1
|
Kumar D, Pandey S, Shivhare B, Bala M, Kumar M, Kumar P, Gupta J. Natural polysaccharide-based nanodrug delivery systems for targeted treatment of rheumatoid arthritis: A review. Int J Biol Macromol 2025; 310:143408. [PMID: 40274161 DOI: 10.1016/j.ijbiomac.2025.143408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by persistent inflammation of the joints, leading to pain, disability, and systemic complications. Conventional treatments often exhibit limitations, including adverse effects and suboptimal bioavailability. To address these challenges, natural polysaccharides-mediated nano drug delivery is a promising vehicle for RA management. This review explores the potential of natural polysaccharides in RA, including chitosan, cellulose, albumin, hyaluronic acid, polylactic acid, alginate, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for RA applications. These properties facilitate targeted delivery, improved cellular uptake, and sustained release of therapeutic agents, enhancing their pharmacological effects while minimizing systemic toxicity. Recent advances in nanotechnology have enabled the formulations of polysaccharides that can encapsulate a range of therapeutic agents, including conventional anti-inflammatory drugs and novel biologics. The review also highlights various formulation strategies to optimize the physicochemical properties of polysaccharide-based nano drug delivery systems, including surface modification and combinatorial therapies. Overall, natural polysaccharides represent a versatile and effective approach for developing innovative nano drug delivery systems, offering a promising strategy for the effective treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Devesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Shubham Pandey
- Institute of Nuclear Medicine & Allied Sciences (INMAS), Brig. S. K Mazumdar Marg, Timarpur, Delhi 110054, India; Department of Chemistry, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Brijesh Shivhare
- Department of Botany, Faculty of Science, Baba Mastnath University, Asthal Bohar, Rohtak, Haryana 124021, India
| | - Madhu Bala
- Gautam college of pharmacy, Hamirpur, Himachal Pradesh, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India; Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.
| | - Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| |
Collapse
|
2
|
Pandey S, Sekar H, Gundabala V. Development and characterization of bilayer chitosan/alginate cling film reinforced with essential oil based nanocomposite for red meat preservation. Int J Biol Macromol 2024; 279:135524. [PMID: 39265899 DOI: 10.1016/j.ijbiomac.2024.135524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
With a goal to finding suitable alternatives to plastic packaging in the food industry, we developed a multifunctional bio-based active packaging film to enhance the shelf life of red meat. A chitosan/alginate (Chi + Alg) bilayer film was developed through layer-by-layer (LBL) assembly and an active material i.e. lemongrass nanoemulsion with silver nanoparticles-based nanocomposite (NC1) was loaded into the alginate layer to improve the quality of the bio-based film (Chi + Alg + NC1). The Chi + Alg + NC1 film was characterized in terms of its microstructure, mechanical strength, thermal stability, and antimicrobial activity. Scanning electron microscopy (SEM) revealed a film (22.5 ± 1.44 μm thickness) with a smooth and even surface and a cross-sectional structure. The incorporation of NC1 improves the quality of the film by enhancing its mechanical strength and thermal stability. FT-IR spectra showed the successful interaction between chitosan and alginate in the LBL assembly and the incorporation of NC1 in the alginate layer. The red meat preservation test demonstrated that the shelf life improved when the meat was covered with the fabricated bio-based film. The color of the meat was retained for up to 7 days compared to that of the control (Chi alone and Chi + Alg). Additionally, a reduction in the microbial count in the Chi + Alg + NC1 film was observed, corroborating the shelf-life improvement. In addition to its inherent antimicrobial properties, NC1 induced hydrophilic properties to the film, which further aids in its antimicrobial activity against E. coli. These findings suggest that Chi + Alg + NC1 film could be a potent alternative to plastic packaging and can be used as a cling film to prolong the shelf life of red meat.
Collapse
Affiliation(s)
- Shipra Pandey
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Hariharan Sekar
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Venkat Gundabala
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
3
|
Solovieva A, Kopylov A, Cherkasova A, Shershnev I, Kaplin V, Timofeeva V, Akovantseva A, Savko M, Gulin A, Zarkhina T, Aksenova N, Timashev P. Methylene Blue Solid Alginate Gels for Photodynamic Therapy: The Peculiarities of Production and Controlled Release of the Dye. Polymers (Basel) 2024; 16:2819. [PMID: 39408531 PMCID: PMC11478748 DOI: 10.3390/polym16192819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The purpose of this work is to establish the influence of the nature of solid alginate gels (alginic acid, AAG; calcium alginate, CAG) and the conditions of methylene blue (MB) introduction to alginate matrices upon its release into aqueous media. MB is an active photosensitizer, which is used in the photodynamic therapy of tumors and purulent wounds. Solid alginate gels based on AAG and CAG were obtained by adding hydrochloric acid and calcium chloride to sodium alginate. The dye was introduced into the matrix either at the stage of gelation or by immersing the gel in an aqueous solution of the dye. It has been shown that the strength of the dye's attachment to AAG is higher than that of CAG, which leads to a higher rate of MB release from CAG into aqueous media. It has also been shown that, when introduced at the stage of gel formation, MB is released into both the water and buffer solutions. When MB is introduced by gel immersion into an MB solution, the dye may be released only into salt solutions. An alginate gel with immobilized MB can be used as a solid photosensitizing system with the controlled release of the photoactive agent into the wound cavity for photodynamic treatment.
