1
|
Paul J, Qamar A, Ahankari SS, Thomas S, Dufresne A. Chitosan-based aerogels: A new paradigm of advanced green materials for remediation of contaminated water. Carbohydr Polym 2024; 338:122198. [PMID: 38763724 DOI: 10.1016/j.carbpol.2024.122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Chitosan (CS) aerogels are highly porous (∼99 %), exhibit ultralow density, and are excellent sorbents for removing ionic pollutants and oils/organic solvents from water. Their abundant hydroxyl and amino groups facilitate the adsorption of ionic pollutants through electrostatic interaction, complexation and chelation mechanisms. Selection of suitable surface wettability is the way to separate oils/organic solvents from water. This review summarizes the most recent developments in improving the adsorption performance, mechanical strength and regeneration of CS aerogels. The structure of the paper follows the extraction of chitosan, preparation and sorption characteristics of CS aerogels for heavy metal ions, organic dyes, and oils/organic solvents, sequentially. A detailed analysis of the parameters that influence the adsorption/absorption performance of CS aerogels is carried out and their effective control for improving the performance is suggested. The analysis of research outcomes of the recently published data came up with some interesting facts that the unidirectional pore structure and characteristics of the functional group of the aerogel and pH of the adsorbate have led to the enhanced adsorption performance of the CS aerogel. Finally, the excerpts of the literature survey highlighting the difficulties and potential of CS aerogels for water remediation are proposed.
Collapse
Affiliation(s)
- Joyel Paul
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Ahsan Qamar
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Sandeep S Ahankari
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Sabu Thomas
- School of Polymer Science and Technology, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; School of Nanoscience, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; School of Energy Science, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; School of Chemical Sciences, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 Johannesburg, South Africa
| | - Alain Dufresne
- Université Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| |
Collapse
|
2
|
Xiao M, Li P, Lu Y, Cao J, Yan H. Development of a three-dimensional porous ionic liquid-chitosan-graphene oxide aerogel for efficient extraction and detection of polyhalogenated carbazoles in sediment samples. Talanta 2024; 271:125711. [PMID: 38290266 DOI: 10.1016/j.talanta.2024.125711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
The three-dimensional porous ionic liquid-chitosan-graphene oxide aerogel (IL-CS-GOA) monolithic adsorbent with a through-hole structure was prepared using natural chitosan (CS) as the skeletal framework, graphene oxide (GO) as the support to provide mechanical strength, and ionic liquid (IL) as the porogen and modifier. The resulting IL-CS-GOA demonstrated a fluffy and porous structure with various pore sizes and excellent regeneration capability (over six cycles). Its specific surface area exceeded that of CS-GOA and IL-GOA by more than 7 times, enhancing its polyhalogenated carbazoles (PHCZs) adsorption capacity. Within 5 min, IL-CS-GOA (1.0 mg) exhibited adsorption amounts of 539 ng mg-1 for 3-bromocarbazole (3-BCZ), 716 ng mg-1 for 2,7-dibromocarbazole (2,7-BCZ), and 798 ng mg-1 for 1,3,6,8-tetrabromocarbazole (1,3,6,8-BCZ), showcasing its rapid mass transfer and high adsorption capabilities. IL-CS-GOA was utilized as the adsorbent for glass dropper extraction (GDE) in conjunction with gas chromatography-mass spectrometry (GC-MS/MS), to develop a highly efficient and accurate method for determining PHCZs in sediments. Under optimal conditions, the established method exhibited a wide linear range (0.4-250 ng g-1, r ≥ 0.9990), low detection limits (0.04-0.24 ng g-1), and satisfactory recoveries (80.5 %-93.8 %), enabling the accurate and rapid detection of PHCZs in sediment samples. This study presents a novel approach for creating three-dimensional porous aerogels, introduces a new form of sample pretreatment using GDE with a monolithic adsorbent, and offers a new method for the determination of PHCZs in environmental matrices.
