1
|
Mücke BED, Rossignatti BC, Abegão LMG, Barbosa MS, Mello HJNPD. Optimized Drop-Casted Polyaniline Thin Films for High-Sensitivity Electrochemical and Optical pH Sensors. Polymers (Basel) 2024; 16:2789. [PMID: 39408500 PMCID: PMC11478742 DOI: 10.3390/polym16192789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Conducting polymers used in chemical sensors are attractive because of their ability to confer reversible properties controlled by the doping/de-doping process. Polyaniline (PANI) is one of the most prominent materials used due to its ease of synthesis, tailored properties, and higher stability. Here, PANI thin films deposited by the drop-casting method on fluorine-doped tin oxide (FTO) substrates were used in electrochemical and optical sensors for pH measurement. The response of the devices was correlated with the deposition parameters; namely, the volume of deposition solution dropped on the substrate and the concentration of the solution, which was determined by the weight ratio of polymer to solvent. The characterisation of the samples aimed to determine the structure-property relationship of the films and showed that the chemical properties, oxidation states, and protonation level are similar for all samples, as concluded from the cyclic voltammetry and UV-VIS spectroscopic analysis. The sensing performance of the PANI film is correlated with its relative physical properties, thickness, and surface roughness. The highest electrochemical sensitivity obtained was 127.3 ± 6.2 mV/pH, twice the Nernst limit-the highest pH sensitivity reported to our knowledge-from the thicker and rougher sample. The highest optical sensitivity, 0.45 ± 0.05 1/pH, was obtained from a less rough sample, which is desirable as it reduces light scattering and sample oxidation. The results presented demonstrate the importance of understanding the structure-property relationship of materials for optimised sensors and their potential applications where high-sensitivity pH measurement is required.
Collapse
Affiliation(s)
- Bruna Eduarda Darolt Mücke
- Physics of Materials Group, Institute of Physics, Federal University of Goiás, Samambaia Campus, Goiânia 74001-970, GO, Brazil; (B.E.D.M.); (B.C.R.)
| | - Beatriz Cotting Rossignatti
- Physics of Materials Group, Institute of Physics, Federal University of Goiás, Samambaia Campus, Goiânia 74001-970, GO, Brazil; (B.E.D.M.); (B.C.R.)
| | - Luis Miguel Gomes Abegão
- Photonics Group, Physics Institute, Federal University of Goiás, Samambaia Campus, Goiânia 74001-970, GO, Brazil;
| | | | - Hugo José Nogueira Pedroza Dias Mello
- Physics of Materials Group, Institute of Physics, Federal University of Goiás, Samambaia Campus, Goiânia 74001-970, GO, Brazil; (B.E.D.M.); (B.C.R.)
| |
Collapse
|
2
|
Yoshida K, Kamijo T, Ono T, Dairaku T, Takahashi S, Kashiwagi Y, Sato K. Electrical Stimuli-Responsive Decomposition of Layer-by-Layer Films Composed of Polycations and TEMPO-Modified Poly(acrylic acid). Polymers (Basel) 2022; 14:polym14245349. [PMID: 36559714 PMCID: PMC9782790 DOI: 10.3390/polym14245349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
We previously reported that layer-by-layer (LbL) film prepared by a combination of 2,2,6,6-tetramethylpiperidinyl N-oxyl (TEMPO)-modified polyacrylic acid (PAA) and polyethyleneimine (PEI) were decomposed by application of an electric potential. However, there have been no reports yet for other polycationic species. In this study, LbL films were prepared by combining various polycationics (PEI, poly(allylamine hydrochloride) (PAH), poly(diallydimethylammonium chloride) (PDDA), and polyamidoamine (PAMAM) dendrimer) and TEMPO-PAA, and the decomposition of the thin films was evaluated using cyclic voltammetry (CV) and constant potential using an electrochemical quartz crystal microbalance (eQCM). When a potential was applied to an electrode coated on an LbL thin film of polycations and TEMPO-PAA, an oxidation potential peak (Epa) was obtained around +0.6 V vs. Ag/AgCl in CV measurements. EQCM measurements showed the decomposition of the LbL films at voltages near the Epa of the TEMPO residues. Decomposition rate was 82% for the (PEI/TEMPO-PAA)5 film, 52% for the (PAH/TEMPO-PAA)5 film, and 49% for the (PDDA/TEMPO-PAA)5 film. It is considered that the oxoammonium ion has a positive charge, and the LbL films were decomposed due to electrostatic repulsion with the polycations (PEI, PAH, and PDDA). These LbL films may lead to applications in drug release by electrical stimulation. On the other hand, the CV of the (PAMAM/TEMPO-PAA)5 film did not decompose. It is possible that the decomposition of the thin film is not promoted, probably because the amount of TEMPO-PAA absorbed is small.