Collapse
Affiliation(s)
- Anna Solovieva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 Moscow, Russia; (A.K.); (A.C.); (V.K.); (V.T.); (A.A.); (M.S.); (A.G.); (T.Z.); (N.A.); (P.T.)
| | | | | | - Ilya Shershnev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 Moscow, Russia; (A.K.); (A.C.); (V.K.); (V.T.); (A.A.); (M.S.); (A.G.); (T.Z.); (N.A.); (P.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Grumezescu V, Gherasim O, Gălățeanu B, Hudiță A. Antitumoral-Embedded Biopolymeric Spheres for Implantable Devices. Pharmaceutics 2024; 16:754. [PMID: 38931875 PMCID: PMC11207774 DOI: 10.3390/pharmaceutics16060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The bioactive surface modification of implantable devices paves the way towards the personalized healthcare practice by providing a versatile and tunable approach that increase the patient outcome, facilitate the medical procedure, and reduce the indirect or secondary effects. The purpose of our study was to assess the performance of composite coatings based on biopolymeric spheres of poly(lactide-co-glycolide) embedded with hydroxyapatite (HA) and methotrexate (MTX). Bio-simulated tests performed for up to one week evidenced the gradual release of the antitumor drug and the biomineralization potential of PLGA/HA-MTX sphere coatings. The composite materials proved superior biocompatibility and promoted enhanced cell adhesion and proliferation with respect to human preosteoblast and osteosarcoma cell lines when compared to pristine titanium.
Collapse
Affiliation(s)
- Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
5
|
Adel IM, ElMeligy MF, Amer MS, Elkasabgy NA. Polymeric nanocomposite hydrogel scaffold for jawbone regeneration: The role of rosuvastatin calcium-loaded silica nanoparticles. Int J Pharm X 2023; 6:100213. [PMID: 37927584 PMCID: PMC10622845 DOI: 10.1016/j.ijpx.2023.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Bones are subject to different types of damages ranging from simple fatigue to profound defects. In serious cases, the endogenous healing mechanism is not capable of healing the damage or restoring the normal structure and function of the bony tissue. The aim of this research was to achieve a sustained delivery of rosuvastatin and assess its efficacy in healing bone tissue damage. Rosuvastatin was entrapped into silica nanoparticles and the system was loaded into an alginate hydrogel to be implanted in the damaged tissue. Silica nanoparticles were formulated based on a modified Stöber technique and alginate hydrogel was prepared via sprinkling alginate onto silica nanoparticle dispersion followed by addition of CaCl2 to promote crosslinking and hydrogel rigidification. The selected nanoparticle formulation possessed high % drug content (100.22± 0.67%), the smallest particle size (221.00± 7.30 nm) and a sustained drug release up to 4 weeks (98.72± 0.52%). The fabricated hydrogel exhibited a further delay in drug release (81.52± 4.81% after 4 weeks). FT-IR indicated the silica nanoparticle formation and hydrogel crosslinking. SEM visualized the porous and dense surface of hydrogel. In-vivo testing on induced bone defects in New Zealand rabbits revealed the enhanced rate of new bone tissue formation, its homogeneity in color as well as similarity in structure to the original tissue.
