1
|
Beilharz S, Debnath MK, Vinella D, Shoffstall AJ, Karayilan M. Advances in Injectable Polymeric Biomaterials and Their Contemporary Medical Practices. ACS APPLIED BIO MATERIALS 2024. [PMID: 39471414 DOI: 10.1021/acsabm.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Injectable biomaterials have been engineered to operate within the human body, offering versatile solutions for minimally invasive therapies and meeting several stringent requirements such as biocompatibility, biodegradability, low viscosity for ease of injection, mechanical strength, rapid gelation postinjection, controlled release of therapeutic agents, hydrophobicity/hydrophilicity balance, stability under physiological conditions, and the ability to be sterilized. Their adaptability and performance in diverse clinical settings make them invaluable for modern medical treatments. This article reviews recent advancements in the design, synthesis, and characterization of injectable polymeric biomaterials, providing insights into their emerging applications. We discuss a broad spectrum of these materials, including natural, synthetic, hybrid, and composite types, that are being applied in targeted drug delivery, cell and protein transport, regenerative medicine, tissue adhesives, injectable implants, bioimaging, diagnostics, and 3D bioprinting. Ultimately, the review highlights the critical role of injectable polymeric biomaterials in shaping the future of medical treatments and improving patient outcomes across a wide range of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Sophia Beilharz
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Mithun Kumar Debnath
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Daniele Vinella
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Metin Karayilan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Elnawam H, Thabet A, Mobarak A, Abdallah A, Elbackly R. Preparation and characterization of bovine dental pulp-derived extracellular matrix hydrogel for regenerative endodontic applications: an in vitro study. BMC Oral Health 2024; 24:1281. [PMID: 39448989 PMCID: PMC11515367 DOI: 10.1186/s12903-024-05004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The use of biological scaffolds in regenerative endodontics has gained much attention in recent years. The search for a new biomimetic scaffold that contains tissue-specific cell homing factors could lead to more predictable tissue regeneration. The aim of this study was to prepare and characterize decellularized bovine dental pulp-derived extracellular matrix (P-ECM) hydrogels for regenerative endodontic applications. METHODS Freshly extracted bovine molar teeth were collected. Bovine dental pulp tissues were harvested, and stored at -40º C. For decellularization, a 5-day protocol was implemented incorporating trypsin/EDTA, deionized water and DNase treatment. Decellularization was evaluated by DNA quantification and histological examination to assess collagen and glycosaminoglycans (GAGs) content. This was followed by the preparation of P-ECM hydrogel alone or combined with hyaluronic acid gel (P-ECM + HA). The fabricated scaffolds were then characterized using protein quantification, hydrogel topology and porosity, biodegradability, and growth factor content using Enzyme-linked immunosorbent assay (ELISA): transforming growth factor beta-1(TGF-β1), basic fibroblast growth factor (bFGF), bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). RESULTS Decellularization was histologically confirmed, and DNA content was below (50 ng/mg tissue). P-ECM hydrogel was prepared with a final ECM concentration of 3.00 mg/ml while P-ECM + HA hydrogel was prepared with a final ECM concentration of 1.5 mg/ml. Total protein content in P-ECM hydrogel was found to be (439.0 ± 123.4 µg/µl). P-ECM + HA showed sustained protein release while the P-ECM group showed gradual decreasing release. Degradation was higher in P-ECM + HA which had a significantly larger fiber diameter, while P-ECM had a larger pore area percentage. ELISA confirmed the retention and release of growth factors where P-ECM hydrogel had higher BMP-2 release, while P-ECM + HA had higher release of TGF-β1, bFGF, and VEGF. CONCLUSIONS Both P-ECM and P-ECM + HA retained their bioactive properties demonstrating a potential role as functionalized scaffolds for regenerative endodontic procedures.
Collapse
Affiliation(s)
- Hisham Elnawam
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Abdelrahman Thabet
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ahmed Mobarak
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Amr Abdallah
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania Elbackly
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Couturier B, Kozak G, Levering J, Zini A, Elinski MB. Accelerated Nanocomposite Hydrogel Gelation Times Independent of Gold Nanoparticle Ligand Functionality. ACS OMEGA 2024; 9:42858-42867. [PMID: 39464430 PMCID: PMC11500131 DOI: 10.1021/acsomega.4c05102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
The expansive use of hydrogels in healthcare relies on carefully tuned properties in dynamic environments with predictable behavior, including time sensitive biological systems and biomedical applications. To meet demands in these settings, nanomaterials are often introduced to a hydrogel matrix which simultaneously elevates potential applications while adding complexity to fundamental characteristics. With respect to drug delivery, gold nanoparticles have modifiable surfaces to carry an array of targeted drug treatments. However, different molecules acting as capping ligands possess different chemical structures that can impact gelation times. To understand the influence of capping ligand chemistry on polyacrylamide (PAM) based nanocomposite hydrogel radical gelation time, gold nanoparticle (Au NP) capping ligands were selected to encompass varying functional groups and molecular weights: citrate, cetyltrimethylammonium bromide, polyvinylpyrrolidone, and poly(acrylic acid). Gelation times were quantified as the storage-loss moduli crossover point in rheological time sweeps at constant strain and frequency. The dominating factor for gelation time was the presence of Au NPs, independent of a diverse range of capping ligand structures. The gelation times were also markedly faster than the same capping ligand structures used as stand-alone molecular additives. The accelerated Au NP gelation times, under 2 min, are attributed to the Au NPs acting as a cross-linker, promoting gelation. These results bolster the potential implementation of Au NP nanocomposite hydrogels in time-sensitive biomedical applications as robust drug carriers.
Collapse
Affiliation(s)
- Brianna Couturier
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Gloria Kozak
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - John Levering
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Anna Zini
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Meagan B Elinski
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| |
Collapse
|
4
|
Widiyanti P, Pratama WA. N-succinyl chitosan-oxidized hyaluronic acid-calcium chloride hydrogel as hemostatic agent. Int J Artif Organs 2024:3913988241280202. [PMID: 39360339 DOI: 10.1177/03913988241280202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
This study aims to develop an effective hemostatic agent in the management of irregular and deep wounds that can accelerate the hemostatic process. The background revealed the importance of rapid treatment of bleeding, with data showing a significant risk of death from blood loss. Current treatments use conventional hemostatic dressings, but they are less effective on irregular surgical wounds. Several studies have developed chitosan, hyaluronic acid, and CaCl2-based hydrogels that have hemostatic, regenerative, and antibacterial potential. However, there is still a need to develop hydrogels that are thermally stable, biocompatible, and able to accelerate the hemostatic process. This research will synthesize self-healing hydrogels by modifying the structure of chitosan and hyaluronic acid, using a certain ratio of ingredients. The research procedure was carried out with the preparation of N-succinyl chitosan (NSC) and oxidized hyaluronic acid (OHA) as the main ingredients which were then added with CaCl2 to produce self-healing injectable hydrogel. First, NSC and OHA were dissolved in phosphate buffer solution (pH = 7.4 PBS) to obtain 60 mg/mL NSC and OHA solution respectively. Calcium chloride was then dissolved in water to obtain 120 mg/mL CaCl2 solution. Then NSC-OHA-CaCl2-based hydrogels were synthesized through rapid and full solution mixing above room temperature with the composition of (1-1-0.1; 1-1-0.2; and 1-1-0.3). The targeted findings of this research are sample characterization results that explain and prove the best NSC-OHA-CaCl2 composition variation that can be used as a hemostatic agent for irregular and deep wounds. The results of the analysis obtained FTIR test data with the formation of C = N functional groups in the four samples; blood clotting time test for sample K0, K1, K2, and K3 with time 4.6, 3.33, 2.66, and 1 s; MTT assay with cell viability percentage of 77.82% for sample K0, 84.18% for sample K1, 89.30% for sample K2, and 89.50% for sample K3; hemolysis index percentage of 0.373% for sample K0, 0.555% for sample K1, 0.625% for sample K2, and 0.201% for sample K3; Viscosity test obtained data of 13 dPa s for sample K0, 15 dPa s for sample K1, 16 dPa s for sample K2, and 18 dPa. The injectability test yielded an injectability percentage of 96.84% for sample K0, 95.03% for sample K1, 94.78% dPa s for sample K2, and 94.61% for sample K3; the DSC test results of the four samples obtained a transition peak at the exothermic peak of 62.27°C for sample K0, 70.23°C for sample K1, 73.77°C for sample K2, and 74.49°C for sample K3; and the characteristic graph of the TGA test results, the weight profile of the hydrogel during heating which showed a mass change of 21.64 mg in sample K0, 16.89 mg in sample K1, 15.37 mg in sample K2, and 11.43 mg in sample K3 (°C).
Collapse
Affiliation(s)
- Prihartini Widiyanti
- Biomedical Engineering Study Program, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Java, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Java, Indonesia
| | - Wahyu Addin Pratama
- Biomedical Engineering Study Program, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Java, Indonesia
| |
Collapse
|
5
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
6
|
Tohidi H, Maleki N, Simchi A. Conductive, injectable, and self-healing collagen-hyaluronic acid hydrogels loaded with bacterial cellulose and gold nanoparticles for heart tissue engineering. Int J Biol Macromol 2024; 280:135749. [PMID: 39299426 DOI: 10.1016/j.ijbiomac.2024.135749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
The increasing demand for advanced biomaterials in nerve tissue engineering presents numerous challenges due to the complexity of nerve tissues and the need for materials that can accurately replicate their intricate structure and function. In response, this study introduces a novel injectable hydrogel that is thermosensitive, self-healing, and conductive, offering promising potential for nerve tissue engineering applications. The hydrogel is based on collagen and hyaluronic acid functionalized with 3-aminopropyl-triethoxysilane (APTES)-grafted oxidized bacterial cellulose and gold nanoparticles (~50 nm). Rheological analysis reveals a substantial enhancement in the elastic modulus of the collagen-hyaluronic acid matrix with the incorporation of bacterial cellulose/gold nanoparticles, improving by an order of magnitude at 1 % strain. This improvement comes with a slight decrease in gelation temperature, from 36 °C to 32 °C. Besides thermo-sensitivity, the nanocomposite hydrogel exhibits a remarkable self-sealing response (about 80 % effectiveness) due to reversible physical crosslinking. Electrical spatial resistance measurements on human embryonic stem cell-derived cardiomyocytes-loaded hydrogels yield a value of ~0.1 S/m, which is suitable for electrical stimulation. In vitro extracellular field potential measurements also affirm the hydrogel's potential as an injectable scaffold for heart tissue engineering, i.e., the electrically stimulated human stem cells exhibit 47 beats per minute with a cell discharge (depletion) of 5.47 μv. A rapid gel formation in the physiological temperature (about 2 min) and high H9C2 cytotoxicity (viability of >90 % after 72 h incubation) is attainable. The developed collagen-based nanocomposite hydrogel offers an injectable, thermosensitive, and self-healing biomaterial platform for nerve or myocardium regeneration.
