1
|
Bauer M, Duerkop A, Baeumner AJ. Critical review of polymer and hydrogel deposition methods for optical and electrochemical bioanalytical sensors correlated to the sensor's applicability in real samples. Anal Bioanal Chem 2023; 415:83-95. [PMID: 36280625 PMCID: PMC9816278 DOI: 10.1007/s00216-022-04363-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023]
Abstract
Sensors, ranging from in vivo through to single-use systems, employ protective membranes or hydrogels to enhance sample collection or serve as filters, to immobilize or entrap probes or receptors, or to stabilize and enhance a sensor's lifetime. Furthermore, many applications demand specific requirements such as biocompatibility and non-fouling properties for in vivo applications, or fast and inexpensive mass production capabilities for single-use sensors. We critically evaluated how membrane materials and their deposition methods impact optical and electrochemical systems with special focus on analytical figures of merit and potential toward large-scale production. With some chosen examples, we highlight the fact that often a sensor's performance relies heavily on the deposition method, even though other methods or materials could in fact improve the sensor. Over the course of the last 5 years, most sensing applications within healthcare diagnostics included glucose, lactate, uric acid, O2, H+ ions, and many specific metabolites and markers. In the case of food safety and environmental monitoring, the choice of analytes was much more comprehensive regarding a variety of natural and synthetic toxicants like bacteria, pesticides, or pollutants and other relevant substances. We conclude that more attention must be paid toward deposition techniques as these may in the end become a major hurdle in a sensor's likelihood of moving from an academic lab into a real-world product.
Collapse
Affiliation(s)
- Meike Bauer
- grid.7727.50000 0001 2190 5763Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Axel Duerkop
- grid.7727.50000 0001 2190 5763Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Antje J. Baeumner
- grid.7727.50000 0001 2190 5763Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany ,grid.5386.8000000041936877XDepartment of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
2
|
Facile generation of crumpled polymer strips by immersion electrospinning for oil spill cleanups. J Colloid Interface Sci 2022; 626:581-590. [DOI: 10.1016/j.jcis.2022.06.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 10/31/2022]
|
3
|
Teixeira MA, Antunes JC, Seabra CL, Fertuzinhos A, Tohidi SD, Reis S, Amorim MTP, Ferreira DP, Felgueiras HP. Antibacterial and hemostatic capacities of cellulose nanocrystalline-reinforced poly(vinyl alcohol) electrospun mats doped with Tiger 17 and pexiganan peptides for prospective wound healing applications. BIOMATERIALS ADVANCES 2022; 137:212830. [PMID: 35929263 DOI: 10.1016/j.bioadv.2022.212830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Infection is a major issue in chronic wound care. Different dressings have been developed to prevent microbial propagation, but an effective, all-in-one (cytocompatible, antimicrobial and promoter of healing) solution is still to be uncovered. In this research, polyvinyl alcohol (PVA) nanofibrous mats reinforced with cellulose nanocrystal (CNC), at 10 and 20% v/v ratios, were produced by electrospinning, crosslinked with glutaraldehyde vapor and doped with specialized peptides. Crosslinking increased the mats' fiber diameters but maintained their bead-free morphology. Miscibility between polymers was confirmed by Fourier-transform infrared spectroscopy and thermal evaluations. Despite the incorporation of CNC having reduced the mats' mechanical performance, it improved the mats' surface energy and its structural stability over time. Pexiganan with an extra cysteine group was functionalized onto the mats via hydroxyl- polyethylene glycol 2-maleimide, while Tiger 17 was physisorbed to preserve its cyclic conformation. Antimicrobial assessments demonstrated the peptide-doped mat's effectiveness against Staphylococcus aureus and Pseudomonas aeruginosa; pexiganan contributed mostly for such outcome. Tiger 17 showed excellent capacity in accelerating clotting. Cytocompatibility evaluations attested to these mats' safety. C90/10 PVA/CNC mats were deemed the most effective from the tested group and, thus, a potentially effective option for chronic wound treatments.
Collapse
Affiliation(s)
- Marta A Teixeira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Catarina L Seabra
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Aureliano Fertuzinhos
- Center for MicroElectroMechanics Systems (CMEMS), UMinho, Department of Mechanical Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Shafagh D Tohidi
- Digital Transformation Colab (DTX), Department of Mechanical Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Salette Reis
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Teresa P Amorim
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Diana P Ferreira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
4
|
Clavijo-Grimaldo D, Casadiego-Torrado CA, Villalobos-Elías J, Ocampo-Páramo A, Torres-Parada M. Characterization of Electrospun Poly(ε-caprolactone) Nano/Micro Fibrous Membrane as Scaffolds in Tissue Engineering: Effects of the Type of Collector Used. MEMBRANES 2022; 12:membranes12060563. [PMID: 35736270 PMCID: PMC9228247 DOI: 10.3390/membranes12060563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Electrospinning is an electrohydrodynamic technique that transforms a polymer solution into nano/microscopic diameter fibers under the influence of a high-voltage electric field. Its use in the fabrication of nano/micro fibrous membranes as scaffolds for tissue engineering has increased rapidly in recent years due to its efficiency and reproducibility. The objective of this study is to show how the use of the same polymeric solution (polycaprolactone 9% w/v in chloroform: isopropanol 50:50) and identical electrohydrodynamic deposition parameters produces fibers with different characteristics using a flat collector platform with movements in the X and Y axes vs. a conventional rotary collector. The manufactured nano/microfibers show significant differences in most of their characteristics (morphology, roughness, hydrophilicity, and mechanical properties). Regarding the diameter and porosity of the fibers, the results were similar. Given that scaffolds must be designed to guarantee adequate survival and the proliferation and migration of a certain cell type, in this study we analyze how the variations in the characteristics of the fibers obtained are essential to defining their potential application.