Collapse
Affiliation(s)
- Meng Xiao
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Pengfei Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Yanke Lu
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Jiankun Cao
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Wang Z, Li R, Liu H, Liu X, Zheng F, Yu C. Reduced graphene oxide/SiC nanowire composite aerogel prepared by a hydrothermal method with excellent thermal insulation performance and electromagnetic wave absorption performance. NANOTECHNOLOGY 2024; 35:135703. [PMID: 38134441 DOI: 10.1088/1361-6528/ad183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
In aerospace and downhole exploration, materials must function reliably in challenging environments characterized by high temperatures and complex electromagnetic (EM) interference. Graphene oxide (GO) aerogels are promising materials for thermal insulation, and the incorporation of silicon carbide nanowires can enhance their mechanical properties, thermal stability and EM absorption efficiency. In this context, citric acid acts as both a cross-linking and reducing agent, facilitating the formation of a composite aerogel comprising GO and SiC nanowires (rGO/m-SiC NWs). Compared with GO aerogels, the representative composite aerogel sample rGS4 demonstrated significantly improved mechanical properties (yield strength increased by 0.031 MPa), outstanding thermal stability (ability to withstand temperatures up to 800 °C) and remarkably low thermal conductivity (measuring just 0.061 W m-1K-1). Importantly, the composite aerogels displayed impressive EM absorption characteristics, including a slim profile (2.5 mm), high absorption capacity (-42.23 dB) and an exceptionally broad effective absorption bandwidth (7.47 GHz). Notably, the specific effective absorption bandwidth of composite aerogels exceeded that of similar composite materials. In conclusion, rGO/m-SiC NWs exhibited exceptional mechanical properties, remarkable thermal stability, efficient thermal insulation and outstanding microwave absorption capabilities. These findings highlight their potential for use in high-temperature and electromagnetically challenging environments.
Collapse
Affiliation(s)
- Zhijian Wang
- College of Mechanical and Electrical Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - Rong Li
- College of Mechanical and Electrical Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - He Liu
- CNPC Bohai Drilling Engineering Company Ltd., Tianjin 300457, People's Republic of China
| | - Xingmin Liu
- College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - Feng Zheng
- CNPC Bohai Drilling Engineering Company Ltd., Tianjin 300457, People's Republic of China
| | - Chen Yu
- CNPC Bohai Drilling Engineering Company Ltd., Tianjin 300457, People's Republic of China
| |
Collapse
|
4
|
Ahmed MA, Mohamed AA. The use of chitosan-based composites for environmental remediation: A review. Int J Biol Macromol 2023; 242:124787. [PMID: 37201888 DOI: 10.1016/j.ijbiomac.2023.124787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
The presence of hazardous pollutants in water sources as a result of industrial activities is a major environmental challenge that impedes the availability of safe drinking water. Adsorptive and photocatalytic degradative removal of various pollutants in wastewater have been recognized as cost-effective and energy-efficient strategies. In addition to its biological activity, chitosan and its derivatives are considered as promising materials for the removal of various pollutants. The abundance of hydroxyl and amino groups in the chitosan macromolecular structure results in a variety of concurrent pollutant's adsorption mechanisms. Furthermore, adding chitosan to photocatalysts increases the mass transfer while decreasing both the band gap energy and the amount of intermediates produced during photocatalytic processes, improving the overall photocatalytic efficiency. Herein, we have reviewed the current design and preparation of chitosan and its composites, as well as their applications for the removal of various pollutants by adsorption and photocatalysis processes. Effects of operating variables such as the pH, catalyst mass, contact time, light wavelength, initial pollutant's concentration, and catalyst recyclability, are discussed. Various kinetic and isotherm models are presented to elucidate the rates, and mechanisms of pollutant's removal, onto chitosan-based composites, and several case studies are presented. Additionally, the antibacterial activity of chitosan-based composites has been discussed. This review aims to provide a comprehensive and up-to-date overview of the applications of chitosan-based composites in wastewater treatment and put forward new insights for the development of highly effective chitosan-based adsorbents and photocatalysts. Finally, the main challenges and future directions in the field are discussed.