1
|
Synthesis and property comparison of mono-, di-, and trisulfonated poly(arylene ether phosphine oxide)s with fluorenyl moieties as proton exchange membranes. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
2
|
Thangarasu S, Oh TH. Recent Developments on Bioinspired Cellulose Containing Polymer Nanocomposite Cation and Anion Exchange Membranes for Fuel Cells (PEMFC and AFC). Polymers (Basel) 2022; 14:polym14235248. [PMID: 36501640 PMCID: PMC9738973 DOI: 10.3390/polym14235248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Hydrogen fuel cell (FC) technologies are being worked on as a possible replacement for fossil fuels because they produce a lot of energy and do not pollute the air. In FC, ion-exchange membranes (IEMs) are the vital components for ion transport between two porous electrodes. However, the high production cost of commercialized membranes limits their benefits. Various research has focused on cellulose-based membranes such as IEM with high proton conductivity, and mechanical, chemical, and thermal stabilities to replace the high cost of synthetic polymer materials. In this review, we focus on and explain the recent progress (from 2018 to 2022) of cellulose-containing hybrid membranes as cation exchange membranes (CEM) and anion exchange membranes (AEM) for proton exchange membrane fuel cells (PEMFC) and alkaline fuel cells (AFC). In this account, we focused primarily on the effect of cellulose materials in various membranes on the functional properties of various polymer membranes. The development of hybrid membranes with cellulose for PEMFC and AFC has been classified based on the combination of other polymers and materials. For PEMFC, the sections are associated with cellulose with Nafion, polyaryletherketone, various polymeric materials, ionic liquid, inorganic fillers, and natural materials. Moreover, the cellulose-containing AEM for AFC has been summarized in detail. Furthermore, this review explains the significance of cellulose and cellulose derivative-modified membranes during fuel cell performance. Notably, this review shows the vital information needed to improve the ion exchange membrane in PEMFC and AFC technologies.
Collapse
|
3
|
Analysis of Ionic Domain Evolution on a Nafion-Sulfonated Silica Composite Membrane Using a Numerical Approximation Model Based on Electrostatic Force Microscopy. Polymers (Basel) 2022; 14:polym14183718. [PMID: 36145859 PMCID: PMC9505098 DOI: 10.3390/polym14183718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
It is important to characterize the proton transport mechanisms of proton exchange membranes (PEMs). Electrostatic force microscopy (EFM) is used to characterize the ionic structures of membranes. In this study, we attempted to quantitatively analyze the proton conductivity enhancement of Nafion-sulfonated silica (SSA) composite membranes with variations in the ionic channel distribution. This study involved several steps. The morphology and surface charge distribution of both membranes were measured using EFM. The measured data were analyzed using a numerical approximation model (NAM) that was capable of providing the magnitude and classification of the surface charges. There were several findings of ionic channel distribution variations in Nafion-SSA. First, the mean local ionic channel density of Nafion-SSA was twice as large as that of the pristine Nafion. The local ionic channel density was non-uniform and the distribution of the ionic channel density of Nafion-SSA was 23.5 times larger than that of pristine Nafion. Second, local agglomerations due to SSA were presumed by using the NAM, appearing in approximately 10% of the scanned area. These findings are meaningful in characterizing the proton conductivity of PEMs and imply that the NAM is a suitable tool for the quantitative assessment of PEMs.
Collapse
|
4
|
Awasthi S, Gaur B. Performance assessment of hybrid multiblock copolymers included with ionic liquid for fuel cell applications. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Wu K, Zhang S, Liu Q, Xu P, Zhang J, Wang D, Zhuo L, Jian X. Poly(arylene ether sulfone) containing diphenyl-biphthalazin-dione moieties with excellent thermal resistance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Liu R, Wang J, Che X, Wang T, Aili D, Li Q, Yang J. Facile synthesis and properties of poly(ether ketone cardo)s bearing heterocycle groups for high temperature polymer electrolyte membrane fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Barrios‐Tarazona K, Suleiman D. Sulfonated poly(styrene‐isobutylene‐styrene) grafted with hexyl‐ and butyl‐imidazolium chloride ionic liquids. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - David Suleiman
- Chemical Engineering Department University of Puerto Rico Mayaguez Puerto Rico
| |
Collapse
|
8
|
Huang TS, Hsieh TL, Lai CC, Wen HY, Huang WY, Chang MY. Highly Proton-Conducting Membranes Based on Poly(arylene ether)s with Densely Sulfonated and Partially Fluorinated Multiphenyl for Fuel Cell Applications. MEMBRANES 2021; 11:626. [PMID: 34436389 PMCID: PMC8398039 DOI: 10.3390/membranes11080626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Series of partially fluorinated sulfonated poly(arylene ether)s were synthesized through nucleophilic substitution polycondensation from three types of diols and superhydrophobic tetra-trifluoromethyl-substituted difluoro monomers with postsulfonation to obtain densely sulfonated ionomers. The membranes had similar ion exchange capacities of 2.92 ± 0.20 mmol g-1 and favorable mechanical properties (Young's moduli of 1.60-1.83 GPa). The membranes exhibited considerable dimensional stability (43.1-122.3% change in area and 42.1-61.5% change in thickness at 80 °C) and oxidative stability (~55.5%). The proton conductivity of the membranes, higher (174.3-301.8 mS cm-1) than that of Nafion 211 (123.8 mS cm-1), was the percent conducting volume corresponding to the water uptake. The membranes were observed to comprise isolated to tailed ionic clusters of size 15-45 nm and 3-8 nm, respectively, in transmission electron microscopy images. A fuel cell containing one such material exhibited high single-cell performance-a maximum power density of 1.32 W cm2 and current density of >1600 mA cm-2 at 0.6 V. The results indicate that the material is a candidate for proton exchange membranes in fuel cell applications.