Collapse
Affiliation(s)
- Dianney Clavijo-Grimaldo
- School of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.V.-E.); (A.O.-P.); (M.T.-P.)
- School of Medicine, Fundación Universitaria Sanitas, Bogotá 111321, Colombia;
- Correspondence:
| | | | - Juan Villalobos-Elías
- School of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.V.-E.); (A.O.-P.); (M.T.-P.)
| | - Adolfo Ocampo-Páramo
- School of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.V.-E.); (A.O.-P.); (M.T.-P.)
| | - Magreth Torres-Parada
- School of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.V.-E.); (A.O.-P.); (M.T.-P.)
| |
Collapse
|
5
|
Suteris NN, Yasin A, Misnon II, Roslan R, Zulkifli FH, Rahim MHA, Venugopal JR, Jose R. Curcumin loaded waste biomass resourced cellulosic nanofiber cloth as a potential scaffold for regenerative medicine: An in-vitro assessment. Int J Biol Macromol 2022; 198:147-156. [PMID: 34971642 DOI: 10.1016/j.ijbiomac.2021.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022]
Abstract
This article demonstrates the development of nanofibrous cloths by electrospinning of renewable materials, i.e., curcumin-loaded 90% cellulose acetate (CA)/10% poly(ε-caprolactone) (PCL), for applications in regenerative medicine. The CA is derived from the biomass waste of the oil palm plantation (empty fruit bunch). The nanofiber scaffolds are characterized for the fiber morphology, microstructure, thermal properties, and wettability. The optimized smooth and bead-free electrospun fiber cloth contains 90% CA and 10% PCL in two curcumin compositions (0.5 and 1 wt%). The role of curcumin is shown to be two-fold: the first is its function as a drug and the second is its role in lowering the water contact angle and increasing the hydrophilicity. The hydrophilicity enhancements are related to the hydrogen bonding between the components. The enhanced hydrophilicity contributed to improve the swelling behavior of the scaffolds; the CA/PCL/Cur (0.5%) and the CA/PCL/Cur (1.0%) showed swelling of ~700 and 950%, respectively, in phosphate-buffered saline (PBS). The drug-release studies revealed the highest cumulative drug release of 60% and 78% for CA/PCL/Cur (0.5%) and CA/PCL/Cur (1.0%) nanofibers, respectively. The in-vitro studies showed that CA/PCL/Cur (0.5 wt%) and CA/PCL/Cur (1.0 wt%) nanofiber scaffolds facilitate a higher proliferation and expression of actin in fibroblasts than those scaffolds without curcumin for wound healing applications.
Collapse
Affiliation(s)
- Nurul Nadirah Suteris
- Center for Advanced Intelligent Materials, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia
| | - Amina Yasin
- Center for Advanced Intelligent Materials, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia
| | - Izan Izwan Misnon
- Center for Advanced Intelligent Materials, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia
| | - Rasidi Roslan
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia
| | - Farah Hanani Zulkifli
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia
| | - Mohd Hasbi Ab Rahim
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia
| | - Jayarama Reddy Venugopal
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia.
| | - Rajan Jose
- Center for Advanced Intelligent Materials, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia.
| |
Collapse
|
6
|
Dumitriu RP, Stoleru E, Mitchell GR, Vasile C, Brebu M. Bioactive Electrospun Fibers of Poly(ε-Caprolactone) Incorporating α-Tocopherol for Food Packaging Applications. Molecules 2021; 26:5498. [PMID: 34576969 PMCID: PMC8469439 DOI: 10.3390/molecules26185498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Antioxidant activity is an important feature for food contact materials such as packaging, aiming to preserve freshness and retard food spoilage. Common bioactive agents are highly susceptible to various forms of degradation; therefore, protection is required to maintain functionality and bioavailability. Poly(ε-caprolactone) (PCL), a biodegradable GRAS labeled polymer, was used in this study for encapsulation of α-tocopherol antioxidant, a major component of vitamin E, in the form of electrospun fibers. Rheological properties of the fiber forming solutions, which determine the electrospinning behavior, were correlated with the properties of electrospun fibers, e.g., morphology and surface properties. Interactions through hydrogen bonds were evidenced between the two components. These have strong effect on structuration of macromolecular chains, especially at low α-tocopherol amounts, decreasing viscosity and elastic modulus. Intra-molecular interactions in PCL strengthen at high α-tocopherol amounts due to decreased solvation, allowing good structural recovery after cease of mechanical stress. Morphologically homogeneous electrospun fibers were obtained, with ~6 μm average diameter. The obtained fibers were highly hydrophobic, with fast release in 95% ethanol as alternative simulant for fatty foods. This induced good in vitro antioxidant activity and significant in vivo reduction of microbial growth on cheese, as determined by respirometry. Therefore, the electrospun fibers from PCL entrapping α-tocopherol as bioactive agent showed potential use in food packaging materials.