Collapse
Affiliation(s)
- Islam M. Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mohamed F. ElMeligy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mohammed S. Amer
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
6
|
Manna S, Gupta P, Nandi G, Jana S. Recent update on alginate based promising transdermal drug delivery systems. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2291-2318. [PMID: 37368494 DOI: 10.1080/09205063.2023.2230847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Alongside oral delivery of therapeutics, transdermal delivery systems have gained increased patient acceptability over past few decades. With increasing popularity, novel techniques were employed for transdermal drug targeting which involves microneedle patches, transdermal films and hydrogel based formulations. Hydrogel forming ability along with other rheological behaviour makes natural polysaccharides an attractive option for transdermal use. Being a marine originated anionic polysaccharide, alginates are widely used in pharmaceutical, cosmetics and food industries. Alginate possesses excellent biodegradability, biocompatibility and mucoadhesive properties. Owing to many favourable properties required for transdermal drug delivery systems (TDDS), the application of alginates are increasing in recent times. This review summarizes the source and properties of alginate along with several transdermal delivery techniques including the application of alginate for respective transdermal systems.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, Kolkata, West Bengal, India
| | - Prajna Gupta
- Division of Pharmaceutics, Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, West Bengal, India
| | - Gouranga Nandi
- Division of Pharmaceutics, Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, West Bengal, India
| | - Sougata Jana
- Department of Pharmaceutics, Gupta College of Technological Sciences, Asansol, West Bengal, India
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata, India
| |
Collapse
|
7
|
El-Refaie WM, Ghazy MS, Ateyya FA, Sheta E, Shafek MY, Ibrahim MS, Ismail MM, Gowayed MA. Rhein methotrexate-decorated solid lipid nanoparticles altering adjuvant arthritis progression through endoplasmic reticulum stress-mediated apoptosis. Inflammopharmacology 2023; 31:3127-3142. [PMID: 37526838 PMCID: PMC10692035 DOI: 10.1007/s10787-023-01295-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Methotrexate (MTX) and diacerein (DIA) are two of the most potent disease-modifying anti-rheumatic drugs used for the treatment of rheumatoid arthritis (RA). DIA has reflected some GIT and hepatobiliary manifestations in numerous cases. It undergoes biotransformation in the liver into the active metabolite rhein (RH) which is characterized by its excellent anti-inflammatory activity and lower side effects. However, RH's hydrophobic nature and low bioavailability do not encourage its use in RA. The current study aims to use RH in combination with MTX in targeted solid lipid nanoparticles (RH-MTX-SLNs) for better effectiveness and shadowing light on its possible mechanistic pathways. RH-MTX-SLNs were prepared and assessed for their quality attributes. The effect of the formulation was assessed in-vivo in an adjuvant arthritis animal model investigating the role of the endoplasmic reticulum stress (ERS)-induced apoptosis. Results revealed that RH-MTX-SLNs were in the suitable nanosized range with high negative zeta potential indicating good stability. In-vivo, RH-MTX-SLNs significantly improved all measured inflammatory and arthritic markers, confirmed by electron microscopy and histology examination of the joints. Besides, the formulation was able to alter the ERS-mediated apoptosis. In conclusion, RH-MTX-SLNs can represent a promising therapeutic approach for RA showing significant anti-arthritic activity.
Collapse
Affiliation(s)
- Wessam M El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mostafa S Ghazy
- Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Fady A Ateyya
- Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohanad Y Shafek
- Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mahmoud S Ibrahim
- Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mahmoud Ma Ismail
- Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Canal El- Mahmoudia Str., Smouha, Alexandria, Egypt.
| |
Collapse
|
8
|
Bradu IA, Vlase T, Bunoiu M, Grădinaru M, Pahomi A, Bajas D, Budiul MM, Vlase G. Synthesis and Characterization of Polymer-Based Membranes for Methotrexate Drug Delivery. Polymers (Basel) 2023; 15:4325. [PMID: 37960005 PMCID: PMC10649268 DOI: 10.3390/polym15214325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Methotrexate or amethopterin or 4-amino-N10-methyl pteroylglutamic acid is used for treating autoimmune diseases, as well as certain malignancies. Drug delivery systems, which are based on biopolymers, can be developed to improve the therapeutic and pharmacological properties of topically administered drugs. Biopolymers improve the therapeutic effect of drugs, mainly by improving their biodistribution and modulating drug release. This study presents the synthesis of membranes based on anionic polysaccharides and cationic polysaccharides for transdermal delivery of the active ingredient methotrexate, as well as a compatibility study between methotrexate and each of the components used in the prepared membranes. The obtained membranes based on different marine polysaccharides, namely κ-carrageenan and chitosan, for the release of the active ingredient methotrexate were characterized using techniques such as TG, FTIR, UV-Vis spectrophotometry, FTIR microscopy, water absorption capacity, water vapor permeability, and biodegradation rate. Following the studies, the membranes suitable for the transdermal release of the active substance were validated.
Collapse
Affiliation(s)
- Ionela-Amalia Bradu
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania; (I.-A.B.); (T.V.); (A.P.); (D.B.); (M.M.B.)
- ICAM–Advanced Environmental Research Institute, West University of Timisoara, Oituz Street 4, 300233 Timisoara, Romania; (M.B.); (M.G.)
| | - Titus Vlase
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania; (I.-A.B.); (T.V.); (A.P.); (D.B.); (M.M.B.)
