1
|
Zheng J, Chen R, Hao J, Yang Y, Xu S, Zhang F, Zhang F, Yao Y. Design and preparation of hydrogel microspheres for spinal cord injury repair. J Biomed Mater Res A 2024; 112:2358-2371. [PMID: 39169748 DOI: 10.1002/jbm.a.37788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
A severe disorder known as spinal cord damage causes both motor and sensory impairment in the limbs, significantly reducing the patients' quality of life. After a spinal cord injury, functional recovery and therapy have emerged as critical concerns. Hydrogel microspheres have garnered a lot of interest lately because of their enormous promise in the field of spinal cord injury rehabilitation. The material classification of hydrogel microspheres (natural and synthetic macromolecule polymers) and their synthesis methods are examined in this work. This work also covers the introduction of several kinds of hydrogel microspheres and their use as carriers in the realm of treating spinal cord injuries. Lastly, the study reviews the future prospects for hydrogel microspheres and highlights their limitations and problems. This paper can offer feasible ideas for researchers to advance the application of hydrogel microspheres in the field of spinal cord injury.
Collapse
Affiliation(s)
- Jian Zheng
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ruilin Chen
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jie Hao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yang Yang
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaohu Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feiyu Zhang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yu Yao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Xiao X, Zhang Y, Sun K, Liu S, Li Q, Zhang Y, Godspower BO, Xu T, Zhang Z, Li Y, Liu Y. Enzymatic and ultrasound assisted β-cyclodextrin extraction of active ingredients from Forsythia suspensa and their antioxidant and anti-inflammatory activities. ULTRASONICS SONOCHEMISTRY 2024; 108:106944. [PMID: 38878712 PMCID: PMC11227030 DOI: 10.1016/j.ultsonch.2024.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
With the proposal of the 2030 Agenda for Sustainable Development, the Chinese medicine extraction technology has been innovatively improved to prioritize low energy consumption, sustainability, and minimized organic solvent utilization. Forsythia suspensa (FS) possesses favorable pharmacological properties and is extensively utilized in traditional Chinese medicine. However, due to the limitations of the composition and extraction methods, its potential has not been fully developed. Thus, a combination of ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and β-cyclodextrin extraction (β-CDE) was employed to isolate and purify rutin, phillyrin, and forsythoside A from FS. The results demonstrated that the efficiency of extracting enzymatic and ultrasound assisted β-cyclodextrin extraction (EUA-β-CDE) was highly influenced by the temperature and duration of hydrolysis, as well as the duration of the extraction process. According to the results of the single-factor experiment, Box-Behnken design (BBD) in Response surface method (RSM) was used to optimize the experimental parameters to achieve the maximum comprehensive evaluation value (CEV) value. The EUA-β-CDE compared with other extraction methods, has good extraction effect and low energy consumption by high performance liquid chromatography (HPLC), scanning electron microscopy (SEM), calculation of power consumption and CO2 emission The EUA-β-CDE compared with other extraction methods, has good extraction effect and low energy consumption by HPLC, SEM, calculation of power consumption and CO2 emission. Then, the structural characteristics of EUA-β-CDE of FS extract had significant interaction with β-CD by Fourier infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). In addition, EUA-β-CDE extract has good antioxidant and anti-inflammatory activities. The establishment of EUA-β-CDE of FS provides a new idea for the development and application of other sustainable extraction methods of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiaoyue Xiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Kedi Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Shuoqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Qingmiao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Bello-Onaghise Godspower
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China; Department of Animal Science, Faculty of Agriculture, University of Benin City, Nigeria
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Zhiyun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China.
| | - Yanyan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China.
