End groups are incorporated through the RAFT agent utilized. The resulting amphiphilic hyperbranched polymer was molecularly characterized by size exclusion chromatography (SEC), Fourier transformation infrared spectroscopy (FT-IR), and 1H-NMR spectroscopy. Pyrene, curcumin, and IR-1048 dye were hydrophobic payload molecules successfully encapsulated to show how adaptable these homopolymer nanoparticles (prepared by nanoprecipitation in water) are as dye nanocarriers. This study demonstrates a simple way of producing excipients by generating polymeric nanoparticles from an amphiphilic, hyperbranched, hydrophobic homopolymer, with a low fraction of polar end groups, for bioimaging purposes.
Collapse
Affiliation(s)
- Angelica Maria Gerardos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
2
|
Daniello V, De Leo V, Lasalvia M, Hossain MN, Carbone A, Catucci L, Zefferino R, Ingrosso C, Conese M, Di Gioia S. Solanum lycopersicum (Tomato)-Derived Nanovesicles Accelerate Wound Healing by Eliciting the Migration of Keratinocytes and Fibroblasts. Int J Mol Sci 2024; 25:2452. [PMID: 38473700 DOI: 10.3390/ijms25052452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Plant-derived nanovesicles have been considered interesting in medicine for their breakthrough biological effects, including those relevant to wound healing. However, tomato-derived nanovesicles (TDNVs) have not been studied for their effects on wound closure yet. TDNVs were isolated from Solanum lycopersicum (var. Piccadilly) ripe tomatoes by ultracentrifugation. Extract (collected during the isolation procedure) and NVs (pellet) were characterized by transmission electron microscopy and laser Doppler electrophoresis. Wound healing in the presence of Extract or NVs was analyzed by a scratch assay with monocultures of human keratinocytes (HUKE) or NIH-3T3 mouse fibroblasts. Cell proliferation and migration were studied by MTT and agarose spot assay, respectively. The vesicles in the Extract and NV samples were nanosized with a similar mean diameter of 115 nm and 130 nm, respectively. Both Extract and NVs had already accelerated wound closure of injured HUKE and NIH-3T3 monocultures by 6 h post-injury. Although neither sample exerted a cytotoxic effect on HUKE and NIH-3T3 fibroblasts, they did not augment cell proliferation. NVs and the Extract increased cell migration of both cell types. NVs from tomatoes may accelerate wound healing by increasing keratinocyte and fibroblast migration. These results indicate the potential therapeutic usefulness of TDNVs in the treatment of chronic or hard-to-heal ulcers.
Collapse
Affiliation(s)
- Valeria Daniello
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Vincenzo De Leo
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Maria Lasalvia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Md Niamat Hossain
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Lucia Catucci
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Chiara Ingrosso
- Institute for Chemical and Physical Processes of National Research Council (CNR-IPCF), S.S. Bari, c/o Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| |
Collapse
|
3
|
Valle H, Palao-Suay R, Aguilar MR, Lerma TA, Palencia M, Mangalaraja RV, Guzmán L, Pérez Sotelo D, Becerra J. Nanocarrier of α-Tocopheryl Succinate Based on a Copolymer Derivative of (4,7-dichloroquinolin-2-yl)methanol and Its Cytotoxicity against a Breast Cancer Cell Line. Polymers (Basel) 2023; 15:4342. [PMID: 38006067 PMCID: PMC10674486 DOI: 10.3390/polym15224342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In order to improve the water solubility and, therefore, bioavailability and therapeutic activity of anticancer hydrophobic drug α-tocopherol succinate (α-TOS), in this work, copolymers were synthesized via free radicals from QMES (1-[4,7-dichloroquinolin-2-ylmethyl]-4-methacryloyloxyethyl succinate) and VP (N-vinyl-2-pirrolidone) using different molar ratios, and were used to nanoencapsulate and deliver α-TOS into cancer cells MCF-7. QMES monomer was chosen because the QMES pendant group in the polymer tends to hydrolyze to form free 4,7-dichloro-2-quinolinemethanol (QOH), which also, like α-TOS, exhibit anti-proliferative effects on cancerous cells. From the QMES-VP 30:70 (QMES-30) and 40:60 (QMES-40) copolymers obtained, it was possible to prepare aqueous suspensions of empty nanoparticles (NPs) loaded with α-TOS by nanoprecipitation. The diameter and encapsulation efficiency (%EE) of the QMES-30 NPs loaded with α-TOS were 128.6 nm and 52%; while for the QMES-40 NPs loaded with α-TOS, they were 148.8 nm and 65%. The results of the AlamarBlue assay at 72 h of treatment show that empty QMES-30 NPs (without α-TOS) produced a marked cytotoxic effect on MCF-7 breast cancer cells, corresponding to an IC50 value of 0.043 mg mL-1, and importantly, they did not exhibit cytotoxicity against healthy HUVEC cells. Furthermore, NP-QMES-40 loaded with α-TOS were cytotoxic with an IC50 value of 0.076 mg mL-1, demonstrating a progressive release of α-TOS; however, the latter nanoparticles were also cytotoxic to healthy cells in the range of the assayed concentrations. These results contribute to the search for a new polymeric nanocarrier of QOH, α-TOS or other hydrophobic drugs for the treatment of cancer or others diseases treatable with these drugs.