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
5
|
Bakhori NM, Ismail Z, Hassan MZ, Dolah R. Emerging Trends in Nanotechnology: Aerogel-Based Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1063. [PMID: 36985957 PMCID: PMC10058649 DOI: 10.3390/nano13061063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
At present, aerogel is one of the most interesting materials globally. The network of aerogel consists of pores with nanometer widths, which leads to a variety of functional properties and broad applications. Aerogel is categorized as inorganic, organic, carbon, and biopolymers, and can be modified by the addition of advanced materials and nanofillers. Herein, this review critically discusses the basic preparation of aerogel from the sol-gel reaction with derivation and modification of a standard method to produce various aerogels for diverse functionalities. In addition, the biocompatibility of various types of aerogels were elaborated. Then, biomedical applications of aerogel were focused on this review as a drug delivery carrier, wound healing agent, antioxidant, anti-toxicity, bone regenerative, cartilage tissue activities and in dental fields. The clinical status of aerogel in the biomedical sector is shown to be similarly far from adequate. Moreover, due to their remarkable properties, aerogels are found to be preferably used as tissue scaffolds and drug delivery systems. The advanced studies in areas including self-healing, additive manufacturing (AM) technology, toxicity, and fluorescent-based aerogel are crucially important and are further addressed.
Collapse
Affiliation(s)
- Noremylia Mohd Bakhori
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Mohamad Zaki Hassan
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Selangor, Malaysia
| | - Rozzeta Dolah
- Department of Chemical Engineering, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Selangor, Malaysia
| |
Collapse
|
6
|
Pinelli F, Piras C, Nogueira LP, Rossi F. On the Sorbent Ability and Reusability of Graphene-Oxide-Chitosan Aerogels for the Removal of Dyes from Wastewater. Gels 2023; 9:gels9020110. [PMID: 36826280 PMCID: PMC9956623 DOI: 10.3390/gels9020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
One of the most persistent issues affecting people worldwide is water contamination due to the indiscriminate disposal of pollutants, causing severe environmental problems. Dyes are among the most harmful contaminants because of their high chemical stability and consequently difficult degradation. To remove contaminants from water, adsorption is the most widely used and effective method. In this work, we recall the results already published about the synthesis, the characterization and the use of porous graphene-oxide-chitosan aerogels as a sorbent material. Those systems, prepared by mixing GO sheets and CS chains, using APS as a cross-linking agent, and by further lyophilization, were further characterized using nano-computed tomography, supplying more understanding about their micro and nano-structure. Their sorbent ability has been investigated also by the study of their isotherm of adsorption of two different anionic dyes: Indigo Carmine and Cibacron Brilliant Yellow. Those analyses confirmed the potentialities of the aerogels and their affinity for those anionic dyes. Moreover, the possibility of regenerating and reusing the material was evaluated as a key aspect for applications of this kind. The treatment with NaOH, to promote the desorption of adsorbed dyes, and subsequent washing with HCl, to re-protonate the system, ensured the regeneration of the gels and their use in multiple cycles of adsorption with the selected water contaminants.