| |
Collapse
|
3
|
Wang Z, Zhou D, Liu D, Zhu B. Food-grade encapsulated polyphenols: recent advances as novel additives in foodstuffs. Crit Rev Food Sci Nutr 2023; 63:11545-11560. [PMID: 35776082 DOI: 10.1080/10408398.2022.2094338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A growing inclination among consumers toward the consumption of natural products has propelled the usage of natural compounds as novel additives. Polyphenols are among the most popular candidates of natural food additives with multiple functionalities and bioactivities but are limited by instability. In this regard, a series of food-grade encapsulated polyphenols has been tailored for incorporating into food formulations as novel additives, which could better satisfy the complicated industry processing. This review seeks to present the most recent discussions regarding their application status in diverse foodstuffs as novel additives, involving functionalities, action mechanisms, and relevant encapsulation technologies. The scientific findings confirm that such novel additives show positive effects on physicochemical, sensory, and nutritional properties as well as the shelf life of diverse food matrices. However, poor heat resistance is still the major defect that restricts their application in thermal processes. Future research should focus on the evaluation of the compatibility and applicability of encapsulated polyphenols in real food processes as well as track and deepen their molecular action mechanisms in the context of complex foodstuffs. Innovation of existing encapsulation technologies should also be concerned in the future to bridge the gap between lab and scale-up production.
Collapse
Affiliation(s)
- Zonghan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Yang C, Zhang Z, Gan L, Zhang L, Yang L, Wu P. Application of Biomedical Microspheres in Wound Healing. Int J Mol Sci 2023; 24:7319. [PMID: 37108482 PMCID: PMC10138683 DOI: 10.3390/ijms24087319] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue injury, one of the most common traumatic injuries in daily life, easily leads to secondary wound infections. To promote wound healing and reduce scarring, various kinds of wound dressings, such as gauze, bandages, sponges, patches, and microspheres, have been developed for wound healing. Among them, microsphere-based tissue dressings have attracted increasing attention due to the advantage of easy to fabricate, excellent physicochemical performance and superior drug release ability. In this review, we first introduced the common methods for microspheres preparation, such as emulsification-solvent method, electrospray method, microfluidic technology as well as phase separation methods. Next, we summarized the common biomaterials for the fabrication of the microspheres including natural polymers and synthetic polymers. Then, we presented the application of the various microspheres from different processing methods in wound healing and other applications. Finally, we analyzed the limitations and discussed the future development direction of microspheres in the future.
Collapse
Affiliation(s)
- Caihong Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lexiang Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
5
|
Kumar R, Thakur AK, Kali G, Pitchaiah KC, Arya RK, Kulabhi A. Particle preparation of pharmaceutical compounds using supercritical antisolvent process: current status and future perspectives. Drug Deliv Transl Res 2023; 13:946-965. [PMID: 36575354 DOI: 10.1007/s13346-022-01283-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 12/29/2022]
Abstract
The low aqueous solubility and subsequently slow dissolution rate, as well as the poor bioavailability of several active pharmaceutical ingredients (APIs), are major challenges in the pharmaceutical industry. In this review, the particle engineering approaches using supercritical carbon dioxide (SC CO2) as an antisolvent are critically reviewed. The different SC CO2-based antisolvent processes, such as the gas antisolvent process (GAS), supercritical antisolvent process (SAS), and a solution-enhanced dispersion system (SEDS), are described. The effect of process parameters such as temperature, pressure, solute concentration, nozzle diameter, SC CO2 flow rate, solvent type, and solution flow rate on the average particle size, particle size distribution, and particle morphology is discussed from the fundamental perspective of the SAS process. The applications of the SAS process in different formulation approaches such as solid dispersion, polymorphs, cocrystallization, inclusion complexation, and encapsulation to enhance the dissolution rate, solubility, and bioavailability are critically reviewed. This review highlights some areas where the SAS process has not been adequately explored yet. This review will be helpful to researchers working in this area or planning to explore SAS process to particle engineering approaches to tackle the challenge of low solubility and subsequently slow dissolution rate and poor bioavailability.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India.