Collapse
Affiliation(s)
- Hajar Tohidi
- Department of Physics and Chemistry, Alzahra University, Vanak Village Street, Tehran 19938 93973, Tehran Province, Iran
| | - Nahid Maleki
- Department of Physics and Chemistry, Alzahra University, Vanak Village Street, Tehran 19938 93973, Tehran Province, Iran.
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran; Center for Bioscience and Technology, Institute for Convergence Science & Technology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran.
| |
Collapse
|
7
|
Rubina A, Sceglovs A, Ramata-Stunda A, Pugajeva I, Skadins I, Boyd AR, Tumilovica A, Stipniece L, Salma-Ancane K. Injectable mineralized Sr-hydroxyapatite nanoparticles-loaded ɛ-polylysine-hyaluronic acid composite hydrogels for bone regeneration. Int J Biol Macromol 2024; 280:135703. [PMID: 39288854 DOI: 10.1016/j.ijbiomac.2024.135703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
In this study, multifunctional injectable mineralized antibacterial nanocomposite hydrogels were prepared by a homogenous distribution of high content of (up to 60 wt%) Sr-substituted hydroxyapatite (Sr-HAp) nanoparticles into covalently cross-linked ɛ-polylysine (ɛ-PL) and hyaluronic acid (HA) hydrogel network. The developed bone-targeted nanocomposite hydrogels were to synergistically combine the functional properties of bioactive Sr-HAp nanoparticles and antibacterial ɛ-PL-HA hydrogels for bone tissue regeneration. Viscoelasticity, injectability, structural parameters, degradation, antibacterial activity, and in vitro biocompatibility of the fabricated nanocomposite hydrogels were characterized. Physical performances of the ɛ-PL-HA hydrogels can be tailored by altering the mass ratio of Sr-HAp. The nanocomposite hydrogels revealed good stability against enzymatic degradation, which increased from 5 to 19 weeks with increasing the mass ratio of Sr-HAp from 40 % to 60 %. The loading of the Sr-HAp at relatively high mass ratios did not suppress the fast-acting and long-term antibacterial activity of the ɛ-PL-HA hydrogels against S. aureus and E. coli. The cell studies confirmed the cytocompatibility and pre-collagen I synthesis-promoting activity of the fabricated nanocomposite hydrogels.
Collapse
Affiliation(s)
- A Rubina
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - A Sceglovs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - A Ramata-Stunda
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - I Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia
| | - I Skadins
- Department of Biology and Microbiology, Riga Stradins University, Dzirciema St. 16, Riga LV-1007, Latvia
| | - A R Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom of Great Britain and Northern Ireland
| | - A Tumilovica
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - L Stipniece
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| | - K Salma-Ancane
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| |
Collapse
|
8
|
Delgado JF, Negussie AH, Varble NA, Mikhail AS, Arrichiello A, Borde T, Saccenti L, Bakhutashvili I, Owen JW, Morhard R, Karanian JW, Pritchard WF, Wood BJ. In vivo Imaging and Pharmacokinetics of Percutaneously Injected Ultrasound and X-ray Imageable Thermosensitive Hydrogel loaded with Doxorubicin versus Free Drug in Swine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.01.610710. [PMID: 39282453 PMCID: PMC11398325 DOI: 10.1101/2024.09.01.610710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Intratumoral injections often lack visibility, leading to unpredictable outcomes such as incomplete tumor coverage, off-target drug delivery and systemic toxicities. This study investigated an ultrasound (US) and x-ray imageable thermosensitive hydrogel based on poloxamer 407 (POL) percutaneously delivered in a healthy swine model. The primary objective was to assess the 2D and 3D distribution of the hydrogel within tissue across three different needle devices and injection sites: liver, kidney, and intercostal muscle region. Secondly, pharmacokinetics of POL loaded with doxorubicin (POLDOX) were evaluated and compared to free doxorubicin injection (DOXSoln) with a Single End Hole Needle. Utilizing 2D and 3D morphometrics from US and x-ray imaging techniques such as Computed Tomography (CT) and Cone Beam CT (CBCT), we monitored the localization and leakage of POLDOX over time. Relative iodine concentrations measured with CBCT following incorporation of an iodinated contrast agent in POL indicated potential drug diffusion and advection transport. Furthermore, US imaging revealed temporal changes, suggesting variations in acoustic intensity, heterogeneity, and echotextures. Notably, 3D reconstruction of the distribution of POL and POLDOX from 2D ultrasound frames was achieved and morphometric data obtained. Pharmacokinetic analysis revealed lower systemic exposure of the drug in various organs with POLDOX formulation compared to DOXSoln formulation. This was demonstrated by a lower area under the curve (852.1 ± 409.1 ng/mL·h vs 2283.4 ± 377.2 ng/mL·h) in the plasma profile, suggesting a potential reduction in systemic toxicity. Overall, the use of POL formulation offers a promising strategy for precise and localized drug delivery, that may minimize adverse effects. Dual modality POL imaging enabled analysis of patterns of gel distribution and morphology, alongside of pharmacokinetics of local delivery. Incorporating hydrogels into drug delivery systems holds significant promise for improving the predictability of the delivered drug and enhancing spatial conformability. These advancements can potentially enhance the safety and precision of anticancer therapy.
Collapse
Affiliation(s)
- Jose F. Delgado
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD
| | - Ayele H. Negussie
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Nicole A. Varble
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
- Philips Healthcare, Cambridge, MA
| | - Andrew S. Mikhail
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Antonio Arrichiello
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
- UOS of Interventional Radiology, Department of Diagnostic and Interventional Radiology, Ospedale Maggiore di Lodi, Largo Donatori del Sangue, Lodi, Italy
| | - Tabea Borde
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Laetitia Saccenti
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Ivane Bakhutashvili
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Joshua W. Owen
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Robert Morhard
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - John W. Karanian
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - William F. Pritchard
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Bradford J. Wood
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD
| |
Collapse
|
9
|
Delgado JF, Owen JW, Pritchard WF, Varble NA, Lopez-Silva TL, Mikhail AS, Arrichiello A, Ray T, Morhard R, Borde T, Saccenti L, Xu S, Rivera J, Schneider JP, Karanian JW, Wood BJ. Ultrasound and x-ray imageable poloxamer-based hydrogel for loco-regional therapy delivery in the liver. Sci Rep 2024; 14:20455. [PMID: 39227382 PMCID: PMC11372101 DOI: 10.1038/s41598-024-70992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Intratumoral injections have the potential for enhanced cancer treatment efficacy while reducing costs and systemic exposure. However, intratumoral drug injections can result in substantial off-target leakage and are invisible under standard imaging modalities like ultrasound (US) and x-ray. A thermosensitive poloxamer-based gel for drug delivery was developed that is visible using x-ray imaging (computed tomography (CT), cone beam CT, fluoroscopy), as well as using US by means of integrating perfluorobutane-filled microbubbles (MBs). MBs content was optimized using tissue mimicking phantoms and ex vivo bovine livers. Gel formulations less than 1% MBs provided gel depositions that were clearly identifiable on US and distinguishable from tissue background and with minimal acoustic artifacts. The cross-sectional areas of gel depositions obtained with US and CT imaging were similar in studies using ex vivo bovine liver and postmortem in situ swine liver. The gel formulation enhanced multimodal image-guided navigation, enabling fusion of ultrasound and x-ray/CT imaging, which may enhance targeting, definition of spatial delivery, and overlap of tumor and gel. Although speculative, such a paradigm for intratumoral drug delivery might streamline clinical workflows, reduce radiation exposure by reliance on US, and boost the precision and accuracy of drug delivery targeting during procedures. Imageable gels may also provide enhanced temporal and spatial control of intratumoral conformal drug delivery.
Collapse
Affiliation(s)
- Jose F Delgado
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park. Maryland, USA.
| | - Joshua W Owen
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - William F Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| | - Nicole A Varble
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Philips Healthcare, Cambridge, MA, USA
| | - Tania L Lopez-Silva
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Antonio Arrichiello
- Department of Diagnostic and Interventional Radiology, UOS of Interventional Radiology, Ospedale Maggiore Di Lodi, Largo Donatori del Sangue, Lodi, Italy
| | - Trisha Ray
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Robert Morhard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tabea Borde
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Laetitia Saccenti
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sheng Xu
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Jocelyne Rivera
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Institute of Biomedical Engineering, St. Catherine's College, University of Oxford, Oxford, UK
| | - Joel P Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - John W Karanian
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park. Maryland, USA.
| |
Collapse
|
10
|
Ranamalla SR, Tavakoli S, Porfire AS, Tefas LR, Banciu M, Tomuța I, Varghese OP. A quality by design approach to optimise disulfide-linked hyaluronic acid hydrogels. Carbohydr Polym 2024; 339:122251. [PMID: 38823918 DOI: 10.1016/j.carbpol.2024.122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.
Collapse
Affiliation(s)
- Saketh Reddy Ranamalla
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babeș-Bolyai" University, 400015 Cluj-Napoca, Romania; Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hațieganu, 400010 Cluj-Napoca, Romania
| | - Shima Tavakoli
- Macromolecular Chemistry Laboratory, Department of Chemistry-Ångstrom, Uppsala University, Uppsala 751 21, Sweden
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hațieganu, 400010 Cluj-Napoca, Romania
| | - Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hațieganu, 400010 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babeș-Bolyai" University, 400015 Cluj-Napoca, Romania
| | - Ioan Tomuța
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hațieganu, 400010 Cluj-Napoca, Romania.
| | - Oommen P Varghese
- Macromolecular Chemistry Laboratory, Department of Chemistry-Ångstrom, Uppsala University, Uppsala 751 21, Sweden.
| |
Collapse
|
11
|
Cheng X, Wu L. Injectable smart-blended hydrogel cross-linked with Vanillin to accelerate differentiation of intervertebral disc-derived stem cells (IVDSCs) for promoting degenerative nucleolus pulposus in a rat model. Inflammopharmacology 2024:10.1007/s10787-024-01554-4. [PMID: 39207637 DOI: 10.1007/s10787-024-01554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleus pulposus (NP) degradation is a primary factor in intervertebral disk degeneration (IVD) and a major contributor to low back pain. Intervertebral disk-derived stem cell (IVDSC) therapy presents a promising solution, yet identifying suitable cell carriers for NP transplantation remains challenging. The present study investigates this issue by developing smart injectable hydrogels incorporating vanillin (V) and hyaluronic acid (HA) encapsulated with IVDSCs to facilitate IVD regeneration. MATERIALS AND METHODS The hydrogel was cross linked by carbodiimide-succinimide (EDC-NHS) method. Enhanced mechanical properties were achieved by integrating collagen and HA into the hydrogel. The rheological analysis revealed the pre-gel viscoelastic and shear-thinning characteristics. RESULTS In vitro, cell viability was maintained up to 500 µg/mL, with a high proliferation rate observed over 14 days. The hydrogels supported multilineage differentiation, as confirmed by osteogenic and adipogenic induction. Anti-inflammatory effects were demonstrated by reduced cytokine release (TNF-α, IL-6, IL-1β) after 24 h of treatment. Gene expression studies indicated elevated levels of chondrocyte markers (Acan, Sox9, Col2). In vivo, hydrogel injection into the NP was monitored via X-ray imaging, showing a significant increase in disk height index (DHI%) after 8 weeks, alongside improved histologic scores. Biomechanical testing revealed that the hydrogel effectively mimicked NP properties, enhancing compressive stiffness and reducing neutral zone stiffness post-denucleation. CONCLUSION The results suggest that the synthesized VCHA-NP hydrogel can be used as an alternative to NPs, offering a promising path for IVD regeneration.