Collapse
Affiliation(s)
- Filippo Pinelli
- Department of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli, 7, 20131 Milan, Italy
| | - Chiara Piras
- Department of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli, 7, 20131 Milan, Italy
| | | | - Filippo Rossi
- Department of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli, 7, 20131 Milan, Italy
- Correspondence: ; Tel.: +39-0223993145
| |
Collapse
|
7
|
Saigl Z, Tifouti O, Alkhanbashi B, Alharbi G, Algamdi H. Chitosan as adsorbent for removal of some organic dyes: a review. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Shaheen S, Saeed Z, Ahmad A, Pervaiz M, Younas U, Mahmood Khan RR, Luque R, Rajendran S. Green synthesis of graphene-based metal nanocomposite for electro and photocatalytic activity; recent advancement and future prospective. CHEMOSPHERE 2023; 311:136982. [PMID: 36309056 DOI: 10.1016/j.chemosphere.2022.136982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The presence of pollutants in waste water is a demanding problem for human health. Investigations have been allocated to study the adsorptive behavior of graphene-based materials to remove pollutants from wastewater. Graphene (GO) due to its hydrophilicity, high surface area, and oxygenated functional groups, is an effective adsorbent for the removal of dyes and heavy metals from water. The disclosure of green synthesis opened the gateway for the economic productive methods. This article reveals the fabrication of graphene-based composite from aloe vera extract using a green method. The proposed mechanism of GO reduction via plant extract has also been mentioned in this work. The mechanism associated with the removal of dyes and heavy metals by graphene-based adsorbents and absorptive capacities of heavy metals has been discussed in detail. The toxicity of heavy metals has also been mentioned here. The Polyaromatic resonating system of GO develops significant π-π interactions with dyes whose base form comprises principally oxygenated functional groups. This review article illustrates a literature survey by classifying graphene-based composite with a global market value from 2010 to 2025 and also depicts a comparative study between green and chemical reduction methods. It presents state of art for the fabrication of GO with novel adsorbents such as metal, polymer, metal oxide and elastomers-based nanocomposites for the removal of pollutants. The current progress in the applications of graphene-based composites in antimicrobial, anticancer, drug delivery, and removal of dyes with photocatalytic efficacy of 73% is explored in this work. It gives a coherent overview of the green synthesis of graphene-based composite, various prospective for the fabrication of graphene, and their biotoxicity.
Collapse
Affiliation(s)
- Shumila Shaheen
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Zohaib Saeed
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Awais Ahmad
- Departmento de Quimica Organicia, Universitidad de Cordoba, Edificio Marie Curie (C-3) Ctra Nnal IV-A ,km 396, E14104, Cordoba, Spain
| | - Muhammad Pervaiz
- Department of Chemistry, Government College University, Lahore, Pakistan.
| | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | | | - Rafael Luque
- Departmento de Quimica Organicia, Universitidad de Cordoba, Edificio Marie Curie (C-3) Ctra Nnal IV-A ,km 396, E14104, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| |
Collapse
|
9
|
Farhan A, Rashid EU, Waqas M, Ahmad H, Nawaz S, Munawar J, Rahdar A, Varjani S, Bilal M. Graphene-based nanocomposites and nanohybrids for the abatement of agro-industrial pollutants in aqueous environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119557. [PMID: 35709916 DOI: 10.1016/j.envpol.2022.119557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Incessant release of a large spectrum of agro-industrial pollutants into environmental matrices remains a serious concern due to their potential health risks to humans and aquatic animals. Existing remediation techniques are unable to remove these pollutants, necessitating the development of novel treatment approaches. Due to its unique structure, physicochemical properties, and broad application potential, graphene has attracted a lot of attention as a new type of two-dimensional nanostructure. Given its chemical stability, large surface area, electron mobility, superior thermal conductivity, and two-dimensional structure, tremendous research has been conducted on graphene and its derived composites for environmental remediation and pollution mitigation. Various methods for graphene functionalization have facilitated the development of different graphene derivatives such as graphene oxide (GO), functional reduced graphene oxide (frGO), and reduced graphene oxide (rGO) with novel attributes for multiple applications. This review provides a comprehensive read on the recent progress of multifunctional graphene-based nanocomposites and nanohybrids as a promising way of removing emerging contaminants from aqueous environments. First, a succinct overview of the fundamental structure, fabrication techniques, and features of graphene-based composites is presented. Following that, graphene and GO functionalization, i.e., covalent bonding, non-covalent, and elemental doping, are discussed. Finally, the environmental potentials of a plethora of graphene-based hybrid nanocomposites for the abatement of organic and inorganic contaminants are thoroughly covered.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Haroon Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Junaid Munawar