- ICAM–Advanced Environmental Research Institute, West University of Timisoara, Oituz Street 4, 300233 Timisoara, Romania; (M.B.); (M.G.)
| | - Mădălin Bunoiu
- ICAM–Advanced Environmental Research Institute, West University of Timisoara, Oituz Street 4, 300233 Timisoara, Romania; (M.B.); (M.G.)
- Faculty of Physics, West University of Timisoara, B-dul V. Parvan No. 4, 300223 Timisoara, Romania
| | - Mădălina Grădinaru
- ICAM–Advanced Environmental Research Institute, West University of Timisoara, Oituz Street 4, 300233 Timisoara, Romania; (M.B.); (M.G.)
| | - Alexandru Pahomi
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania; (I.-A.B.); (T.V.); (A.P.); (D.B.); (M.M.B.)
| | - Dorothea Bajas
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania; (I.-A.B.); (T.V.); (A.P.); (D.B.); (M.M.B.)
| | - Mihaela Maria Budiul
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania; (I.-A.B.); (T.V.); (A.P.); (D.B.); (M.M.B.)
- ICAM–Advanced Environmental Research Institute, West University of Timisoara, Oituz Street 4, 300233 Timisoara, Romania; (M.B.); (M.G.)
| | - Gabriela Vlase
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania; (I.-A.B.); (T.V.); (A.P.); (D.B.); (M.M.B.)
- ICAM–Advanced Environmental Research Institute, West University of Timisoara, Oituz Street 4, 300233 Timisoara, Romania; (M.B.); (M.G.)
| |
Collapse
|
9
|
Anugrah DSB, Darmalim LV, Sinanu JD, Pramitasari R, Subali D, Prasetyanto EA, Cao XT. Development of alginate-based film incorporated with anthocyanins of red cabbage and zinc oxide nanoparticles as freshness indicator for prawns. Int J Biol Macromol 2023; 251:126203. [PMID: 37579908 DOI: 10.1016/j.ijbiomac.2023.126203] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
The objective of this study was to develop pH-sensitive film indicators for intelligent food packaging by incorporating red cabbage anthocyanins (RCA) and zinc oxide nanoparticles (ZnO NPs) into an alginate (Alg) film, aiming to mitigate the risk of foodborne illnesses. The films were fabricated using a solvent-casting method and crosslinked with a calcium chloride (CaCl2) solution. Thorough evaluations of the films' physical, mechanical, and structural properties demonstrated significant improvements in elastic modulus and UV/vis light barrier characteristics, reduced water vapor permeability (WVP), and moisture content attributed to integrating RCA and ZnO NPs. The resulting film displayed discernible color changes when exposed to various pH buffer solutions and ammonia vapor, indicating heightened sensitivity to pH fluctuations due to the presence of ZnO NPs. Visual assessment using prawns as test specimens revealed a color shift from violet (indicating satisfactory condition) to blue-greenish (indicating spoilage), corroborated by colorimetric analysis. Moreover, the Alg/ZnO/RCA film exhibited antioxidant and antibacterial properties, demonstrated biodegradation activity, and showed no toxic effects on RSC96 cells, further underscoring its potential as an effective freshness indicator for food products.
Collapse
Affiliation(s)
- Daru Seto Bagus Anugrah
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia.
| | - Laura Virdy Darmalim
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Juan David Sinanu
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Rianita Pramitasari
- Food Technology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Dionysius Subali
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Eko Adi Prasetyanto
- Pharmacy Study Program, Faculty of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, Pluit Campus, Tangerang 15345, Indonesia
| | - Xuan Thang Cao
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
10
|
Khaliq M, Hanif MA, Bhatti IA, Mushtaq Z. A novel study for producing complexed and encapsulated nutrients at nanometric scale to enhance plant growth. Sci Rep 2023; 13:11100. [PMID: 37423907 DOI: 10.1038/s41598-023-37607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
Complexation of micronutrients with complexing agents reduce undesirable reactions of fertilizers in soil water system. In the form of complex structure nutrients remain available to plants in the useable form. Nanoform fertilizer enhances the surface area of particles and less amount of fertilizer contact with large area of plant roots which reduce fertilizer cost. Controlling release of fertilizer using polymeric material like sodium alginate makes agriculture practices more efficient and cost effective. Several fertilizers and nutrients are used at a large scale to improve crop yields globally and almost more than half goes to waste. Therefore, there is a dire need to improve plant-available nutrients in soil, using feasible, environmentally friendly technologies. In the present research, complexed micronutrients were successfully encapsulated using a novel technique at nanometric scale. The nutrients were complexed with proline and encapsulated using sodium alginate (polymer). Sweet basil was subjected to seven treatments over three months in a moderately controlled environment (25 °C of temperature and 57% of humidity) to study the effects of synthesized complexed micronutrient nano fertilizers. The structural modifications of the complexed micronutrient nanoforms of fertilizers were examined, through X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The size of manufactured fertilizers was between 1 and 200 nm. Fourier transform infrared (FTIR) spectroscopy stretching vibration peaks at 1600.9 cm-1 (C=O), 3336 cm-1 (N-H) and at 1090.2 cm-1 (N-H in a twisting and rocking) corresponds to the pyrrolidine ring. Gas chromatography-mass spectrometry was used to analyze the chemical makeup of the essential oil of the basil plants. Essential oil yield of basil plants increased from 0.0035 to 0.1226% after treatments. The findings of the present research show that complexation and encapsulation improve crop quality, essential oil yield, and antioxidant potential of basil.