Collapse
Affiliation(s)
- Tzu-Sheng Huang
- Department of Photonics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (C.-C.L.)
| | - Tung-Li Hsieh
- General Education Center, Wenzao Ursuline University of Languages, Kaohsiung 80793, Taiwan;
| | - Chih-Ching Lai
- Department of Photonics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (C.-C.L.)
| | - Hsin-Yi Wen
- Department of Green Energy and Environmental Resources, Chang Jung Christian University, Tainan City 71101, Taiwan;
| | - Wen-Yao Huang
- Department of Photonics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (C.-C.L.)
| | - Mei-Ying Chang
- Department of Photonics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (T.-S.H.); (C.-C.L.)
| |
Collapse
|
9
|
Dhiman R, Kiran V, Gaur B, Singha AS. Biphenol based membranes with ionic channels for fuel cell application. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00942-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Zheng P, Wang R, Li Z, Li Y, Wang D, Li Z, Peng X, Liu C, Jiang L, Liu Q. Enhanced proton transport properties of sulfonated polyarylene ether nitrile (SPEN) with moniliform nanostructure UiO-66-NH2/CNT. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211011636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metal-organic frameworks (MOFs) have been widely investigated for their porosity and functional diversity. Inspired by the flexible designability of MOFs, UiO-66-NH2/CNT with moniliform nanostructure was designed and synthesized successfully. SPEN@UiO-66-NH2/CNT composite proton exchange membranes were prepared by loaded UiO-66-NH2/CNT into sulfonated polyarylene ether nitrile (SPEN). Due to the addition of UiO-66-NH2/CNT, all the properties of composite proton exchange membranes were improved. The composite membranes exhibit excellent thermal stability and dimensional stability. The tensile strength of the composite membranes was improved about twofold compared to that of recast SPEN membrane, which was contributed by the interlaced property and rigid structure of UiO-66-NH2/CNT. Especially, the proton conductivity of the composite membranes was greatly facilitated by the additional proton acceptors and donors provided by the abundant amino groups and carboxyl groups in UiO-66-NH2/CNT. Furthermore, the methanol permeability of SPEN@UiO-66-NH2/CNT reduced consistently (from 6.13 to 0.96 × 10−7 cm2 s−1), which was much lower than that of Nafion membrane (21.36 × 10−7 cm2 s−1). All the results suggest that the design of multifunctional nanofillers based on the skeleton structure of MOFs could provide a new strategy to enhance the performance of PEMs.
Collapse
Affiliation(s)
- Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Rui Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Zekun Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Youren Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
- Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu, China
| | - Donghui Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Zhifa Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Xiaoliang Peng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Chuanbang Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Lan Jiang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| |
Collapse
|
11
|
Son B, Park J, Kwon O. Analysis of Ionic Domains on a Proton Exchange Membrane Using a Numerical Approximation Model Based on Electrostatic Force Microscopy. Polymers (Basel) 2021; 13:polym13081258. [PMID: 33924505 PMCID: PMC8069030 DOI: 10.3390/polym13081258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding the ionic channel network of proton exchange membranes that dictate fuel cell performance is crucial when developing proton exchange membrane fuel cells. However, it is difficult to characterize this network because of the complicated nanostructure and structure changes that depend on water uptake. Electrostatic force microscopy (EFM) can map surface charge distribution with nano-spatial resolution by measuring the electrostatic force between a vibrating conductive tip and a charged surface under an applied voltage. Herein, the ionic channel network of a proton exchange membrane is analyzed using EFM. A mathematical approximation model of the ionic channel network is derived from the principle of EFM. This model focusses on free charge movement on the membrane based on the force gradient variation between the tip and the membrane surface. To verify the numerical approximation model, the phase lag of dry and wet Nafion is measured with stepwise changes to the bias voltage. Based on the model, the variations in the ionic channel network of Nafion with different amounts of water uptake are analyzed numerically. The mean surface charge density of both membranes, which is related to the ionic channel network, is calculated using the model. The difference between the mean surface charge of the dry and wet membranes is consistent with the variation in their proton conductivity.