| | - Amit K Thakur
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | | | - Raj Kumar Arya
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, 144011, Punjab, India
| | - Anurag Kulabhi
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
6
|
Preparation of inhalable quercetin-β-cyclodextrin inclusion complexes using the supercritical antisolvent process for the prevention of smoke inhalation-induced acute lung injury. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Naeem A, Yu C, Zang Z, Zhu W, Deng X, Guan Y. Synthesis and Evaluation of Rutin–Hydroxypropyl β-Cyclodextrin Inclusion Complexes Embedded in Xanthan Gum-Based (HPMC-g-AMPS) Hydrogels for Oral Controlled Drug Delivery. Antioxidants (Basel) 2023; 12:antiox12030552. [PMID: 36978800 PMCID: PMC10044933 DOI: 10.3390/antiox12030552] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Oxidants play a significant role in causing oxidative stress in the body, which contributes to the development of diseases. Rutin—a powerful antioxidant—may be useful in the prevention and treatment of various diseases by scavenging oxidants and reducing oxidative stress. However, low solubility and oral bioavailability have restricted its use. Due to the hydrophobic nature of rutin, it cannot be easily loaded inside hydrogels. Therefore, first rutin inclusion complexes (RIC) with hydroxypropyl-β-cyclodextrin (HP-βCD) were prepared to improve its solubility, followed by incorporation into xanthan gum-based (hydroxypropyl methylcellulose-grafted-2-acrylamido -2-methyl-1-propane sulfonic acid) hydrogels for controlled drug release in order to improve the bioavailability. Rutin inclusion complexes and hydrogels were validated by FTIR, XRD, SEM, TGA, and DSC. The highest swelling ratio and drug release occurred at pH 1.2 (28% swelling ratio and 70% drug release) versus pH 7.4 (22% swelling ratio, 65% drug release) after 48 h. Hydrogels showed high porosity (94%) and biodegradation (9% in 1 week in phosphate buffer saline). Moreover, in vitro antioxidative and antibacterial studies (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli) confirmed the antioxidative and antibacterial potential of the developed hydrogels.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (A.N.); (Y.G.)
| | - Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhenzhong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xuezhen Deng
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (A.N.); (Y.G.)
| |
Collapse
|
8
|
Preparation, Characterization and Molecular Dynamics Simulation of Rutin-Cyclodextrin Inclusion Complexes. Molecules 2023; 28:molecules28030955. [PMID: 36770635 PMCID: PMC9919933 DOI: 10.3390/molecules28030955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Rutin is a natural flavonoid that carries out a variety of biological activities, but its application in medicine and food is limited by its water solubility. One of the classical methods used to enhance drug solubility is encapsulation with cyclodextrins. In this paper, the encapsulation of different cyclodextrins with rutin was investigated using a combination of experimental and simulation methods. Three inclusions of rutin/beta-cyclodextrin (β-CD), rutin/2-hydroxypropyl beta-cyclodextrin (HP-β-CD) and rutin/2,6-dimethyl beta-cyclodextrin (DM-β-CD) were prepared by the freeze-drying method, and the inclusions were analyzed using Fourier infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and ultraviolet-visible spectroscopy (UV) to characterize and demonstrate the formation of the inclusion complexes. Phase solubility studies showed that rutin formed a 1:1 stoichiometric inclusion complex and significantly increased its solubility. β-CD, HP-β-CD, DM-β-CD, rutin and the three inclusion complexes were modeled by using MS2018 and AutoDock 4.0, and molecular dynamics simulations were performed to calculate the solubility parameters, binding energies, mean square displacement (MSD), hydrogen bonding and radial distribution functions (RDF) after the equilibration of the systems. The results of simulation and experiment showed that rutin/DM-β-CD had the best encapsulation effect among the three cyclodextrin inclusion complexes.