Collapse
Affiliation(s)
- Xiangyang Cheng
- Department of Orthopedics, Minhang Hospital, Fudan University, No.170, Xin Song Road, Shanghai, 201199, China
| | - Liang Wu
- Department of Orthopedics, Minhang Hospital, Fudan University, No.170, Xin Song Road, Shanghai, 201199, China.
| |
Collapse
|
12
|
Guarnera D, Restaino F, Vannozzi L, Trucco D, Mazzocchi T, Worwąg M, Gapinski T, Lisignoli G, Zaffagnini S, Russo A, Ricotti L. Arthroscopic device with bendable tip for the controlled extrusion of hydrogels on cartilage defects. Sci Rep 2024; 14:19904. [PMID: 39191817 DOI: 10.1038/s41598-024-70426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Advanced tools for the in situ treatment of articular cartilage lesions are attracting a growing interest in both surgery and bioengineering communities. The interest is particularly high concerning the delivery of cell-laden hydrogels. The tools currently available in the state-of-the-art hardly find an effective compromise between treatment accuracy and invasiveness. This paper presents a novel arthroscopic device provided with a bendable tip for the controlled extrusion of cell-laden hydrogels. The device consists of a handheld extruder and a supply unit that allows the extrusion of hydrogels. The extruder is equipped with a disposable, bendable nitinol tip (diameter: 4 mm, length: 92 mm, maximum bending angle: 90°) that guarantees access to hard-to-reach areas of the joint, which are difficult to get to, with conventional arthroscopic instruments. The tip accommodates a biocompatible polymer tube that is directly connected to the cartridge containing the hydrogel, whose plunger is actuated by a volumetric or pneumatic supply unit (both tested, in this study). Three different chondrocyte-laden hydrogels (RGD-modified Vitrogel®, methacrylated gellan gum, and an alginate-gelatine blend) were considered. First, the performance of the device in terms of resolution in hydrogel delivery was assessed, finding values in the range between 4 and 102 µL, with better performance found for the pneumatic supply unit and no significant differences between straight tip and bent tip conditions. Finite element simulations suggested that the shear stresses and pressure levels generated during the extrusion process were compatible with a safe deposition of the hydrogels. Biological analyses confirmed a high chondrocyte viability over a 7-day period after the extrusion of the three cell-laden hydrogel types, with no differences between the two supply units. The arthroscopic device was finally tested ex vivo by nine orthopedic surgeons on human cadaver knees. The device allowed surgeons to easily deliver hydrogels even in hard-to-reach cartilage areas. The outcomes of a questionnaire completed by the surgeons demonstrated a high usability of the device, with an overall preference for the pneumatic supply unit. Our findings provide evidence supporting the future arthroscopic device translation in pre-clinical and clinical scenarios, dealing with osteoarticular treatments.
Collapse
Affiliation(s)
- Daniele Guarnera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy.
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy.
| | - Francesco Restaino
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
| | - Diego Trucco
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | | | - Michał Worwąg
- Vimex Endoscopy, Ul. Toruńska 27, 44-122, Gliwice, Poland
| | - Tomasz Gapinski
- Lega Medical Sp. Z o. O, ul. Majowa 11, 44-217, Rybnik, Poland
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - Stefano Zaffagnini
- IRCCS Istituto Ortopedico Rizzoli, Orthopaedic and Traumatologic Clinic, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - Alessandro Russo
- IRCCS Istituto Ortopedico Rizzoli, Orthopaedic and Traumatologic Clinic, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
| |
Collapse
|
13
|
Agarwal G, Shumard S, McCrary MW, Osborne O, Santiago JM, Ausec B, Schmidt CE. Decellularized porcine peripheral nerve based injectable hydrogels as a Schwann cell carrier for injured spinal cord regeneration. J Neural Eng 2024; 21:046002. [PMID: 38885674 DOI: 10.1088/1741-2552/ad5939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Objective.To develop a clinically relevant injectable hydrogel derived from decellularized porcine peripheral nerves and with mechanical properties comparable to native central nervous system (CNS) tissue to be used as a delivery vehicle for Schwann cell transplantation to treat spinal cord injury (SCI).Approach.Porcine peripheral nerves (sciatic and peroneal) were decellularized by chemical decellularization using a sodium deoxycholate and DNase (SDD) method previously developed by our group. The decellularized nerves were delipidated using dichloromethane and ethanol solvent and then digested using pepsin enzyme to form injectable hydrogel formulations. Genipin was used as a crosslinker to enhance mechanical properties. The injectability, mechanical properties, and gelation kinetics of the hydrogels were further analyzed using rheology. Schwann cells encapsulated within the injectable hydrogel formulations were passed through a 25-gauge needle and cell viability was assessed using live/dead staining. The ability of the hydrogel to maintain Schwann cell viability against an inflammatory milieu was assessedin vitrousing inflamed astrocytes co-cultured with Schwann cells.Mainresults. The SDD method effectively removes cells and retains extracellular matrix in decellularized tissues. Using rheological studies, we found that delipidation of decellularized porcine peripheral nerves using dichloromethane and ethanol solvent improves gelation kinetics and mechanical strength of hydrogels. The delipidated and decellularized hydrogels crosslinked using genipin mimicked the mechanical strength of CNS tissue. The hydrogels were found to have shear thinning properties desirable for injectable formulations and they also maintained higher Schwann cell viability during injection compared to saline controls. Usingin vitroco-culture experiments, we found that the genipin-crosslinked hydrogels also protected Schwann cells from astrocyte-mediated inflammation.Significance. Injectable hydrogels developed using delipidated and decellularized porcine peripheral nerves are a potential clinically relevant solution to deliver Schwann cells, and possibly other therapeutic cells, at the SCI site by maintaining higher cellular viability and increasing therapeutic efficacy for SCI treatment.
Collapse
Affiliation(s)
- Gopal Agarwal
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Samantha Shumard
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Olivia Osborne
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Jorge Mojica Santiago
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Breanna Ausec
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
14
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
15
|
Aftab M, Javed F, Haider S, Khan R, Khan SU, Alam K, Amir A, Ullah F, Shah NA. Design and Characterization of Chitosan-Based Smart Injectable Hydrogel for Improved Sustained Release of Antinarcotics. Pharmaceuticals (Basel) 2024; 17:749. [PMID: 38931416 PMCID: PMC11206616 DOI: 10.3390/ph17060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The treatment adherence of narcotics-addicted individuals with reduced incidences of relapse can be enhanced by a sustained drug release formulation of antinarcotics. So far, different drug formulations have been reported with sustained drug release periods of 28 and 35 days. To further enhance this duration, different formulations of injectable hydrogels (IHs) have been developed by combining low molecular weight (LMW) and high molecular weight (HMW) chitosan (CS) with guar gum (GG) and crosslinking them by sodium bi phosphate dibasic. The structural, morphological, and physicochemical properties of LMW-CS IH, and HMW-CS IH were evaluated using Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and rheological, swelling, and biodegradation analysis. The HMW-CS IH showed high crosslinking, increased thermal stability, high mechanical strength, elevated swelling, and low biodegradation. The antinarcotic drugs naltrexone (NTX) and disulfiram (DSF) were loaded separately into the HMW-CS IH and LMW-CS IH. The release of NTX and DSF was investigated in phosphate buffer saline (PBS) and ethanol (0.3%, 0.4%, and 0.5%) over a 56-day period using an UV spectrophotometer. The drug release data were tested in zero-order, first-order, and Korsemeyer-Peppas mathematical models. In PBS, all prepared formulations followed non-Fickian drug release, while in ethanol, only NTX HMW-CS IH followed non-Fickian release in all three different concentrations of ethanol.
Collapse
Affiliation(s)
- Maryam Aftab
- Department of Biosciences, COMSATS University, Park Road, Islamabad 45520, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan;
| | - Sajjad Haider
- Department of Chemical Engineering, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Rawaiz Khan
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Kamran Alam
- Separation and Conversation Technology, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium;
| | - Afreenish Amir
- Department of Microbiology, National Institute of Health, Islamabad 45500, Pakistan;
| | - Faheem Ullah
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
- School of Materials and Mineral Resources Engineering, Engineering Campus, University Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Naseer Ali Shah
- Department of Biosciences, COMSATS University, Park Road, Islamabad 45520, Pakistan
| |
Collapse
|
16
|
Michalska N, Totoń E, Kopczyński P, Jankowska-Wajda M, Rubiś B. Alternative Therapies in Transplantology as a Promising Perspective in Medicine. Ann Transplant 2024; 29:e943387. [PMID: 38831572 PMCID: PMC11162143 DOI: 10.12659/aot.943387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 03/12/2024] [Indexed: 06/05/2024] Open
Abstract
Despite continuous and rapid progress in the transplantation of cells, tissues, and organs, many patients die before receiving them. This is because of an insufficient number of donors, which leads to a significant disproportion between the need for donors and their availability. This review aims to present the possibilities offered by alternative therapies. We use the term "functional transplantology" to describe such alternative methods of transplantation that could help change the current state of transplantation medicine. Its purpose is not to replace a defective or removed organ with another but to replace its functions using complementary biological, mechanical, or biomechanical structures or devices. Implementation of many innovative solutions shown in the work for clinical applications is already a fact. In the case of others, it should be considered a future vision. We hope that the role of a defective or damaged tissue or a group of tissues will be taken over by different structures that are functionally complementary with the organ being substituted. Undoubtedly, developing the described methods based on functional transplantology will change the face of transplantation medicine. Thus, we show current trends and new directions of thinking and actions in transplantation medicine that combine technology and transplantology. The review considers the latest technologies, including 3D bioprinting, nanotechnology, cell encapsulation, and organoids. We discuss not only the advantages of new approaches but also the limitations and challenges that must be overcome to achieve significant progress in transplantation. That is the only option to provide a safe and efficient way of improving the quality of life of many patients.