Collapse
Affiliation(s)
- Raluca P. Dumitriu
- Laboratory of Physical Chemistry of Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iaşi, Romania; (R.P.D.); (E.S.); (C.V.)
| | - Elena Stoleru
- Laboratory of Physical Chemistry of Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iaşi, Romania; (R.P.D.); (E.S.); (C.V.)
| | - Geoffrey R. Mitchell
- Centre for Rapid and Sustainable Product Development, Institute Polytechnic of Leiria, Rua de Portugal, 2430-028 Marinha Grande, Portugal;
| | - Cornelia Vasile
- Laboratory of Physical Chemistry of Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iaşi, Romania; (R.P.D.); (E.S.); (C.V.)
| | - Mihai Brebu
- Laboratory of Physical Chemistry of Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iaşi, Romania; (R.P.D.); (E.S.); (C.V.)
| |
Collapse
|
7
|
Alam AKMM, Jenks D, Kraus GA, Xiang C. Synthesis, Fabrication, and Characterization of Functionalized Polydiacetylene Containing Cellulose Nanofibrous Composites for Colorimetric Sensing of Organophosphate Compounds. NANOMATERIALS 2021; 11:nano11081869. [PMID: 34443700 PMCID: PMC8399134 DOI: 10.3390/nano11081869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023]
Abstract
Organophosphate (OP) compounds, a family of highly hazardous chemical compounds included in nerve agents and pesticides, have been linked to more than 250,000 annual deaths connected to various chronic diseases. However, a solid-state sensing system that is able to be integrated into a clothing system is rare in the literature. This study aims to develop a nanofiber-based solid-state polymeric material as a soft sensor to detect OP compounds present in the environment. Esters of polydiacetylene were synthesized and incorporated into a cellulose acetate nanocomposite fibrous assembly developed with an electrospinning technique, which was then hydrolyzed to generate more hydroxyl groups for OP binding. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), Instron® tensile tester, contact angle analyzer, and UV–Vis spectroscopy were employed for characterizations. Upon hydrolysis, polydiacetylene esters in the cellulosic fiber matrix were found unaffected by hydrolysis treatment, which made the composites suitable for OP sensing. Furthermore, the nanofibrous (NF) composites exhibited tensile properties suitable to be used as a textile material. Finally, the NF composites exhibited colorimetric sensing of OP, which is visible to the naked eye. This research is a landmark study toward the development of OP sensing in a protective clothing system.
Collapse
Affiliation(s)
- A K M Mashud Alam
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50011, USA; or
| | - Donovan Jenks
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; (D.J.); (G.A.K.)
| | - George A. Kraus
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; (D.J.); (G.A.K.)
| | - Chunhui Xiang
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50011, USA; or
- Correspondence: ; Tel.: +1-(515)294-7515
| |
Collapse
|
8
|
Hemmatian T, Lee H, Kim J. Bacteria Adhesion of Textiles Influenced by Wettability and Pore Characteristics of Fibrous Substrates. Polymers (Basel) 2021; 13:E223. [PMID: 33440678 PMCID: PMC7827894 DOI: 10.3390/polym13020223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria adhesion on the surface is an initial step to create biofouling, which may lead to a severe infection of living organisms and humans. This study is concerned with investigating the textile properties including wettability, porosity, total pore volume, and pore size in association with bacteria adhesion. As model bacteria, Gram-negative, rod-shaped Escherichia coli and the Gram-positive, spherical-shaped Staphylococcus aureus were used to analyze the adhesion tendency. Electrospun webs made from polystyrene and poly(lactic acid) were used as substrates, with modification of wettability by the plasma process using either O2 or C4F8 gas. The pore and morphological characteristics of fibrous webs were analyzed by the capillary flow porometer and scanning electron microscopy. The substrate's wettability appeared to be the primary factor influencing the cell adhesion, where the hydrophilic surface resulted in considerably higher adhesion. The pore volume and the pore size, rather than the porosity itself, were other important factors affecting the bacteria adherence and retention. In addition, the compact spatial distribution of fibers limited the cell intrusion into the pores, reducing the total amount of adherence. Thus, superhydrophobic textiles with the reduced total pore volume and smaller pore size would circumvent the adhesion. The findings of this study provide informative discussion on the characteristics of fibrous webs affecting the bacteria adhesion, which can be used as a fundamental design guide of anti-biofouling textiles.
Collapse
Affiliation(s)
- Tahmineh Hemmatian
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (T.H.); (H.L.)
| | - Halim Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (T.H.); (H.L.)
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (T.H.); (H.L.)
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|