Collapse
Affiliation(s)
- Marium Khaliq
- Nano and Biomaterials Lab, Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Asif Hanif
- Nano and Biomaterials Lab, Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Ijaz Ahmad Bhatti
- Nano and Biomaterials Lab, Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zahid Mushtaq
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
11
|
Teng C, Campanella OH. A Plant-Based Animal Fat Analog Produced by an Emulsion Gel of Alginate and Pea Protein. Gels 2023; 9:393. [PMID: 37232985 PMCID: PMC10217620 DOI: 10.3390/gels9050393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
As the market for plant-based meat analogs grows, the development of plant-based animal fat analogs has become increasingly important. In this study, we propose an approach by developing a gelled emulsion based on sodium alginate, soybean oil (SO), and pea protein isolate. Formulations containing 15% to 70% (w/w) SO were successfully produced without phase inversion. The addition of more SO resulted in pre-gelled emulsions with a more elastic behavior. After the emulsion was gelled in the presence of calcium, the color of the gelled emulsion changed to light yellow, and the formulation containing 70% SO exhibited a color most similar to actual beef fat trimming. The lightness and yellowness values were greatly influenced by the concentrations of both SO and pea protein. Microscopic images revealed that pea protein formed an interfacial film around the oil droplets, and the oil was more tightly packed at higher oil concentrations. Differential scanning calorimetry showed that lipid crystallization of the gelled SO was influenced by the confinement of the alginate gelation, but the melting behavior was like that of free SO. FTIR spectrum analysis indicated a potential interaction between alginate and pea protein, but the functional groups of SO were unchanged. Under mild heating conditions, gelled SO exhibited an oil loss similar to that observed in actual beef trims. The developed product has the potential to mimic the appearance and slow-rendering melting attribute of real animal fat.
Collapse
Affiliation(s)
| | - Osvaldo H. Campanella
- Department of Food Science and Technology, Ohio State University, 2015 Fyffe Road, Columbus, OH 43210, USA;
| |
Collapse
|
12
|
Sathiyaseelan A, Zhang X, Wang MH. Enhancing the Antioxidant, Antibacterial, and Wound Healing Effects of Melaleuca alternifolia Oil by Microencapsulating It in Chitosan-Sodium Alginate Microspheres. Nutrients 2023; 15:nu15061319. [PMID: 36986049 PMCID: PMC10051692 DOI: 10.3390/nu15061319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, antibacterial and antioxidant molecules-rich Melaleuca alternifolia oil (tea tree oil (TTO)) loaded chitosan (CS) based nanoemulsions (NEMs) were prepared and encapsulated by sodium alginate (SA) microsphere for antibacterial wound dressing. CS-TTO NEMs were prepared by oil-in-water emulsion technique, and the nanoparticle tracking analysis (NTA) confirmed that the CS-TTO NEMs had an average particle size of 89.5 nm. Further, the SA-CS-TTO microsphere was confirmed through SEM analysis with an average particle size of 0.76 ± 0.10 µm. The existence of TTO in CS NEMs and SA encapsulation was evidenced through FTIR analysis. The XRD spectrum proved the load of TTO and SA encapsulation with CS significantly decreased the crystalline properties of the CS-TTO and SA-CS-TTO microsphere. The stability of TTO was increased by the copolymer complex, as confirmed through thermal gravimetric analysis (TGA). Furthermore, TTO was released from the CS-SA complex in a sustained manner and significantly inhibited the bacterial pathogens observed under confocal laser scanning microscopy (CLSM). In addition, CS-TTO (100 µg/mL) showed antioxidant potential (>80%), thereby increasing the DPPH and ABTS free radicals scavenging ability of SA-CS-TTO microspheres. Moreover, CS and SA-CS-TTO microsphere exhibited negligible cytotoxicity and augmented the NIH3T3 cell proliferation confirmed in the in vitro scratch assay. This study concluded that the SA-CS-TTO microsphere could be an antibacterial and antioxidant wound dressing.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
13
|