Collapse
Affiliation(s)
- Natasza Michalska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznań University of Medical Sciences, Poznań, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznań University of Medical Sciences, Poznań, Poland
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznań University of Medical Sciences, Poznań, Poland
| | | | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
17
|
Qiu H, Wang J, Hu H, Song L, Liu Z, Xu Y, Liu S, Zhu X, Wang H, Bao C, Lin H. Preparation of an injectable and photocurable carboxymethyl cellulose/hydroxyapatite composite and its application in cranial regeneration. Carbohydr Polym 2024; 333:121987. [PMID: 38494238 DOI: 10.1016/j.carbpol.2024.121987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Limited bone regeneration, uncontrollable degradation rate, mismatched defect zone and poor operability have plagued the reconstruction of irregular bone defect by tissue-engineered materials. A combination of biomimetic scaffolds with hydroxyapatite has gained great popularity in promoting bone regeneration. Therefore, we designed an injectable, photocurable and in-situ curing hydrogel by methacrylic anhydride -modified carboxymethyl cellulose (CMC-MA) loading with spherical hydroxyapatite (HA) to highly simulate the natural bony matrix and match any shape of damaged tissue. The prepared carboxymethyl cellulose-methacrylate/ hydroxyapatite(CMC-MA/HA) composite presented good rheological behavior, swelling ratio and mechanical property under light illumination. Meanwhile, this composite hydrogel promoted effectively proliferation, supported adhesion and upregulated the osteogenic-related genes expression of MC3T3-E1 cells in vitro, as well as the activity of the osteogenic critical protein, Integrin α1, β1, Myosin 9, Myosin 10, BMP-2 and Smad 1 in Integrin/BMP-2 signal pathway. Together, the composite hydrogels realized promotion of bone regeneration, deformity improvement, and the enhanced new bone strength in skull defect. It also displayed a good histocompatibility and stability of subcutaneous implantation in vivo. Overall, this study laid the groundwork for future research into developing a novel biomaterial and a minimally invasive therapeutic strategies for reconstructing bone defects and contour deficiencies.
Collapse
Affiliation(s)
- He Qiu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hong Hu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Lu Song
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zhanhong Liu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Shuo Liu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
18
|
Yu C, Xu J, Heidari G, Jiang H, Shi Y, Wu A, Makvandi P, Neisiany RE, Zare EN, Shao M, Hu L. Injectable hydrogels based on biopolymers for the treatment of ocular diseases. Int J Biol Macromol 2024; 269:132086. [PMID: 38705321 DOI: 10.1016/j.ijbiomac.2024.132086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Injectable hydrogels based on biopolymers, fabricated utilizing diverse chemical and physical methodologies, exhibit exceptional physical, chemical, and biological properties. They have multifaceted applications encompassing wound healing, tissue regeneration, and across diverse scientific realms. This review critically evaluates their largely uncharted potential in ophthalmology, elucidating their diverse applications across an array of ocular diseases. These conditions include glaucoma, cataracts, corneal disorders (spanning from age-related degeneration to trauma, infections, and underlying chronic illnesses), retina-associated ailments (such as diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration (AMD)), eyelid abnormalities, and uveal melanoma (UM). This study provides a thorough analysis of applications of injectable hydrogels based on biopolymers across these ocular disorders. Injectable hydrogels based on biopolymers can be customized to have specific physical, chemical, and biological properties that make them suitable as drug delivery vehicles, tissue scaffolds, and sealants in the eye. For example, they can be engineered to have optimum viscosity to be injected intravitreally and sustain drug release to treat retinal diseases. Their porous structure and biocompatibility promote cellular infiltration to regenerate diseased corneal tissue. By accentuating their indispensable role in ocular disease treatment, this review strives to present innovative and targeted approaches in this domain, thereby advancing ocular therapeutics.
Collapse
Affiliation(s)
- Caiyu Yu
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China; School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahao Xu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Golnaz Heidari
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4410, New Zealand
| | - Huijun Jiang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifeng Shi
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran; Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India.
| | - Minmin Shao
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China.
| | - Liang Hu
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
19
|
Wang D, Zhang L, He D, Zhang Y, Zhao L, Miao Z, Cheng W, Zhu C, Shao Y, Ge G, Zhu H, Jin H, Zhang W, Pan H. A natural hydrogel complex improves intervertebral disc degeneration by correcting fatty acid metabolism and inhibiting nucleus pulposus cell pyroptosis. Mater Today Bio 2024; 26:101081. [PMID: 38741924 PMCID: PMC11089368 DOI: 10.1016/j.mtbio.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The degeneration of intervertebral discs is strongly associated with the occurrence of pyroptosis in nucleus pulposus (NP) cells. This pyroptosis is characterized by abnormal metabolism of fatty acids in the degenerative pathological state, which is further exacerbated by the inflammatory microenvironment and degradation of the extracellular matrix. In order to address this issue, we have developed a fibrin hydrogel complex (FG@PEV). This intricate formulation amalgamates the beneficial attributes of platelet extravasation vesicles, contributing to tissue repair and regeneration. Furthermore, this complex showcases exceptional stability, gradual-release capabilities, and a high degree of biocompatibility. In order to substantiate the biological significance of FG@PEV in intervertebral disc degeneration (IVDD), we conducted a comprehensive investigation into its potential mechanism of action through the integration of RNA-seq sequencing and metabolomics analysis. Furthermore, these findings were subsequently validated through experimentation in both in vivo and in vitro models. The experimental results revealed that the FG@PEV intervention possesses the capability to reshape the inflammatory microenvironment within the disc. It also addresses the irregularities in fatty acid metabolism of nucleus pulposus cells, consequently hindering cellular pyroptosis and slowing down disc degeneration through the regulation of extracellular matrix synthesis and degradation. As a result, this injectable gel system represents a promising and innovative therapeutic approach for mitigating disc degeneration.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Lan Zhao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Wei Cheng
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Chengyue Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Yinyan Shao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Guofen Ge
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Hang Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - HongTing Jin
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| |
Collapse
|
20
|
Lee YM, Lu ZW, Wu YC, Liao YJ, Kuo CY. An injectable, chitosan-based hydrogel prepared by Schiff base reaction for anti-bacterial and sustained release applications. Int J Biol Macromol 2024; 269:131808. [PMID: 38697439 DOI: 10.1016/j.ijbiomac.2024.131808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Injectable hydrogels, providing sustained release as implanted materials, have received tremendous attention. In this study, chitosan-based hydrogels were prepared via Schiff base reaction of the aldehyde groups on Poly(NIPAM-co-FBEMA) and the amine groups on chitosan. Owing to the dynamic covalent linkage, the SC/PNF hydrogels exhibit pH-responsive, reversible sol-gel transition, injectable, and self-healing capacity. The mechanical strength of SC/PNF hydrogels can be operated simply by switching the composition or solid content of Poly(NIPAM-co-FBEMA) copolymers. Rheological analyses, including frequency sweeps, strain sweep scanning, and dynamic time sweeps, were employed to demonstrate the relationship between storage modulus (G'), loss modulus (G″), and composition of the SC/PNF hydrogels. In vitro release behaviors reveal that vancomycin-loaded SC/PNF hydrogel could contribute to both the initial burst release (over 1000 ppm within 4 h) and the sustained release (3000 ppm for at least 30 days). Pristine SC/PNF hydrogel holds good biocompatibility toward L929 cells and S. aureus that it degrades as incubated with S. aureus. However, vancomycin-wrapped SC/PNF hydrogel possesses a rapid bacterial-killing effect with a clear inhibition zone. In short, the SC/PNF hydrogels deliver not only sustainable release ability but also tunable physical properties, which are expected to be an outstanding candidate for non-invasive, anti-infection applications.
Collapse
Affiliation(s)
- Yu-Ming Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan
| | - Zhi-Wei Lu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan
| | - Yue-Ci Wu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan
| | - Yun-Jie Liao
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan
| | - Chih-Yu Kuo
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan.
| |
Collapse
|
21
|
Peyravian N, Milan PB, Kebria MM, Mashayekhan S, Ghasemian M, Amiri S, Hamidi M, Shavandi A, Moghtadaei M. Designing and synthesis of injectable hydrogel based on carboxymethyl cellulose/carboxymethyl chitosan containing QK peptide for femoral head osteonecrosis healing. Int J Biol Macromol 2024; 270:132127. [PMID: 38718991 DOI: 10.1016/j.ijbiomac.2024.132127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
Femoral head necrosis is a debilitating disorder that typically caused by impaired blood supply to the hip joint. In this study, a novel injectable hydrogel based on Oxidized Carboxymethyl Cellulose (OCMC)-Carboxymethyl Chitosan (CMCS) polymers containing an angiogenesis stimulator peptide (QK) with a non-toxic crosslinking interaction (Schiff based reaction) was synthesized to enhance angiogenesis following femoral head necrosis in an animal model. The physicochemical features of fabricated injectable hydrogel were analyzed by FTIR, swelling and degradation rate, rheometry, and peptide release. Also, the safety and efficacy were evaluated following an in vitro hydrogel injection study and an avascular necrosis (AVN) animal model. According to the results, the hydrogel exhibited an appropriate swelling ratio and water uptake (>90 %, 24 h) as well as a suitable degradation rate over 21 days accompanied by a continuous peptide release. Also, data showed that hydrogels containing QK peptide boosted the proliferation, differentiation, angiogenesis, and osteogenic potential of both Bone Marrow mesenchymal Stem Cells (BM-MSCs) and human umbilical vein endothelial cells (HUVECs) (****p < 0.0001 and ***p < 0.001, respectively). Furthermore, molecular and histological evaluations significantly demonstrated the overexpression of Runx2, Osteocalcin, Collagen I, VEGF and CD34 genes (**p < 0.01 and ***p < 0.001, respectively), and also femoral head necrosis was effectively prohibited, and more blood vessels were detected in defect area by OCMC-CMCS hydrogel containing QK peptide (bone trabeculae >9000, ***p < 0.001). In conclusion, the findings demonstrate that OCMC-CMCS-QK injectable hydrogel could be considered as an impressive therapeutic construct for femoral head AVN healing.