Collapse
|
9
|
Palazzo I, Reverchon E. Testing the encapsulation of Phase Change Materials using Supercritical Emulsion Extraction. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Guastaferro M, Baldino L, Cardea S, Reverchon E. Supercritical CO2 assisted electrospray of PVP-Rutin mixtures using a liquid collector. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Mottola S, Mancuso A, Sacco O, De Marco I, Vaiano V. Production of hybrid TiO2/β-CD photocatalysts by supercritical antisolvent micronization for UV light-driven degradation of azo dyes. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Preparation, Optimization, and Characterization of Inclusion Complexes of Cinnamomum longepaniculatum Essential Oil in β-Cyclodextrin. SUSTAINABILITY 2022. [DOI: 10.3390/su14159513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cinnamomum longepaniculatum essential oil (CLEO) possesses antibacterial, anti-inflammatory, and antioxidant activities. However, CLEO shows volatilization and poor solubility, which limits its application field. In this research, inclusion complexes of β-cyclodextrin (β-CD) with CLEO were produced, and its physicochemical properties were characterized. Response surface methodology was used to obtain optimum preparation conditions. A statistical model was generated to define the interactions among the selected variables. Results show that the optimal conditions were an H2O/β-CD ratio of 9.6:1 and a β-CD/CLEO ratio of 8:1, with the stirring temperature of 20 °C for the maximal encapsulation efficiency values. The physicochemical properties of CLEO/β-CD inclusion complexes (CLEO/β-CD-IC) were investigated. Fourier transform infrared spectroscopy showed that correlative characteristic bands of CLEO disappeared in the inclusion complex. X-ray diffraction presented different sharp peaks at the diffraction angle of CLEO/β-CD-IC. The thermogravimetric analysis demonstrated the thermal stability of CLEO was enhanced after encapsulation. Tiny aggregates with a smaller size of CLEO/β-CD-IC particles were observed by scanning electron microscopy. The comparison of β-CD, CLEO, and physical mixtures with CLEO/β-CD-IC confirmed the formation of inclusion complexes.
Collapse
|
13
|
Zhu Y, Li S, Li J, Falcone N, Cui Q, Shah S, Hartel MC, Yu N, Young P, de Barros NR, Wu Z, Haghniaz R, Ermis M, Wang C, Kang H, Lee J, Karamikamkar S, Ahadian S, Jucaud V, Dokmeci MR, Kim HJ, Khademhosseini A. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108389. [PMID: 35130584 PMCID: PMC9233032 DOI: 10.1002/adma.202108389] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Indexed: 05/09/2023]
Abstract
The eye is one of the most complex organs in the human body, containing rich and critical physiological information (e.g., intraocular pressure, corneal temperature, and pH) as well as a library of metabolite biomarkers (e.g., glucose, proteins, and specific ions). Smart contact lenses (SCLs) can serve as a wearable intelligent ocular prosthetic device capable of noninvasive and continuous monitoring of various essential physical/biochemical parameters and drug loading/delivery for the treatment of ocular diseases. Advances in SCL technologies and the growing public interest in personalized health are accelerating SCL research more than ever before. Here, the current status and potential of SCL development through a comprehensive review from fabrication to applications to commercialization are discussed. First, the material, fabrication, and platform designs of the SCLs for the diagnostic and therapeutic applications are discussed. Then, the latest advances in diagnostic and therapeutic SCLs for clinical translation are reviewed. Later, the established techniques for wearable power transfer and wireless data transmission applied to current SCL devices are summarized. An outlook, future opportunities, and challenges for developing next-generation SCL devices are also provided. With the rise in interest of SCL development, this comprehensive and essential review can serve as a new paradigm for the SCL devices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp Shah
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ning Yu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Zhuohong Wu
- Department of Nanoengineering, University of California-San Diego, San Diego, CA, 92093, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
14
|
De Marco I. Production of carrier/antioxidant particles by Supercritical Assisted Atomization as an adjuvant treatment of the CoVID-19 pathology. J Supercrit Fluids 2022; 186:105604. [PMID: 35431435 PMCID: PMC8994258 DOI: 10.1016/j.supflu.2022.105604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/27/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
15
|
Folic acid conjugated chitosan encapsulated palladium nanoclusters for NIR triggered photothermal breast cancer treatment. Carbohydr Polym 2022; 280:119021. [PMID: 35027124 DOI: 10.1016/j.carbpol.2021.119021] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
This study developed folic acid (FA) conjugated chitosan (CS) encapsulated rutin (R) synthesized palladium nanoclusters (Pd NCs) for NIR triggered and folate receptor (FR) targeted triple-negative breast cancer (MDA-MB 231 cells) treatment. R-Pd NCs exhibited flower-shaped particles with an average size of <100 nm. FA-CS encapsulation concealed the flower shape of R-Pd NCs with a positive charge. The XRD spectrum confirmed the cubic crystalline structure of Pd. The FA conjugation on CS improved the cellular uptake of R-Pd NCs in MDA-MB 231 cells was confirmed by TEM. FA-CS-R-Pd NCs (+NIR) treatment was considerably inhibited the MDA-MB 231 cells proliferation evidenced by cell viability, fluorescent staining, and flow cytometry analysis. Further, in vitro hemolysis assay and in Ovo model confirmed the non-toxic nature of FA-CS-R-Pd-NCs with or without NIR radiation. Hence, this study concluded that FA-CS-R-Pd NCs can be applied for the treatment of drug-resistant breast cancer.