Injectable Networks Based on a Hybrid Synthetic/Natural Polymer Gel and Self-Assembling Peptides Functioning as Reinforcing Fillers. Polymers (Basel) 2023; 15:polym15030636. [PMID: 36771937 PMCID: PMC9920810 DOI: 10.3390/polym15030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Double network (DN) hydrogels composed of self-assembling low-molecular-weight gelators and a hybrid polymer network are of particular interest for many emerging biomedical applications, such as tissue regeneration and drug delivery. The major benefits of these structures are their distinct mechanical properties as well as their ability to mimic the hierarchical features of the extracellular matrix. Herein, we describe a hybrid synthetic/natural polymer gel that acts as the initial network based on sodium alginate and a copolymer, namely poly(itaconic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5,5) undecane). The addition of amino acids and peptide-derived hydrogelators, such as Fmoc-Lys-Fmoc-OH and Fmoc-Gly-Gly-Gly-OH, to the already-made network gives rise to DNs crosslinked via non-covalent interactions. Fourier transform infrared spectroscopy (FTIR) and thermal analysis confirmed the formation of the DN and highlighted the interactions between the two component networks. Swelling studies revealed that the materials have an excellent water absorption capacity and can be classified as superabsorbent gels. The rheological properties were systematically investigated in response to different variables and showed that the prepared materials present injectability and a self-healing ability. SEM analysis revealed a morphology consisting of a highly porous and interconnected fibrous network. Finally, the biocompatibility was evaluated using the MTT assay on dermal fibroblasts, and the results indicated that the new structures are non-toxic and potentially useful for biomedical applications.
Collapse
|
14
|
Derakhshankhah H, Eskandani M, Akbari Nakhjavani S, Tasoglu S, Vandghanooni S, Jaymand M. Electro-conductive silica nanoparticles-incorporated hydrogel based on alginate as a biomimetic scaffold for bone tissue engineering application. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2155159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sattar Akbari Nakhjavani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul, Turkey
- Department of Mechanical Engineering, Koç University, Istanbul, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Son Phan K, Thu Huong Le T, Minh Nguyen T, Thu Trang Mai T, Ha Hoang P, Thang To X, Trung Nguyen T, Dang Pham K, Thu Ha P. Co‐delivery of Doxycycline, Florfenicol and Silver Nanoparticles using Alginate/Chitosan Nanocarriers. ChemistrySelect 2022. [DOI: 10.1002/slct.202201954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ke Son Phan
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
| | - Thi Thu Huong Le
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
- Vietnam National University of Agriculture Trau Quy, Gia Lam District Hanoi Vietnam
| | - Thi Minh Nguyen
- Institute of Biotechnology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
| | - Thi Thu Trang Mai
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
| | - Phuong Ha Hoang
- Institute of Biotechnology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
| | - Xuan Thang To
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
| | - Thanh Trung Nguyen
- Vietnam National University of Agriculture Trau Quy, Gia Lam District Hanoi Vietnam
| | - Kim Dang Pham
- Vietnam National University of Agriculture Trau Quy, Gia Lam District Hanoi Vietnam
| | - Phuong Thu Ha
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
| |
Collapse
|
16
|
Immobilization Systems of Antimicrobial Peptide Ib−M1 in Polymeric Nanoparticles Based on Alginate and Chitosan. Polymers (Basel) 2022; 14:polym14153149. [PMID: 35956663 PMCID: PMC9370884 DOI: 10.3390/polym14153149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
The development of new strategies to reduce the use of traditional antibiotics has been a topic of global interest due to the resistance generated by multiresistant microorganisms, including Escherichia coli, as etiological agents of various diseases. Antimicrobial peptides are presented as an alternative for the treatment of infectious diseases caused by this type of microorganism. The Ib−M1 peptide meets the requirements to be used as an antimicrobial compound. However, it is necessary to use strategies that generate protection and resist the conditions encountered in a biological system. Therefore, in this study, we synthesized alginate and chitosan nanoparticles (Alg−Chi NPs) using the ionic gelation technique, which allows for the crosslinking of polymeric chains arranged in nanostructures by intermolecular interactions that can be either covalent or non-covalent. Such interactions can be achieved through the use of crosslinking agents that facilitate this binding. This technique allows for immobilization of the Ib−M1 peptide to form an Ib−M1/Alg−Chi bioconjugate. SEM, DLS, and FT-IR were used to determine the structural features of the nanoparticles. We evaluated the biological activity against E. coli ATCC 25922 and Vero mammalian cells, as well as the stability at various temperatures, pH, and proteases, of Ib−M1 and Ib−M1/Alg-Chi. The results showed agglomerates of nanoparticles with average sizes of 150 nm; an MIC of 12.5 µM, which was maintained in the bioconjugate; and cytotoxicity values close to 40%. Stability was maintained against pH and temperature; in proteases, it was only evidenced against pepsin in Ib−M1/Alg-Chi. The results are promising with respect to the use of Ib−M1 and Ib−M1/Alg−Chi as possible antimicrobial agents.