Collapse
Affiliation(s)
- Noshad Peyravian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maziar Malekzadeh Kebria
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Melina Ghasemian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- Shohadaye Haftom-e-tir Hospital, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles - 3BIO-BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles - 3BIO-BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Mehdi Moghtadaei
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Orthopaedic Department, Hazrat-Rasul Hospital, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Kouchakzadeh F, Ebrahimi-Barough S, Aflatoonian B, Ai J, Mazaheri F, Montazeri F, Hajizadeh-Tafti F, Golzadeh J, Naser R, Sepehri M, Kalantar SM. Therapeutic potential of endometrial stem cells encapsulated in alginate/gelatin hydrogel to treat of polycystic ovary syndrome. Regen Ther 2024; 26:693-707. [PMID: 39286642 PMCID: PMC11403143 DOI: 10.1016/j.reth.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder in women, often leading to infertility due to anovulation. Recent advances suggest that endometrial stem cells (EnSCs) hold considerable promise for tissue regeneration, which could be pivotal in treating PCOS. To enhance the survival and stabilization of EnSCs within the ovary, the EnSCs were encapsulated in an injectable alginate/gelatin hydrogel (SC-H), which has excellent biocompatibility to support the survival of EnSCs. Polycystic ovary syndrome was induced in female Wistar rats using intraperitoneal injection of letrozole over 21 days. Then the rats were treated with SC, SC-H and clomiphene citrate for one-month post-PCOS induction. The effects of these treatments were evaluated based on changes in body and ovarian weights, inflammatory markers, endocrine profiles, and ovarian histology. The Induction of PCOS led to a significant increase in body and ovarian cyst weight, elevated serum levels of testosterone, luteinizing hormone (LH), and anti-Müllerian hormone (AMH), alongside reduced follicle-stimulating hormone (FSH) and progesterone levels. Histologically, there was a decrease in granulosa cells, immature follicles, and corpus luteum numbers. Treatment with SC and SC-H significantly mitigated these alterations, indicating improved PCOS conditions. Our findings demonstrate that SC and SC-H treatments can effectively ameliorate the symptoms of letrozole-induced PCOS in rats, primarily through their anti-inflammatory effects. This study lays the groundwork for potential clinical applications of EnSCs encapsulated in alginate/gelatin hydrogel as a novel therapeutic strategy for PCOS, highlighting the importance of biomaterials in stem cell-based therapies.
Collapse
Affiliation(s)
- Fatemeh Kouchakzadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Aflatoonian
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahime Mazaheri
- Medical Nanotechnology and Tissue Engineering Research Centre, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Hajizadeh-Tafti
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Jalal Golzadeh
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Reza Naser
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sepehri
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Kalantar
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
23
|
Spennacchio A, Lopalco A, Racaniello GF, Cutrignelli A, la Forgia FM, Fontana S, Cristofori F, Francavilla R, Lopedota AA, Denora N. Mucoadhesive Budesonide Solution for the Treatment of Pediatric Eosinophilic Esophagitis. Pharmaceuticals (Basel) 2024; 17:550. [PMID: 38794121 PMCID: PMC11124118 DOI: 10.3390/ph17050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024] Open
Abstract
Eosinophilic Esophagitis is an antigen-mediated inflammatory disease characterized by thickening of the esophageal wall, leading to dysphagia, vomiting, reflux, and abdominal pain. This disease can be treated with a therapeutic approach ranging from diet to pharmacological therapy. Jorveza® (budesonide) and Dupixent® (dupilumab) are treatments for Eosinophilic Esophagitis approved by the European Medicines Agency in adults but not in children. Budesonide-based extemporaneous oral liquid suspensions could be prepared for pediatric use. The main limit of this formulation is that budesonide needs a longer residence time on the esophageal mucosa to solubilize and diffuse in it to exert its local anti-inflammatory effect. Herein, we propose the development of an extemporaneous mucoadhesive oral budesonide solution for the pediatric population. A liquid vehicle containing hydroxypropyl-beta-cyclodextrin as a complexing agent and carboxymethylcellulose sodium as a mucoadhesive excipient was used to prepare budesonide-based formulations. A stable solution at a concentration of 0.7 mg/mL was successfully prepared and characterized. The formulation showed rheological and mucoadhesive properties suitable for an Eosinophilic Esophagitis local prolonged treatment. In this way, pharmacists can prepare stable budesonide-based mucoadhesive solutions, providing both patients and physicians with a new therapeutic option for Eosinophilic Esophagitis pediatric treatment.
Collapse
Affiliation(s)
- Antonio Spennacchio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (A.S.); (A.L.); (G.F.R.); (A.C.); (A.A.L.)
| | - Antonio Lopalco
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (A.S.); (A.L.); (G.F.R.); (A.C.); (A.A.L.)
| | - Giuseppe Francesco Racaniello
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (A.S.); (A.L.); (G.F.R.); (A.C.); (A.A.L.)
| | - Annalisa Cutrignelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (A.S.); (A.L.); (G.F.R.); (A.C.); (A.A.L.)
| | - Flavia Maria la Forgia
- Centro Studi e Ricerche “Dr. S. Fontana 1900–1982”, Farmalabor s.r.l., 76012 Canosa di Puglia, Italy; (F.M.l.F.); (S.F.)
| | - Sergio Fontana
- Centro Studi e Ricerche “Dr. S. Fontana 1900–1982”, Farmalabor s.r.l., 76012 Canosa di Puglia, Italy; (F.M.l.F.); (S.F.)
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Paediatric Section, University of Bari Aldo Moro, Paediatric Hospital Giovanni XXIII, 70125 Bari, Italy; (F.C.); (R.F.)
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Paediatric Section, University of Bari Aldo Moro, Paediatric Hospital Giovanni XXIII, 70125 Bari, Italy; (F.C.); (R.F.)
| | - Angela Assunta Lopedota
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (A.S.); (A.L.); (G.F.R.); (A.C.); (A.A.L.)
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (A.S.); (A.L.); (G.F.R.); (A.C.); (A.A.L.)
| |
Collapse
|
24
|
Rashid F, Carter P, Childs S. Novel Injectable Hydrogel Formulations and Gas Chromatography Analysis of the Residual Crosslinker in Formulations Intended for Pharmaceutical and Cosmetic Applications. Gels 2024; 10:280. [PMID: 38667699 PMCID: PMC11049452 DOI: 10.3390/gels10040280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Novel hyaluronic acid (HA) crosslinked with pentaerythritol tetra-acrylate (PT) injectable hydrogels was invented. These injectable hydrogel/dermal filler formulations were synthesised using HA and the acrylate PT as a crosslinker under basic pH conditions using thermal crosslinking methods (oven heating), which provides a simple, safe, and eco-friendly method for crosslinking in 4 h under 45 °C. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses were conducted to represent the difference between the formulations in terms of peak formation and pore size, respectively. The crosslinking was partial as is considered to be typical for dermal injectable fillers. The rheological properties of these formulations showed that these novel dermal injectables are highly promising, and the newly developed fillers could be used with better results for dermal anti-wrinkle corrections, shaping, and volumising reasons. Furthermore, crosslinker (PT) residual analysis was carried out to state the formulations that are valid and acceptable for intradermal usage. The results from the GC method validation revealed it was a suitable method for this study. The GC analysis of all five injectable hydrogel/filler formulations demonstrated the formulations HA-PT 1, 2, 3 and 4 were formulated using (0.05-0.1)% w/w PT containing residual PT monomers within the safe limits that were determined to be below (0.008% w/w). This work has shown the development of a novel injectable hydrogel/filler formulation for pharmaceutical and cosmetic applications can be prepared in a more sustainable and simple way using pentaerythritol tetra-acrylate as a crosslinker agent, which holds great promise for the industry's future advancement.
Collapse
Affiliation(s)
- Fatimah Rashid
- School of Pharmacy and Pharmaceutics, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK;
| | | | - Stephen Childs
- School of Pharmacy and Pharmaceutics, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK;
| |
Collapse
|
25
|
Liu B, Chen K. Advances in Hydrogel-Based Drug Delivery Systems. Gels 2024; 10:262. [PMID: 38667681 PMCID: PMC11048949 DOI: 10.3390/gels10040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, with their distinctive three-dimensional networks of hydrophilic polymers, drive innovations across various biomedical applications. The ability of hydrogels to absorb and retain significant volumes of water, coupled with their structural integrity and responsiveness to environmental stimuli, renders them ideal for drug delivery, tissue engineering, and wound healing. This review delves into the classification of hydrogels based on cross-linking methods, providing insights into their synthesis, properties, and applications. We further discuss the recent advancements in hydrogel-based drug delivery systems, including oral, injectable, topical, and ocular approaches, highlighting their significance in enhancing therapeutic outcomes. Additionally, we address the challenges faced in the clinical translation of hydrogels and propose future directions for leveraging their potential in personalized medicine and regenerative healthcare solutions.
Collapse
Affiliation(s)
- Boya Liu
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kuo Chen
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
26
|
Vaidya G, Pramanik S, Kadi A, Rayshan AR, Abualsoud BM, Ansari MJ, Masood R, Michaelson J. Injecting hope: chitosan hydrogels as bone regeneration innovators. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:756-797. [PMID: 38300215 DOI: 10.1080/09205063.2024.2304952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Spontaneous bone regeneration encounters substantial restrictions in cases of bone defects, demanding external intervention to improve the repair and regeneration procedure. The field of bone tissue engineering (BTE), which embraces a range of disciplines, offers compelling replacements for conventional strategies like autografts, allografts, and xenografts. Among the diverse scaffolding materials utilized in BTE applications, hydrogels have demonstrated great promise as templates for the regeneration of bone owing to their resemblance to the innate extracellular matrix. In spite of the advancement of several biomaterials, chitosan (CS), a natural biopolymer, has garnered significant attention in recent years as a beneficial graft material for producing injectable hydrogels. Injectable hydrogels based on CS formulations provide numerous advantages, including their capacity to absorb and preserve a significant amount of water, their minimally invasive character, the existence of porous structures, and their capability to adapt accurately to irregular defects. Moreover, combining CS with other naturally derived or synthetic polymers and bioactive materials has displayed its effectiveness as a feasible substitute for traditional grafts. We aim to spotlight the composition, production, and physicochemical characteristics and practical utilization of CS-based injectable hydrogels, explicitly focusing on their potential implementations in bone regeneration. We consider this review a fundamental resource and a source of inspiration for future research attempts to pioneer the next era of tissue-engineering scaffold materials.
Collapse
Affiliation(s)
- Gayatri Vaidya
- Department of Studies and Research in Food Technology, Davangere University, Davangere, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk, Russia
| | - Ahmed Raheem Rayshan
- Department of Physiology, Pharmacology, and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Jacob Michaelson
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
27
|
Guo L, Lan J, Li J, Song Y, Wang X, Zhao Y, Yuan Y. A novel bola-molecular self-assembling hydrogel for enhancing diabetic wound healing. J Colloid Interface Sci 2024; 659:385-396. [PMID: 38181702 DOI: 10.1016/j.jcis.2023.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024]
Abstract
HYPOTHESIS Chronic wounds, particularly those caused by diabetes, pose a significant challenge for clinical treatment due to their prolonged healing process and associated complications, which can lead to increased morbidity. A biocompatible hydrogel with strong antibacterial properties and the ability to promote angiogenesis can be directly absorbed in the wound site for healing. EXPERIMENTS A series of self-healing, antibacterial bolaamphiphilic supramolecular self-assembling hydrogels (HLQMes/Cu) were developed based on metal-ligand coordination between various concentrations of Cu2+ solution and the head group of l-histidine methyl ester in HLQMes. This is the first report on the application of bola-molecular supramolecular hydrogels for the treatment of chronic wounds. FINDINGS The bola-molecular hydrogels reduced the toxicity of copper ions by coordination, and the HLQMes/Cu hydrogel, with 1.3 mg/mL Cu2+ (HLQMes/Cu1.3), demonstrated good biocompatibility and antibacterial properties and effectively enhanced wound healing in a diabetic wound model with full-thickness injuries. Immunohistochemical analysis revealed that the HLQMes/Cu1.3 hydrogel enhanced epithelial formation and collagen deposition in wounds. Immunofluorescence studies confirmed that the HLQMes/Cu1.3 hydrogel attenuated the expression of proinflammatory factor (IL-6) and promoted angiogenesis by upregulating α-SMA and CD31. These findings demonstrate the potential of this bolaamphiphilic supramolecular self-assembling hydrogel as a promising candidate for diabetic wound treatment.