Collapse
|
16
|
Tian B, Liu J, Liu Y, Wan JB. Integrating diverse plant bioactive ingredients with cyclodextrins to fabricate functional films for food application: a critical review. Crit Rev Food Sci Nutr 2022; 63:7311-7340. [PMID: 35253547 DOI: 10.1080/10408398.2022.2045560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The popularity of plant bioactive ingredients has become increasingly apparent in the food industry. However, these plant bioactive ingredients have many deficiencies, including low water solubility, poor stability, and unacceptable odor. Cyclodextrins (CDs), as cyclic molecules, have been extensively studied as superb vehicles of plant bioactive ingredients. These CD inclusion compounds could be added into various film matrices to fabricate bioactive food packaging materials. Therefore, in the present review, we summarized the extraction methods of plant bioactive ingredients, the addition of these CD inclusion compounds into thin-film materials, and their applications in food packaging. Furthermore, the release model and mechanism of active film materials based on various plant bioactive ingredients with CDs were highlighted. Finally, the current challenges and new opportunities based on these film materials have been discussed.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
17
|
Quercetin, Rutin And Quercetin-Rutin Incorporated Hydroxypropyl β-Cyclodextrin Inclusion Complexes. Eur J Pharm Sci 2022; 172:106153. [DOI: 10.1016/j.ejps.2022.106153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
|
18
|
Native Cyclodextrins and Their Derivatives as Potential Additives for Food Packaging: A Review. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclodextrins (CDs) have been used by the pharmaceutical and food industries since the 1970s. Their cavities allow the accommodation of several hydrophobic molecules, leading to the formation of inclusion complexes (ICs) increasing the guest molecules’ stability, allowing their controlled release, enhancing their water solubility and biodisponibility. Due to these, CDs and their ICs have been proposed to be used as potential allies in food packaging, especially in active packaging. In this review, we present the many ways in which the CDs can be applied in food packaging, being incorporated into the polymer matrix or as a constituent of sachets and/or pads aiming for food preservation, as well as the diverse polymer matrices investigated. The different types of CDs, natives and derivatives, and the several types of compounds that can be used as guest molecules are also discussed.
Collapse
|
19
|
Determining the Optimal Conditions for the Production by Supercritical CO 2 of Biodegradable PLGA Foams for the Controlled Release of Rutin as a Medical Treatment. Polymers (Basel) 2021; 13:polym13101645. [PMID: 34069337 PMCID: PMC8158779 DOI: 10.3390/polym13101645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 01/09/2023] Open
Abstract
Poly(D,L,-lactide-co-glycolide) (PLGA) foam samples impregnated with rutin were successfully produced by supercritical foaming processes. A number of parameters such as pressure (80–200 bar), temperature (35–55 °C), depressurization rate (5–100 bar/min), ratio lactide:glycolide of the poly(D,L,-lactide-co-glycolide) (50:50 and 75:25) were studied to determine their effect on the expansion factor and on the glass transition temperature of the polymer foams and their consequences on the release profile of the rutin entrapped in them. The impregnated foams were characterized by scanning electron microscopy, differential scanning calorimetry, and mercury intrusion porosimetry. A greater impregnation of rutin into the polymer foam pores was observed as pressure was increased. The release of rutin in a phosphate buffer solution was investigated. The controlled release tests confirmed that the modification of certain variables would result in considerable differences in the drug release profiles. Thus, five-day drug release periods were achieved under high pressure and temperature while the depressurization rate remained low.
Collapse
|