Collapse
Affiliation(s)
- Kentaro Yoshida
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Fukushima, Japan
- Correspondence: ; Tel.: +81-24-932-8931
| | - Toshio Kamijo
- Department of Creative Engineering, National Institute of Technology, Tsuruoka College, 104 Sawada, Inooka, Tsuruoka 997-8511, Yamagata, Japan
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Fukushima, Japan
| | - Takenori Dairaku
- Integrated Center for Science and Humanities, The Section of Chemistry, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan
| | - Shigehiro Takahashi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 37-1 Nakaorui-cho, Takasaki 370-0033, Gunma, Japan
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Fukushima, Japan
| | - Katsuhiko Sato
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba, Sendai 981-8558, Miyagi, Japan
| |
Collapse
|
3
|
Alkassar M, Leonardo S, Diogène J, Campàs M. Immobilisation of Neuro-2a cells on electrodes and electrochemical detection of MTT formazan crystals to assess their viability. Bioelectrochemistry 2022; 148:108274. [DOI: 10.1016/j.bioelechem.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
|
4
|
Fomanyuk S, Vorobets V, Rusetskyi I, Kolbasov GY, Smilyk V, Danilov M. Photoelectrochemical determination of Pb2+ by combined electrochemical-chemical precipitations of PbI2 films. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Sugiyama K, Watanabe K, Komatsu S, Yoshida K, Ono T, Fujimura T, Kashiwagi Y, Sato K. Electropolymerization of Azure A and pH Sensing Using Poly(azure A)-modified Electrodes. ANAL SCI 2021; 37:893-896. [PMID: 33132234 DOI: 10.2116/analsci.20p341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A modified electrode was developed by immobilizing poly(azure A) (pAA) onto the surface of a glassy carbon electrode via the electropolymerization of azure A (AA). The pAA immobilized on the electrode exhibited redox response during cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The redox reaction obeyed the Nernst equation because of the involvement of H+ ions. In addition, the peak potential was shifted according to the solution pH. The shifts of the oxidation peak potential could be more easily observed using DPV than when using CV, indicating that the developed electrode could be useful as a pH sensor. This pH measurement method can be successfully applied in the pH range of 1 to 10 and can be successfully repeated more than 50 times.
Collapse
Affiliation(s)
- Kyoko Sugiyama
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | - Kazuhiro Watanabe
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | - Sachiko Komatsu
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | | | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University
| | - Tsutomu Fujimura
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | | | - Katsuhiko Sato
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University.,Department of Creative Engineering, National Institute of Technology, Tsuruoka College
| |
Collapse
|
6
|
Ganesh PS, Shimoga G, Lee SH, Kim SY, Ebenso EE. Simultaneous electrochemical sensing of dihydroxy benzene isomers at cost-effective allura red polymeric film modified glassy carbon electrode. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00270-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
A simple and simultaneous electrochemical sensing platform was fabricated by electropolymerization of allura red on glassy carbon electrode (GCE) for the interference-free detection of dihydroxy benzene isomers.
Methods
The modified working electrode was characterized by electrochemical and field emission scanning electron microscopy methods. The modified electrode showed excellent electrocatalytic activity for the electrooxidation of catechol (CC) and hydroquinone (HQ) at physiological pH of 7.4 by cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques.
Results
The effective split in the overlapped oxidation signal of CC and HQ was achieved in a binary mixture with peak to peak separation of 0.102 V and 0.103 V by CV and DPV techniques. The electrode kinetics was found to be adsorption-controlled. The oxidation potential directly depends on the pH of the buffer solution, and it witnessed the transfer of equal number of protons and electrons in the redox phenomenon.
Conclusions
The limit of detection (LOD) for CC and HQ was calculated to be 0.126 μM and 0.132 μM in the linear range of 0 to 80.0 μM and 0 to 110.0 μM, respectively, by ultra-sensitive DPV technique. The practical applicability of the proposed sensor was evaluated for tap water sample analysis, and good recovery rates were observed.
Graphical abstract
Electrocatalytic interaction of ALR/GCE with dihydroxy benzene isomers.
Collapse
|