Collapse
Affiliation(s)
- Linqing Guo
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jinxi Lan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jianhua Li
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yibo Song
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xinlong Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yongshan Zhao
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Yue Yuan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
28
|
Politrón-Zepeda GA, Fletes-Vargas G, Rodríguez-Rodríguez R. Injectable Hydrogels for Nervous Tissue Repair-A Brief Review. Gels 2024; 10:190. [PMID: 38534608 DOI: 10.3390/gels10030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The repair of nervous tissue is a critical research field in tissue engineering because of the degenerative process in the injured nervous system. In this review, we summarize the progress of injectable hydrogels using in vitro and in vivo studies for the regeneration and repair of nervous tissue. Traditional treatments have not been favorable for patients, as they are invasive and inefficient; therefore, injectable hydrogels are promising for the treatment of damaged tissue. This review will contribute to a better understanding of injectable hydrogels as potential scaffolds and drug delivery system for neural tissue engineering applications.
Collapse
Affiliation(s)
- Gladys Arline Politrón-Zepeda
- Ingeniería en Sistemas Biológicos, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico
| | - Gabriela Fletes-Vargas
- Departamento de Ciencias Clínicas, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Carretera Tepatitlán-Yahualica de González Gallo, Tepatitlán de Morelos 47620, Jalisco, Mexico
| | - Rogelio Rodríguez-Rodríguez
- Departamento de Ciencias Naturales y Exactas, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico
| |
Collapse
|
29
|
Mozipo EA, Galindo AN, Khachatourian JD, Harris CG, Dorogin J, Spaulding VR, Ford MR, Singhal M, Fogg KC, Hettiaratchi MH. Statistical optimization of hydrazone-crosslinked hyaluronic acid hydrogels for protein delivery. J Mater Chem B 2024; 12:2523-2536. [PMID: 38344905 PMCID: PMC10916537 DOI: 10.1039/d3tb01588b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
Hydrazone-crosslinked hydrogels are attractive protein delivery vehicles for regenerative medicine. However, each regenerative medicine application requires unique hydrogel properties to achieve an ideal outcome. The properties of a hydrogel can be impacted by numerous factors involved in its fabrication. We used design of experiments (DoE) statistical modeling to efficiently optimize the physicochemical properties of a hyaluronic acid (HA) hydrazone-crosslinked hydrogel for protein delivery for bone regeneration. We modified HA with either adipic acid dihydrazide (HA-ADH) or aldehyde (HA-Ox) functional groups and used DoE to evaluate the interactions of three input variables, the molecular weight of HA (40 or 100 kDa), the concentration of HA-ADH (1-3% w/v), and the concentration of HA-Ox (1-3% w/v), on three output responses, gelation time, compressive modulus, and hydrogel stability over time. We identified 100 kDa HA-ADH3.00HA-Ox2.33 as an optimal hydrogel that met all of our design criteria, including displaying a gelation time of 3.7 minutes, compressive modulus of 62.1 Pa, and minimal mass change over 28 days. For protein delivery, we conjugated affinity proteins called affibodies that were specific to the osteogenic protein bone morphogenetic protein-2 (BMP-2) to HA hydrogels and demonstrated that our platform could control the release of BMP-2 over 28 days. Ultimately, our approach demonstrates the utility of DoE for optimizing hydrazone-crosslinked HA hydrogels for protein delivery.
Collapse
Affiliation(s)
- Esther A Mozipo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Jenna D Khachatourian
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Conor G Harris
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Jonathan Dorogin
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | | | - Madeleine R Ford
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Malvika Singhal
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.
| | - Kaitlin C Fogg
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
30
|
Tan F, Li X, Li X, Xu M, Shahzad KA, Hou L. GelMA/PEDOT:PSS Composite Conductive Hydrogel-Based Generation and Protection of Cochlear Hair Cells through Multiple Signaling Pathways. Biomolecules 2024; 14:95. [PMID: 38254695 PMCID: PMC10812993 DOI: 10.3390/biom14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Recent advances in cochlear implantology are exemplified by novel functional strategies such as bimodal electroacoustic stimulation, in which the patient has intact low-frequency hearing and profound high-frequency hearing pre-operatively. Therefore, the synergistic restoration of dysfunctional cochlear hair cells and the protection of hair cells from ototoxic insults have become a persistent target pursued for this hybrid system. In this study, we developed a composite GelMA/PEDOT:PSS conductive hydrogel that is suitable as a coating for the cochlear implant electrode for the potential local delivery of otoregenerative and otoprotective drugs. Various material characterization methods (e.g., 1H NMR spectroscopy, FT-IR, EIS, and SEM), experimental models (e.g., murine cochlear organoid and aminoglycoside-induced ototoxic HEI-OC1 cellular model), and biological analyses (e.g., confocal laser scanning microscopy, real time qPCR, flow cytometry, and bioinformatic sequencing) were used. The results demonstrated decent material properties of the hydrogel, such as mechanical (e.g., high tensile stress and Young's modulus), electrochemical (e.g., low impedance and high conductivity), biocompatibility (e.g., satisfactory cochlear cell interaction and free of systemic toxicity), and biosafety (e.g., minimal hemolysis and cell death) features. In addition, the CDR medicinal cocktail sustainably released by the hydrogel not only promoted the expansion of the cochlear stem cells but also boosted the trans-differentiation from cochlear supporting cells into hair cells. Furthermore, hydrogel-based drug delivery protected the hair cells from oxidative stress and various forms of programmed cell death (e.g., apoptosis and ferroptosis). Finally, using large-scale sequencing, we enriched a complex network of signaling pathways that are potentially downstream to various metabolic processes and abundant metabolites. In conclusion, we present a conductive hydrogel-based local delivery of bifunctional drug cocktails, thereby serving as a potential solution to intracochlear therapy of bimodal auditory rehabilitation and diseases beyond.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China; (X.L.); (M.X.); (K.A.S.)
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai 200070, China
- Department of ORL-HNS, The Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Department of ORL-HNS, The Royal College of Surgeons of England, London WC2A 3PE, UK
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China; (X.L.); (M.X.); (K.A.S.)
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai 200070, China
| | - Xiao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology & Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 200051, China; (X.L.); (L.H.)
| | - Maoxiang Xu
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China; (X.L.); (M.X.); (K.A.S.)
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai 200070, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China; (X.L.); (M.X.); (K.A.S.)
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai 200070, China
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology & Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 200051, China; (X.L.); (L.H.)
| |
Collapse
|
31
|
Seth P, Mukherjee A, Sarkar N. Formation of hen egg white lysozyme derived amyloid-based hydrogels using different gelation agents: A potential tool for drug delivery. Int J Biol Macromol 2023; 253:127177. [PMID: 37783247 DOI: 10.1016/j.ijbiomac.2023.127177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Amyloids are highly stable protein fibrillar aggregates that get deposited in various parts of our body and cause detrimental diseases. But in nature, the presence of functional amyloids is also noted in bacteria that help them by forming hyphae, biofilm, protein reservoirs, signalling messengers, etc. Keeping this perspective in mind, the idea behind this research was to develop functional amyloids in the form of hydrogel and analyse its potential in the biomedical sector as a drug-delivery tool. The synthesis and characterisation of three types of amyloid-based hydrogels have been reported in this work. Hen Egg-White Lysozyme (HEWL) protein was chosen as the principal ingredient as it is extensively used as a standard protein for studying amyloidogenesis and has inherent antibacterial properties. Comparative studies of different hydrogel properties exhibited variations in the hydrogels based on compositional differences in them. Finally, a drug release assay was done on the synthesized hydrogels to explore their potential as drug delivery tools.
Collapse
Affiliation(s)
- Prakriti Seth
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Aniket Mukherjee
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
32
|
Huang YH, Chen HA, Chen CH, Liao HT, Kuo CY, Chen JP. Injectable gelatin/glucosamine cryogel microbeads as scaffolds for chondrocyte delivery in cartilage tissue engineering. Int J Biol Macromol 2023; 253:126528. [PMID: 37633562 DOI: 10.1016/j.ijbiomac.2023.126528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
In this study, we fabricate squeezable cryogel microbeads as injectable scaffolds for minimum invasive delivery of chondrocytes for cartilage tissue engineering applications. The microbeads with different glucosamine concentrations were prepared by combining the water-in-oil emulsion and cryogelation through crosslinking of gelatin with glutaraldehyde in the presence of glucosamine. The physicochemical characterization results show the successful preparation of cryogel microbeads with uniform shape and size, high porosity, large pore size, high water uptake capacity, and good injectability. In vitro analysis indicates proliferation, migration, and differentiated phenotype of rabbit chondrocytes in the cryogel scaffolds. The seeded chondrocytes in the cryogel scaffold can be delivered by injecting through an 18G needle to fully retain the cell viability. Furthermore, the incorporation of glucosamine in the cryogel promoted the differentiated phenotype of chondrocytes in a dose-dependent manner, from cartilage-specific gene expression and protein production. The in vivo study by injecting the cryogel microbeads into the subcutaneous pockets of nude mice indicates good retention ability as well as good biocompatibility and suitable biodegradability of the cryogel scaffold. Furthermore, the injected chondrocyte/cryogel microbead constructs can form ectopic functional neocartilage tissues following subcutaneous implantation in 21 days, as evidenced by histological and immunohistochemical analysis.