Collapse
|
17
|
Shafiq A, Madni A, Khan S, Sultana H, Sumaira, Shah H, Khan S, Rehman S, Nawaz M. Core-shell Pluronic F127/chitosan based nanoparticles for effective delivery of methotrexate in the management of rheumatoid arthritis. Int J Biol Macromol 2022; 213:465-477. [PMID: 35661673 DOI: 10.1016/j.ijbiomac.2022.05.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022]
Abstract
This study was designed to improve oral bioavailability of the methotrexate (MTX) by sustaining its release profile and integration into core-shell polymeric nanoparticles. The self-micellization and ionotropic gelation technique was employed which resulted into spherical shaped nanoparticles (181-417 nm) with encapsulation efficiency of 80.14% to 85.54%. Furthermore, Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimetry analyses were carried out to investigate physicochemical and thermal stability of the produced engineered core shell nanoparticles of the methotrexate. . Entrapment of drug in polymeric core was confirmed by X-ray diffraction analysis. In-vitro sustained release behavior of nanoparticles was observed at pH 6.8 for 48 h while low drug release was observed at pH 1.2 due to pH-responsive nature of Pluronic F127. Acute toxicity study confirmed safety and biocompatible profile of nanoparticles. MTX loaded polymeric nanoparticles ameliorated the pharmacokinetic profile (8 folds greater half-life, 6.26 folds higher AUC0-t and 3.48 folds higher mean residence time). In vivo study conducted in rat model depicted the improved therapeutic efficacy and healing of arthritis through MTX loaded polymeric nanoparticles, preferentially attributable to high accretion of MTX in the inflamed site. In conclusion, MTX loaded polymeric nanoparticles is an attractive drug delivery strategy for an effective management and treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Afifa Shafiq
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
| | - Humaira Sultana
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sumaira
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sadia Rehman
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mehwish Nawaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
18
|
Synthesis of hygroscopic sodium alginate-modified graphene oxide: Kinetic, isotherm, and thermodynamic study. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Biodegradable Silver Nanoparticles Gel and Its Impact on Tomato Seed Germination Rate in In Vitro Cultures. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Nanotechnology plays an important role in many fields of science and the economy. A special example of nanostructures is silver nanoparticles (AgNPs) created following the principles of green chemistry, i.e., without the use of toxic reducing compounds. The common tomato (Solanum lycopersicum) is a popular vegetable whose germination and growth process are studied by using, e.g., in vitro cultures. The aim of the experiment was to evaluate the inhibitory effect of the biodegradable gels containing silver nanoparticles on the development of microbial infection and to evaluate their influence on the germination degree of Tomato (Solanum lycopersicum) seeds in in vitro plant cultures. Based on macroscopic and microscopic observations, all experimental samples showed the presence of Gram-positive bacilli as well as mould fungi of the genus Rhizopus, Alternaria and Aspergillus. The study showed that the biocomponents containing silver nanoparticles obtained by using xylose as a reducing agent limit the development of microbial infection and stimulate the germination rate of tomato seeds. They could find their application as biodegradable raw materials in the production of modern disinfecting preparations for research in in vitro cultures. This study allowed to identify new research directions, especially to evaluate the metabolic regulation of seedlings treated with biodegradable silver nanoparticles.
Collapse
|
20
|
Madeo LF, Sarogni P, Cirillo G, Vittorio O, Voliani V, Curcio M, Shai-Hee T, Büchner B, Mertig M, Hampel S. Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local Treatment of Squamous Cell Carcinoma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1648. [PMID: 35268879 PMCID: PMC8911244 DOI: 10.3390/ma15051648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022]
Abstract
With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100-170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized.
Collapse
Affiliation(s)
- Lorenzo Francesco Madeo
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (P.S.); (V.V.)
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy;
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (O.V.); (T.S.-H.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (P.S.); (V.V.)