Collapse
Affiliation(s)
- Hernán Valle
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
- Laboratory of Chemistry of Natural Products, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Casilla 160-C, Concepción 4070386, Chile;
| | - Raquel Palao-Suay
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), 28006 Madrid, Spain; (R.P.-S.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), 28006 Madrid, Spain; (R.P.-S.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Tulio A. Lerma
- Research Group in Science with Technological Applications (GI-CAT), Department of Chemistry, Faculty of Natural and Exact Science, University of Valle, Cali 760042, Colombia
- Mindtech Research Group (Mindtech-RG), Mindtech s.a.s., Barranquilla 080006, Colombia
| | - Manuel Palencia
- Research Group in Science with Technological Applications (GI-CAT), Department of Chemistry, Faculty of Natural and Exact Science, University of Valle, Cali 760042, Colombia
| | | | - Leonardo Guzmán
- Laboratory of Molecular Neurobiology, Department of Physiology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción 4070386, Chile;
| | - Dairo Pérez Sotelo
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - José Becerra
- Laboratory of Chemistry of Natural Products, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Casilla 160-C, Concepción 4070386, Chile;
| |
Collapse
|
4
|
Church DC, Davis E, Caparco AA, Takiguchi L, Chung YH, Steinmetz NF, Pokorski JK. Polynorbornene-based bioconjugates by aqueous grafting-from ring-opening metathesis polymerization reduce protein immunogenicity. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101067. [PMID: 36816463 PMCID: PMC9933924 DOI: 10.1016/j.xcrp.2022.101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein-polymer conjugates (PPCs) improve therapeutic efficacy of proteins and have been widely used for the treatment of various diseases such as cancer, diabetes, and hepatitis. PEGylation is considered as the "gold standard" in bioconjugation, although in practice its clinical applications are becoming limited because of extensive evidence of immunogenicity induced by pre-existing anti-PEG antibodies in patients. Here, optimized reaction conditions for living aqueous grafting-from ring-opening metathesis polymerization (ROMP) are utilized to synthesize water-soluble polynorbornene (PNB)-based PPCs of lysozyme (Lyz-PPCs) and bacteriophage Qβ (Qβ-PPCs) as PEG alternatives. Lyz-PPCs retain nearly 100% bioactivity and Qβ-PPCs exhibit up to 35% decrease in protein immunogenicity. Qβ-PPCs derived from NB-PEG show no reduction in recognition by anti-PEG antibodies while Qβ-PPCs derived from NB-Zwit show >95% reduction as compared with Qβ-PEG. This work demonstrates a new method for PPC synthesis and the utility of grafting from PPCs to evade immune recognition.
Collapse
Affiliation(s)
- Derek C. Church
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Elizabathe Davis
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Adam A. Caparco
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lauren Takiguchi
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
- Lead contact
| |
Collapse
|
5
|
Tkachenko V, Kunemann P, Malval JP, Petithory T, Pieuchot L, Vidal L, Chemtob A. Kinetically stable sub-50 nm fluorescent block copolymer nanoparticles via photomediated RAFT dispersion polymerization for cellular imaging. NANOSCALE 2022; 14:534-545. [PMID: 34935832 DOI: 10.1039/d1nr04934h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembled block copolymer nanoparticles (NPs) have emerged as major potential nanoscale vehicles for fluorescence bioimaging. The preparation of NPs with high yields possessing high kinetic stability to prevent the leakage of fluorophore molecules is crucial to their practical implementation. Here, we report a photomediated RAFT polymerization-induced self-assembly (PISA) yielding uniform and nanosized poly((oligo(ethylene glycol) acrylate)-block-poly(benzyl acrylate) particles (POEGA-b-PBzA) with a concentration of 22 wt%, over 20 times more than with micellization and nanoprecipitation. The spherical diblock copolymer nanoparticles have an average size of 10-50 nm controllable through the degree of polymerization of the stabilizing POEGA block. Subsequent dialysis against water and swelling with Nile red solution led to highly stable fluorescent NPs able to withstand the changes in concentration, ionic strength, pH or temperature. A PBzA/water interfacial tension of 48.6 mN m-1 hinders the exchange between copolymer chains, resulting in the trapping of NPs in a "kinetically frozen" state responsible for high stability. A spectroscopic study combining fluorescence and UV-vis absorption agrees with a preferential distribution of fluorophores in the outer POEGEA shell despite its hydrophobic nature. Nile red-doped POEGA-b-PBzA micelles without initiator residues and unimers but with high structural stability turn out to be noncytotoxic, and can be used for the optical imaging of cells. Real-time confocal fluorescence microscopy shows a fast cellular uptake using C2C12 cell lines in minutes, and a preferential localization in the perinuclear region, in particular in the vesicles.
Collapse
Affiliation(s)
- Vitalii Tkachenko
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Philippe Kunemann
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Jean Pierre Malval
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Tatiana Petithory
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Laurent Pieuchot
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Loïc Vidal
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Abraham Chemtob
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| |
Collapse
|