Collapse
Affiliation(s)
- Yen-Hsiang Huang
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Huai-An Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Han-Tsung Liao
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
33
|
Farrag Y, Ait Eldjoudi D, Farrag M, González-Rodríguez M, Ruiz-Fernández C, Cordero A, Varela-García M, Torrijos Pulpón C, Bouza R, Lago F, Pino J, Alvarez-Lorenzo C, Gualillo O. Poly(ethylene Glycol) Methyl Ether Methacrylate-Based Injectable Hydrogels: Swelling, Rheological, and In Vitro Biocompatibility Properties with ATDC5 Chondrogenic Lineage. Polymers (Basel) 2023; 15:4635. [PMID: 38139888 PMCID: PMC10747511 DOI: 10.3390/polym15244635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Here, we present the synthesis of a series of chemical homopolymeric and copolymeric injectable hydrogels based on polyethylene glycol methyl ether methacrylate (PEGMEM) alone or with 2-dimethylamino ethyl methacrylate (DMAEM). The objective of this study was to investigate how the modification of hydrogel components influences the swelling, rheological attributes, and in vitro biocompatibility of the hydrogels. The hydrogels' networks were formed via free radical polymerization, as assured by 1H nuclear magnetic resonance spectroscopy (1H NMR). The swelling of the hydrogels directly correlated with the monomer and the catalyst amounts, in addition to the molecular weight of the monomer. Rheological analysis revealed that most of the synthesized hydrogels had viscoelastic and shear-thinning properties. The storage modulus and the viscosity increased by increasing the monomer and the crosslinker fraction but decreased by increasing the catalyst. MTT analysis showed no potential toxicity of the homopolymeric hydrogels, whereas the copolymeric hydrogels were toxic only at high DMEAM concentrations. The crosslinker polyethylene glycol dimethacrylate (PEGDMA) induced inflammation in ATDC5 cells, as detected by the significant increase in nitric oxide synthase type II activity. The results suggest a range of highly tunable homopolymeric and copolymeric hydrogels as candidates for cartilage regeneration.
Collapse
Affiliation(s)
- Yousof Farrag
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Djedjiga Ait Eldjoudi
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Mariam Farrag
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - María González-Rodríguez
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Clara Ruiz-Fernández
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Alfonso Cordero
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - María Varela-García
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Carlos Torrijos Pulpón
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Rebeca Bouza
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Universidade da Coruña, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain;
| | - Francisca Lago
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Molecular and Cellular Cardiology Lab, Research Laboratory 7, Santiago University Clinical Hospital, C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain;
| | - Jesus Pino
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Carmen Alvarez-Lorenzo
- I+D Farma Group (GI-1645), Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Oreste Gualillo
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| |
Collapse
|
34
|
Haloi P, Lokesh BS, Chawla S, Konkimalla VB. Formulation of a dual drug-loaded nanoparticulate co-delivery hydrogel system and its validation in rheumatoid arthritis animal model. Drug Deliv 2023; 30:2184307. [PMID: 36852696 PMCID: PMC9980407 DOI: 10.1080/10717544.2023.2184307] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Rheumatoid arthritis (RA), a systemic autoimmune disease that dramatically affects patients' quality of life. Given the intricacy of RA's pathophysiology, no single treatment can completely halt the disease progression. Here, we attempted to treat RA holistically and synergistically by co-delivering methotrexate (MTX), a standard slow-acting anti-rheumatic drug, and phenethyl isothiocyanate (PEITC), a bioactive phytochemical, using a sodium alginate (SA)-pluronic F127 (PF-127) in situ hydrogel formulation. Therefore, in the current study, the co-delivery of MTX and PEITC in the nanoparticulate form could help enhance stability and solubility and facilitate greater penetration in the target arthritic tissues. The fabricated MTX NP and PEITC NE were found to have a minimum particle size, PDI, and good zeta potential. Results from in vitro release studies showed that MTX and PEITC were simultaneously released from the DD NP HG matrix over 6-7 days through diffusion and erosion mechanisms. An intra-articular (IA) injection of DD NP HG dramatically reduced chronic inflammation in adjuvant-induced arthritis (AIA) rats, delayed the onset of bone erosion, significantly reduced synovitis, and down-regulated the inflammatory cytokine expression. Most notably, the co-delivery strategy almost entirely restored the morphological features of the ankle joints of RA rats. The hepatic and renal function tests indicated good biological safety for DD NP HG in RA conditions. Taken together, these findings indicated that DD NP HG could achieve good anti-inflammatory activity and reverse cartilage disruption through a synergistic effect between two nanoparticulate forms of MTX and PEITC, which can effectively improve the drawbacks of their free forms.
Collapse
Affiliation(s)
- Prakash Haloi
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India,Training School Complex, Homi Bhabha National Institute, Mumbai, India
| | - B. Siva Lokesh
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India,Training School Complex, Homi Bhabha National Institute, Mumbai, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India,Training School Complex, Homi Bhabha National Institute, Mumbai, India
| | - V. Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, India,Training School Complex, Homi Bhabha National Institute, Mumbai, India,CONTACT V. Badireenath Konkimalla School of Biological Sciences, National Institute of Science Education & Research (NISER), PO- Bhimpur-Padanpur, Via- Jatni, District: - Khurda, Bhubaneswar, Orissa752 050, India
| |
Collapse
|
35
|
Holiel AA, Sedek EM. Marginal adaptation, physicochemical and rheological properties of treated dentin matrix hydrogel as a novel injectable pulp capping material for dentin regeneration. BMC Oral Health 2023; 23:938. [PMID: 38017480 PMCID: PMC10683231 DOI: 10.1186/s12903-023-03677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Treated dentin matrix hydrogel (TDMH) has been introduced as a novel injectable direct pulp capping material. In this regard, this study aimed to evaluate its marginal adaptation, physicochemical and rheological properties for the development of clinically feasible TDMH. METHODS TDMH was applied to the pulp floor of prepared Class I cavities (n = 5), marginal adaptation was assessed by SEM at 1000 X magnification to detect gap between dentin and filling material. Five syringes were filled with TDMH and placed between the compression plates of a universal testing machine to evaluate injectability and gelation time was also evaluated by test vial inverting method. The microstructures of lyophilized TDMH were observed by SEM. Moreover, TDMH discs (n = 5) were prepared and the water uptake (%) was determined based on the equilibrium swelling theory state of hydrogels. Its solubility was measured after one week by the ISO standard method. Rheological behaviours of TDMH (n = 5) were analysed with a rotational rheometer by computing their complex shear modulus G* and their associated storage modulus (G') and loss modulus (G''). Statistical analysis was performed using F test (ANOVA) with repeated measures and Post Hoc Test (p = 0.05). RESULTS TDMH presented an overall 92.20 ± 2.95% of continuous margins. It exhibited gelation during the first minute, and injectability mean was 66 ± 0.36%. TDMH showed a highly porous structure, and the pores were interconnected with an average diameter about 5.09 ± 3.17 μm. Swelling equilibrium gradually reached at 6 days up to 377%. The prepared hydrogels and maintained their shape after absorbing over three times their original weight of water. TDMH fulfilled the requirements of ISO 6876, demonstrating a weight loss of 1.98 ± 0.09% and linear viscoelastic behaviour with G` 479.2 ± 12.7 and G`` 230.8 ± 13.8. CONCLUSIONS TDMH provided good marginal adaptation, appropriate physicochemical and viscoelastic properties support its use as a novel direct pulp capping material in future clinical applications.
Collapse
Affiliation(s)
- Ahmed A Holiel
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Eman M Sedek
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
36
|
Selvam A, Majood M, Chaurasia R, Rupesh, Singh A, Dey T, Agrawal O, Verma YK, Mukherjee M. Injectable organo-hydrogels influenced by click chemistry as a paramount stratagem in the conveyor belt of pharmaceutical revolution. J Mater Chem B 2023; 11:10761-10777. [PMID: 37807713 DOI: 10.1039/d3tb01674a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The field of injectable hydrogels has demonstrated a paramount headway in the myriad of biomedical applications and paved a path toward clinical advancements. The innate superiority of hydrogels emerging from organic constitution has exhibited dominance in overcoming the bottlenecks associated with inorganic-based hydrogels in the biological milieu. Inorganic hydrogels demonstrate various disadvantages, including limited biocompatibility, degradability, a cumbersome synthesis process, high cost, and ecotoxicity. The excellent biocompatibility, eco-friendliness, and manufacturing convenience of organo-hydrogels have demonstrated to be promising in therapizing biomedical complexities with low toxicity and augmented bioavailability. This report manifests the realization of biomimetic organo-hydrogels with the development of bioresponsive and self-healing injectable organo-hydrogels in the emerging pharmaceutical revolution. Furthermore, the influence of click chemistry in this regime as a backbone in the pharmaceutical conveyor belt has been suggested to scale up production. Moreover, we propose an avant-garde design stratagem of developing a hyaluronic acid (HA)-based injectable organo-hydrogel via click chemistry to be realized for its pharmaceutical edge. Ultimately, injectable organo-hydrogels that materialize from academia or industry are required to follow the standard set of rules established by global governing bodies, which has been delineated to comprehend their marketability. Thence, this perspective narrates the development of injectable organo-hydrogels via click chemistry as a prospective elixir to have in the arsenal of pharmaceuticals.
Collapse
Affiliation(s)
- Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Rupesh
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Akanksha Singh
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Tapan Dey
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Yogesh Kumar Verma
- Stem Cell & Tissue Engineering Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, New Delhi, 110054, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
37
|
Kamenova K, Momekova D, Grancharov G, Prancheva A, Toncheva-Moncheva N, Ivanov E, Konstantinov S, Petrov PD. In Situ Gelling Hydroxypropyl Cellulose Formulation Comprising Cannabidiol-Loaded Block Copolymer Micelles for Sustained Drug Delivery. Int J Mol Sci 2023; 24:16534. [PMID: 38003722 PMCID: PMC10671718 DOI: 10.3390/ijms242216534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cannabidiol (CBD) is a natural terpenophenolic compound with known pharmacological activities, but the poor solubility of CBD in water limits its widespread use in medicine and pharmacy. Polymeric (nano)carriers demonstrated high potential for enhancing the solubility and therapeutic activity of lipophilic drugs such as CBD. Here, we report the elaboration of a novel hydroxypropyl cellulose (HPC)-based in situ gelling formulation for controlled delivery of CBD. In the first stage, nanosized polymeric micelles from poly(ethylene oxide)-block-poly(α-cinnamyl-ε-caprolactone-co-ε-caprolactone) (PEO-b-P(CyCL-co-CL) diblock copolymers) were used to increase the solubility of CBD in water. Different copolymers were assessed, and the carrier with the highest encapsulation efficiency (EE) and drug loading capacity (DLC) was selected for further elaboration of nanocomposite in situ gel formulations. Next, the sol-to-gel transition behavior of HPC as a function of K2SO4 concentration in the aqueous solution was investigated by microcalorimetry and dynamic oscillatory rheology, and the optimal formulation capable of forming a physical gel under physiological conditions was determined. Finally, injectable nanocomposite hydrogels comprising cannabidiol were fabricated, and their drug release profile and cytotoxicity against human tumor cell lines were evaluated. The in situ gels exhibited prolonged drug release over 12 h, controlled by gel erosion, and the cytotoxicity of formulated cannabidiol was comparable with that of a free drug.
Collapse
Affiliation(s)
- Katya Kamenova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (G.G.); (A.P.); (N.T.-M.)
| | - Denitsa Momekova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.M.); (E.I.); (S.K.)
| | - Georgy Grancharov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (G.G.); (A.P.); (N.T.-M.)
| | - Anna Prancheva
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (G.G.); (A.P.); (N.T.-M.)
| | - Natalia Toncheva-Moncheva
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (G.G.); (A.P.); (N.T.-M.)
| | - Ervin Ivanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.M.); (E.I.); (S.K.)