- College of Chemistry, Beijing University of Chemical Technology, 100013, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
10
|
Li Y, Zhao H, Xue W, Li F, Wang Z. Transesterification of Glycerol to Glycerol Carbonate over Mg-Zr Composite Oxide Prepared by Hydrothermal Process. NANOMATERIALS 2022; 12:nano12121972. [PMID: 35745309 PMCID: PMC9227028 DOI: 10.3390/nano12121972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
A series of Mg-Zr composite oxide catalysts prepared by the hydrothermal process were used for the transesterification of glycerol (GL) with dimethyl carbonate (DMC) to produce glycerol carbonate (GC). The effects of the preparation method (co-precipitation, hydrothermal process) and Mg/Zr ratio on the catalytic performance were systematically investigated, and the deactivation of the catalyst was also explored. The Mg-Zr composite oxide catalysts were characterized by XRD, TEM, TPD, N2 adsorption-desorption, and XPS. The characterization results showed that compared with the co-precipitation process, the catalyst prepared by the hydrothermal process has a larger specific surface area, smaller grain size, and higher dispersion. Mg1Zr2-HT catalyst calcined at 600 °C in a nitrogen atmosphere exhibited the best catalytic performance. Under the conditions of reaction time of 90 min, reaction temperature of 90 °C, catalyst dosage of 3 wt% of GL, and GL/DMC molar ratio of 1/5, the GL conversion was 99% with 96.1% GC selectivity, and the yield of GC was 74.5% when it was reused for the fourth time.
Collapse
Affiliation(s)
| | | | | | - Fang Li
- Correspondence: (F.L.); (Z.W.)
| | | |
Collapse
|
11
|
Synthesis of hygroscopic sodium alginate-modified graphene oxide: Kinetic, isotherm, and thermodynamic study. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Karaman C, Karaman O, Show PL, Orooji Y, Karimi-Maleh H. Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: Equilibrium, kinetics, thermodynamics and artificial neural network modeling. ENVIRONMENTAL RESEARCH 2022; 207:112156. [PMID: 34599897 DOI: 10.1016/j.envres.2021.112156] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 05/17/2023]
Abstract
Herein, it is aimed to develop a high-performance monolithic adsorbent to be utilized in methyl orange (MO) adsorption. Therefore, amino-functionalized three-dimensional graphene networks (3D-GNf) fulfilling the requirements of reusability and high capacity have been fabricated via hydrothermal self-assembly approach followed by a double-crosslinking strategy. The potential utilization of 3D-GNf as an adsorbent for removal MO has been assessed using both batch-adsorption studies and an artificial neural network (ANN) approach. Graphene oxide sheets have been amino-functionalized and cross-linked, by ethylenediamine (EDA) during hydrothermal treatment, following the glutaraldehyde has used as a double-crosslinking agent to facilitate the crosslinking of architecture. The successful fabrication of 3D-GNf has been confirmed by field-emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR), Raman and X-ray photoelectron spectroscopy (XPS). Moreover, N2 adsorption/desorption isotherms have revealed the high specific surface area (1015 m2 g-1) with high pore volume (1.054 cm3 g-1) and hierarchical porous structure of 3D-GNf. The effect of initial concentration, contact time, and temperature on adsorption capacity have been thoroughly studied, and the kinetics, isotherms, and thermodynamics of MO adsorption have been modelled. The MO adsorption has been well defined by the pseudo-second-order kinetic model and Langmuir isotherm model with a monolayer adsorption capacity of 270.27 mg g-1 at 25 °C. The thermodynamic findings have revealed MO adsorption has occurred spontaneously with an endothermic process. The Levenberg-Marquardt backpropagation algorithm has been implemented to train the ANN model, which has used the activation functions of tansig and purelin functions at the hidden and output layers, respectively. An optimum ANN model with high-performance metrics (coefficient of determination, R2 = 0.9995; mean squared error, MSE = 0.0008) composed of three hidden layers with 5 neurons in each layer was constructed to forecast MO adsorption. The findings have shown that experimental results are consistent with ANN-based data, implying that the suggested ANN model may be used to forecast cationic dye adsorption.