Collapse
Affiliation(s)
- Byungrak Son
- Division of Energy Technology, DGIST, Daegu 42988, Korea;
| | - JaeHyoung Park
- Corporate Research Center, HygenPower Co., Ltd., Daegu 42988, Korea;
| | - Osung Kwon
- Tabula Rasa College, Keimyung University, Daegu 42601, Korea
- Correspondence: ; Tel.: +82-53-580-5657
| |
Collapse
|
12
|
Tamaki Y, Sugiura K. Influence of the Catalyst Layer Structure Formed by Inkjet Coating Printer on PEFC Performance. Polymers (Basel) 2021; 13:polym13060899. [PMID: 33804033 PMCID: PMC7998184 DOI: 10.3390/polym13060899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we investigated the influence of the Catalyst-Layer (CL) structure on Polymer Electrolyte Fuel Cell (PEFC) performance using an inkjet coating printer, and we especially focused on the CL thickness and the electrode area. In order to evaluate the influence of CL thickness, we prepared four Membrane Electrode Assemblies (MEAs), which have one, four, five and six CLs, respectively, and evaluated it by an overpotential analysis. As a result, the overpotentials of an activation and a diffusion increased with the increase of thickness of CL. From Energy Dispersive X-ray spectroscopy (EDX) analysis, because platinum twines most ionomers and precipitates, the CL separates into a layer of platinum with a big grain aggregate ionomer and the mixing layer of platinum and ionomer during the catalyst ink drying process. Consequently, the activation overpotential increased because the three-phase interface was not able to be formed sufficiently. The gas diffusivity of the multilayer catalyst electrode was worse than that of a single layer MEA. The influence of the electrode area was examined by two MEAs with 1 and 9 cm2 of electrode area. As a result, the diffusion overpotential of 9 cm2 MEA was worse than 1 cm2 MEA. The generated condensate was multiplied and moved to the downstream side, and thereafter it caused the flooding/plugging phenomena.
Collapse
|
13
|
Synthesis and Characterization of Partially Renewable Oleic Acid-Based Ionomers for Proton Exchange Membranes. Polymers (Basel) 2020; 13:polym13010130. [PMID: 33396908 PMCID: PMC7794934 DOI: 10.3390/polym13010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 11/24/2022] Open
Abstract
The future availability of synthetic polymers is compromised due to the continuous depletion of fossil reserves; thus, the quest for sustainable and eco-friendly specialty polymers is of the utmost importance to ensure our lifestyle. In this regard, this study reports on the use of oleic acid as a renewable source to develop new ionomers intended for proton exchange membranes. Firstly, the cross-metathesis of oleic acid was conducted to yield a renewable and unsaturated long-chain aliphatic dicarboxylic acid, which was further subjected to polycondensation reactions with two aromatic diamines, 4,4′-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline and 4,4′-diamino-2,2′-stilbenedisulfonic acid, as comonomers for the synthesis of a series of partially renewable aromatic-aliphatic polyamides with an increasing degree of sulfonation (DS). The polymer chemical structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F NMR) spectroscopy, which revealed that the DS was effectively tailored by adjusting the feed molar ratio of the diamines. Next, we performed a study involving the ion exchange capacity, the water uptake, and the proton conductivity in membranes prepared from these partially renewable long-chain polyamides, along with a thorough characterization of the thermomechanical and physical properties. The highest value of the proton conductivity determined by electrochemical impedance spectroscopy (EIS) was found to be 1.55 mS cm−1 at 30 °C after activation of the polymer membrane.
Collapse
|
14
|
Amino Acid Cross-Linked Graphene Oxide Membranes for Metal Ions Permeation, Insertion and Antibacterial Properties. MEMBRANES 2020; 10:membranes10100296. [PMID: 33096651 PMCID: PMC7589175 DOI: 10.3390/membranes10100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022]
Abstract
Graphene oxide (GO) and its composite membranes have exhibited great potential for application in water purification and desalination. This article reports that a novel graphene oxide membrane (GOM) of ~5 µm thickness was fabricated onto a nylon membrane by vacuum filtration and cross-linked by amino acids (L-alanine, L-phenylalanine, and serine). The GOM cross-linked by amino acids (GOM-A) exhibits excellent stability, high water flux, and high rejection to metal ions. The rejection coefficients to alkali and alkaline earth metal ions through GOM-A were over 94% and 96%, respectively. The rejection coefficients decreased with an increasing H+ concentration. Metal ions (K+, Ca2+, and Fe3+) can be inserted into GOM-A layers, which enlarges the interlayer spacing of GOM-A and neutralizes the electronegativity of the membrane, resulting in the decease in the rejection coefficients to metal ions. Meanwhile, GOM-A showed quite high antibacterial efficiency against E. coli. With the excellent performance as described above, GOM-A could be used to purify and desalt water.
Collapse
|