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy;
| | - Tyler Shai-Hee
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (O.V.); (T.S.-H.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Bernd Büchner
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Mertig
- Institute of Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
| |
Collapse
|
21
|
Nornberg AB, Martins CC, Cervi VF, Sari MHM, Cruz L, Luchese C, Wilhelm EA, Fajardo AR. Transdermal release of methotrexate by cationic starch/poly(vinyl alcohol)-based films as an approach for rheumatoid arthritis treatment. Int J Pharm 2022; 611:121285. [PMID: 34774696 DOI: 10.1016/j.ijpharm.2021.121285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022]
Abstract
Methotrexate (MTX) is a common drug used for rheumatoid arthritis (RA) treatment; however, a series of adverse effects associated with its oral or subcutaneous administration is reported. Transdermal delivery of MTX is an alternative to abate these issues, and the use of drug delivery systems (DDS) based on polymeric films presents an impressive potential for this finality. Based on this, in this study, we report the preparation of films made by cationic starch (CSt), poly(vinyl alcohol) (PVA), and chondroitin sulfate (ChS) to incorporate and release MTX, as well as the in vivo evaluation in model of rheumatoid arthritis in mice. CSt/PVA and CSt/PVA/ChS-based films (with and without MTX) were prepared using a simple protocol under mild conditions. The films loaded with 5 w/w-% of MTX exhibited appreciable drug loading efficiency and distribution. The MTX permeation through the layers of porcine skin demonstrated that most of the drug permeated was detected in the medium, suggesting that the formulation can provide a systemic absorption of the MTX. In vivo studies performed in an arthritis-induced model in mice demonstrated that the MTX-loaded films were able to treat and attenuate the symptoms and the biochemical alterations related to RA (inflammatory process, oxidative stress, and nociceptive behaviors). Besides, the pharmacological activity of MTX transdermally delivery by the CSt/PVA and CSt/PVA/ChS films was comparable to the MTX orally administered. Based on these results, it can be inferred that both films are prominent materials for incorporation and transdermal delivery of MTX in a practical and non-invasive manner.
Collapse
Affiliation(s)
- Andressa B Nornberg
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas-RS, Brazil
| | - Carolina C Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil
| | - Verônica F Cervi
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Marcel H M Sari
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil.
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas-RS, Brazil.
| |
Collapse
|
22
|
Marioane CA, Bunoiu M, Mateescu M, Sfîrloagă P, Vlase G, Vlase T. Preliminary Study for the Preparation of Transmucosal or Transdermal Patches with Acyclovir and Lidocaine. Polymers (Basel) 2021; 13:polym13203596. [PMID: 34685355 PMCID: PMC8538249 DOI: 10.3390/polym13203596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to prepare and evaluate patches for the controlled release of lidocaine/acyclovir and the binary mixture between lidocaine: acyclovir in the oral cavity. Mucoside adhesive patches containing 12.5 mg/cm2 lidocaine/acyclovir or binary mixture base were developed by a solvent casting method using sodium alginate, polyvinylpyrrolidone (PVP), glycerol (Gly), polyvinyl alcohol (PVA), and Span 80 (S). Binary mixtures between all components were prepared before the patches' formulation in order to be able to check the substance compatibility. All formulated patches were analyzed by FT-IR spectroscopy, UV-Vis analysis, thermogravimetry (TGA), and scanning electron microscopy (SEM). FT-IR and TGA analyses were also used to check compatibility between binary mixtures. The study establishes which membranes are indicated in the controlled release of lidocaine/acyclovir and those membranes that contain both active principles. Membranes based on alginate, PVP, and PVA can be used to release the active substance. Simultaneously, membranes with SPAN used as a gelling agent were excluded due to the interaction with the active substance. The following membranes composition have been chosen for lidocaine release: Alginate:Gly and Alginate:Gly:PVP. At the same time, the following membrane compositions were chosen for acyclovir membranes: Alginate:Gly:PVP and Alginate:PVA:Gly. Both active substances could be included to obtain a homogeneous distribution only in the membrane based on alginate, PVA, and Gly.
Collapse
Affiliation(s)
- Cristina-Adela Marioane
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania; (C.-A.M.); (M.M.); (T.V.)
| | - Mădălin Bunoiu
- Faculty of Physics, West University of Timisoara, V. Parvan Ave., No. 4, 300223 Timisoara, Romania;
| | - Mădălina Mateescu
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania; (C.-A.M.); (M.M.); (T.V.)
| | - Paula Sfîrloagă
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Dr. A. Paunescu Podeanu Street, No. 144, 300569 Timisoara, Romania;
| | - Gabriela Vlase
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania; (C.-A.M.); (M.M.); (T.V.)
- Correspondence: ; Tel.: +40-2-56592627
| | - Titus Vlase
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania; (C.-A.M.); (M.M.); (T.V.)
| |
Collapse
|