Collapse
Affiliation(s)
- Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, 07070, Turkey.
| | - Onur Karaman
- Akdeniz University, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya, 07070, Turkey.
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| |
Collapse
|
13
|
Graphene oxide-chitosan composite aerogel for adsorption of methyl orange and methylene blue: Effect of pH in single and binary systems. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128595] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
14
|
Shi Y, Wang H, Song G, Zhang Y, Tong L, Sun Y, Ding G. Magnetic graphene oxide for methylene blue removal: adsorption performance and comparison of regeneration methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30774-30789. [PMID: 34993777 DOI: 10.1007/s11356-021-17654-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
A series of Fe3O4-graphene oxide (GO) composite materials (MGOs) with abundant surface area, rich oxygen-containing functional groups, and magnetic properties were prepared in a facile coprecipitation method and then employed for the adsorptive removal of methylene blue (MB) from water. The kinetic data were better fitted in the pseudo-second-order model than in the pseudo-first-order model, and the intraparticle diffusion model revealed the two-step diffusion process including diffusion in the boundary layer and in the porous structures. The maximum adsorption amounts of MB were calculated to be 37.5-108 mg/g at 25 °C and pH 9 using the Langmuir isotherm model. Thermodynamic study showed that the adsorption process was spontaneous, with ΔH° of 23.0-49.6 kJ/mol and ΔS° of 131-249 J∙mol-1∙K-1. The adsorption amount of MB increased with pH in the range of 4-10. Inorganic ions including Na+ and Ca2+ suppressed the adsorption of MB, and the more pronounced impact of Ca2+ was ascribed to its higher valence state. The cetyltrimethylammonium bromide (CTAB) surfactant showed a stronger inhibitory effect than Ca2+. The adsorption mechanism was proposed to be a combination of electrostatic interactions, hydrophobic adsorption, and electron donor-acceptor interactions. Two methods were used for the regeneration of spent MGO, and the results showed that the peroxomonosulfate (PMS) oxidation method was more favorable than the acid washing method, considering the better regeneration ability and lower amount of washing water used. Finally, the reaction mechanism of PMS oxidation was analyzed based on quenching tests and in situ open circuit potential measurements, which proved that OH and 1O2 played dominant roles and that the fine adsorption ability of MGO promoted the reaction between them and MB.
Collapse
Affiliation(s)
- Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Haonan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Guobin Song
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Liya Tong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
15
|
Graphene Oxide/Fe3O4/Chitosan−Coated Nonwoven Polyester Fabric Extracted from Disposable Face Mask for Enhanced Efficiency of Organic Dye Adsorption. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/8055615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Owing to the COVID-19 pandemic, huge amounts of disposable face masks have been manufactured and used, and these discarded face masks have to be treated. In this study, we propose a simple approach for reusing the nonwoven polyester fabric (NWPF) from disposable face masks. In this approach, NWPF is utilized as a supporter for coating of a layer of graphene oxide/Fe3O4/chitosan (GFC) to form a GFC/NWPF adsorbent at room temperature via a simple spray coating method that does not require any solvent. The specific properties of GFC, NWPF, and the GFC/NWPF adsorbent were analysed via X-ray diffraction, transmission electron microscopy, ultraviolet–visible spectroscopy, vibrating sample magnetometry, and field-emission scanning electron microscopy. Results showed that the presence of NWPF enhanced the adsorption capacity of GFC towards organic dyes. At high concentrations of the organic dyes, the adsorption efficiency of the GFC/NWPF adsorbent to the dyes reached 100% within 24 h. The adsorption capacity (
) of the GFC/NWPF adsorbent to methylene blue, methyl orange, Congo red, and moderacid red was 54.795, 87.489, 88.573, and 29.010 mg g−1, respectively, which were considerably higher than that of bulk GFC (39.308, 82.304, 52.910, and 21.249 mg g−1, respectively).
Collapse
|
16
|
|
17
|
|
18
|
Wang Q, Zhang X, Wang F, Xie Y, Wang C, Zhao J, Yang Q, Chen Z. Egg yolk/ZIF-8/CLPAA composite aerogel: Preparation, characterization and adsorption properties for organic dyes. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Ababneh H, Hameed BH. Chitosan-derived hydrothermally carbonized materials and its applications: A review of recent literature. Int J Biol Macromol 2021; 186:314-327. [PMID: 34197858 DOI: 10.1016/j.ijbiomac.2021.06.161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Chitosan (CS) is a linear polysaccharide biopolymer, one of the most abundant biowastes in the environment. This makes chitosan a potential material for a wide range of applications. To improve CS's properties, chitosan has to be chemically modified. Hydrothermal carbonization (HTC) is a sustainable process for converting chitosan to solid carbonized material. This article presents a review on the applications of hydrothermally treated chitosan in different fields such as water treatment, heavy metals adsorption, carbon dioxide capturing, solar cells, energy storage, biosensing, supercapacitors, and catalysis. Moreover, this review covers the impact of HTC process parameters on the properties of the produced carbon material. The diversity of applications indicates the great possibilities and multifunctionality of hydrothermally carbonized chitosan and its derivatives. The utilization of HTC-CS is expected to further expand as a result of the movement toward sustainable, environmentally-friendly resources. Thus, this review also recommends a few suggestions to improve the properties of HTC chitosan and its comprehensive applications.
Collapse
Affiliation(s)
- Hani Ababneh
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O Box: 2713, Doha, Qatar
| | - B H Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O Box: 2713, Doha, Qatar.
| |
Collapse
|
20
|
Fabrication of Reusable Carboxymethyl Cellulose/Graphene Oxide Composite Aerogel with Large Surface Area for Adsorption of Methylene Blue. NANOMATERIALS 2021; 11:nano11061609. [PMID: 34207483 PMCID: PMC8234820 DOI: 10.3390/nano11061609] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
A highly efficient adsorbent for methylene blue (MB) adsorption was developed by combination of carboxymethyl cellulose (CMC) and graphene oxide (GO) via a simple one-step hydrothermal method. The as-synthesized CMC/GO composite aerogel has a mesoporous structure with an average pore diameter of 30 nm and a high specific surface area of 800.85 m2·g−1. Moreover, the CMC/GO composite aerogel demonstrates a significant selectivity for the dye adsorption, especially for MB, where its adsorption capacity can reach 244.99 mg·g−1 with an excellent recyclability for more than nine times. Thus, the prepared CMC/GO composite aerogel would be an effective adsorbent for dyes adsorption, owing to the merits of high efficiency, reusability, and eco-friendliness.
Collapse
|
21
|
Muhammad A, Lee D, Shin Y, Park J. Recent Progress in Polysaccharide Aerogels: Their Synthesis, Application, and Future Outlook. Polymers (Basel) 2021; 13:1347. [PMID: 33924110 PMCID: PMC8074296 DOI: 10.3390/polym13081347] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Porous polysaccharides have recently attracted attention due to their porosity, abundance, and excellent properties such as sustainability and biocompatibility, thereby resulting in their numerous applications. Recent years have seen a rise in the number of studies on the utilization of polysaccharides such as cellulose, chitosan, chitin, and starch as aerogels due to their unique performance for the fabrication of porous structures. The present review explores recent progress in porous polysaccharides, particularly cellulose and chitosan, including their synthesis, application, and future outlook. Since the synthetic process is an important aspect of aerogel formation, particularly during the drying step, the process is reviewed in some detail, and a comparison is drawn between the supercritical CO2 and freeze drying processes in order to understand the aerogel formation of porous polysaccharides. Finally, the current applications of polysaccharide aerogels in drug delivery, wastewater, wound dressing, and air filtration are explored, and the limitations and outlook of the porous aerogels are discussed with respect to their future commercialization.
Collapse
Affiliation(s)
| | | | | | - Juhyun Park
- Department of Intelligent Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Korea; (A.M.); (D.L.); (Y.S.)
| |
Collapse
|