- Pobelch Gle Ltd., 1618 Sofia, Bulgaria
| | - Spiro Konstantinov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.M.); (E.I.); (S.K.)
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (G.G.); (A.P.); (N.T.-M.)
| |
Collapse
|
38
|
Phan VHG, Duong HS, Le QGT, Janarthanan G, Vijayavenkataraman S, Nguyen HNH, Nguyen BPT, Manivasagan P, Jang ES, Li Y, Thambi T. Nanoengineered injectable hydrogels derived from layered double hydroxides and alginate for sustained release of protein therapeutics in tissue engineering applications. J Nanobiotechnology 2023; 21:405. [PMID: 37919778 PMCID: PMC10623704 DOI: 10.1186/s12951-023-02160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Chronic Kidney Disease (CKD) which involves gradual loss of kidney function is characterized by low levels of a glycoprotein called Erythropoietin (EPO) that leads to red blood cell deficiency and anemia. Recombinant human EPO (rhEPO) injections that are administered intravenously or subcutaneously is the current gold standard for treating CKD. The rhEPO injections have very short half-lives and thus demands frequent administration with a risk of high endogenous EPO levels leading to severe side effects that could prove fatal. To this effect, this work provides a novel approach of using lamellar inorganic solids with a brucite-like structure for controlling the release of protein therapeutics such as rhEPO in injectable hydrogels. The nanoengineered injectable system was formulated by incorporating two-dimensional layered double hydroxide (LDH) clay materials with a high surface area into alginate hydrogels for sustained delivery. The inclusion of LDH in the hydrogel network not only improved the mechanical properties of the hydrogels (5-30 times that of alginate hydrogel) but also exhibited a high binding affinity to proteins without altering their bioactivity and conformation. Furthermore, the nanoengineered injectable hydrogels (INHs) demonstrated quick gelation, injectability, and excellent adhesion properties on human skin. The in vitro release test of EPO from conventional alginate hydrogels (Alg-Gel) showed 86% EPO release within 108 h while INHs showed greater control over the initial burst and released only 24% of EPO in the same incubation time. INH-based ink was successfully used for 3D printing, resulting in scaffolds with good shape fidelity and stability in cell culture media. Controlled release of EPO from INHs facilitated superior angiogenic potential in ovo (chick chorioallantoic membrane) compared to Alg-Gel. When subcutaneously implanted in albino mice, the INHs formed a stable gel in vivo without inducing any adverse effects. The results suggest that the proposed INHs in this study can be utilized as a minimally invasive injectable platform or as 3D printed patches for the delivery of protein therapeutics to facilitate tissue regeneration.
Collapse
Affiliation(s)
- V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hai-Sang Duong
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Quynh-Giao Thi Le
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Gopinathan Janarthanan
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sanjairaj Vijayavenkataraman
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Mechanical & Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Hoang-Nam Huynh Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Bich-Phuong Thi Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Panchanathan Manivasagan
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing, 314001, Zhejiang, People's Republic of China.
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do, 17104, Republic of Korea.
| |
Collapse
|
39
|
Roldan L, Montoya C, Solanki V, Cai KQ, Yang M, Correa S, Orrego S. A Novel Injectable Piezoelectric Hydrogel for Periodontal Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43441-43454. [PMID: 37672788 DOI: 10.1021/acsami.3c08336] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Periodontal disease is a multifactorial, bacterially induced inflammatory condition characterized by the progressive destruction of periodontal tissues. The successful nonsurgical treatment of periodontitis requires multifunctional technologies offering antibacterial therapies and promotion of bone regeneration simultaneously. For the first time, in this study, an injectable piezoelectric hydrogel (PiezoGEL) was developed after combining gelatin methacryloyl (GelMA) with biocompatible piezoelectric fillers of barium titanate (BTO) that produce electrical charges when stimulated by biomechanical vibrations (e.g., mastication, movements). We harnessed the benefits of hydrogels (injectable, light curable, conforms to pocket spaces, biocompatible) with the bioactive effects of piezoelectric charges. A thorough biomaterial characterization confirmed piezoelectric fillers' successful integration with the hydrogel, photopolymerizability, injectability for clinical use, and electrical charge generation to enable bioactive effects (antibacterial and bone tissue regeneration). PiezoGEL showed significant reductions in pathogenic biofilm biomass (∼41%), metabolic activity (∼75%), and the number of viable cells (∼2-3 log) compared to hydrogels without BTO fillers in vitro. Molecular analysis related the antibacterial effects to be associated with reduced cell adhesion (downregulation of porP and fimA) and increased oxidative stress (upregulation of oxyR) genes. Moreover, PiezoGEL significantly enhanced bone marrow stem cell (BMSC) viability and osteogenic differentiation by upregulating RUNX2, COL1A1, and ALP. In vivo, PiezoGEL effectively reduced periodontal inflammation and increased bone tissue regeneration compared to control groups in a mice model. Findings from this study suggest PiezoGEL to be a promising and novel therapeutic candidate for the treatment of periodontal disease nonsurgically.
Collapse
Affiliation(s)
- Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Varun Solanki
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Santiago Correa
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Department, College of Engineering, Temple University. Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
40
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
41
|
Itzhakov R, Eretz-Kdosha N, Silberstein E, Alfer T, Gvirtz R, Fallik E, Ogen-Shtern N, Cohen G, Poverenov E. Oligochitosan and oxidized nucleoside-based bioderived hydrogels for wound healing. Carbohydr Polym 2023; 314:120947. [PMID: 37173046 DOI: 10.1016/j.carbpol.2023.120947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Herein, we report biocompatible hydrogel for wound healing that was prepared using nature-sourced building blocks. For the first time, OCS was employed as a building macromolecule to form bulk hydrogels along with the nature-sourced nucleoside derivative (inosine dialdehyde, IdA) as the cross-linker. A strong correlation was obtained between the mechanical properties and stability of the prepared hydrogels with a cross-linker concentration. The Cryo-SEM images of IdA/OCS hydrogels showed an interconnected spongy-like porous structure. Alexa 555 labeled bovine serum albumin was incorporated into the hydrogels matrix. The release kinetics studies under physiological conditions indicated that cross-linker concentration could also control the release rate. The potential of hydrogels in wound healing applications was tested in vitro and ex vivo on human skin. Topical application of the hydrogel was excellently tolerated by the skin with no impairment of epidermal viability or irritation, determined by MTT and IL-1α assays, respectively. The hydrogels were used to load and deliver epidermal growth factor (EGF), showing an increase in its ameliorating action, effectively enhancing wound closure inflicted by punch biopsy. Furthermore, BrdU incorporation assay performed in both fibroblast and keratinocyte cells revealed an increased proliferation in hydrogel-treated cells and an enhancement of EGF impact in keratinocytes.
Collapse
Affiliation(s)
- Rafael Itzhakov
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, Biochemistry, and Food Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Noy Eretz-Kdosha
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel.
| | - Eldad Silberstein
- Department of Plastic Surgery, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Topaz Alfer
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel.
| | - Raanan Gvirtz
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel.
| | - Elazar Fallik
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| | - Navit Ogen-Shtern
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel; Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel.
| | - Guy Cohen
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel; Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel.
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| |
Collapse
|
42
|
Guo J, Fang W, Wang F. Injectable fillers: current status, physicochemical properties, function mechanism, and perspectives. RSC Adv 2023; 13:23841-23858. [PMID: 37577103 PMCID: PMC10413051 DOI: 10.1039/d3ra04321e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
With the increasing understanding of the aging process and growing desire for minimally invasive treatments, injectable fillers have great potential for correcting and rejuvenating facial wrinkles/folds and contouring the face. However, considering the increasing availability of multiple soft tissue fillers, it is important to understand their inherent biophysical features and specific mechanism. Thus, in this review, we aim to provide an update on the current injectable filler products and analyze and compare their critical physicochemical properties and function mechanisms for volume-filling. Additionally, future trends and development processes for injectable fillers are also proposed.
Collapse
Affiliation(s)
- Jiahong Guo
- Yunnan Botanee Bio-technology Group Co., Ltd. Yunnan 650106 China
- Shanghai Jiyan Bio-pharmaceutical Co., Ltd. Shanghai 201702 China
| | - Wei Fang
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd. Yunnan 650106 China
- Medaesthee (Shanghai) Biotechnology Co., Ltd. Shanghai. 201700 China
| | - Feifei Wang
- Yunnan Botanee Bio-technology Group Co., Ltd. Yunnan 650106 China
- Shanghai Jiyan Bio-pharmaceutical Co., Ltd. Shanghai 201702 China
| |
Collapse
|
43
|
Marques AC, Costa PC, Velho S, Amaral MH. Injectable Poloxamer Hydrogels for Local Cancer Therapy. Gels 2023; 9:593. [PMID: 37504472 PMCID: PMC10379388 DOI: 10.3390/gels9070593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
The widespread push to invest in local cancer therapies comes from the need to overcome the limitations of systemic treatment options. In contrast to intravenous administration, local treatments using intratumoral or peritumoral injections are independent of tumor vasculature and allow high concentrations of therapeutic agents to reach the tumor site with minimal systemic toxicity. Injectable biodegradable hydrogels offer a clear advantage over other delivery systems because the former requires no surgical procedures and promotes drug retention at the tumor site. More precisely, in situ gelling systems based on poloxamers have garnered considerable attention due to their thermoresponsive behavior, biocompatibility, ease of preparation, and possible incorporation of different anticancer agents. Therefore, this review focuses on the use of injectable thermoresponsive hydrogels based on poloxamers and their physicochemical and biological characterization. It also includes a summary of these hydrogel applications in local cancer therapies using chemotherapy, phototherapy, immunotherapy, and gene therapy.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
44
|
Mozipo EA, Galindo AN, Khachatourian JD, Harris CG, Dorogin J, Spaulding VR, Ford MR, Singhal M, Fogg KC, Hettiaratchi MH. Statistical Optimization of Hydrazone-Crosslinked Hyaluronic Acid Hydrogels for Protein Delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549125. [PMID: 37503070 PMCID: PMC10370027 DOI: 10.1101/2023.07.14.549125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Hydrazone-crosslinked hydrogels are attractive protein delivery vehicles for regenerative medicine. However, each regenerative medicine application requires unique hydrogel properties to achieve an ideal outcome. The properties of a hydrogel can be impacted by numerous factors involved in its fabrication. We used design of experiments (DoE) statistical modeling to efficiently optimize the physicochemical properties of a hyaluronic acid (HA) hydrazone-crosslinked hydrogel for protein delivery for bone regeneration. We modified HA with either adipic acid dihydrazide (HA-ADH) or aldehyde (HA-Ox) functional groups and used DoE to evaluate the interactions of three input variables, the molecular weight of HA (40 or 100 kDa), the concentration of HA-ADH (1-3% w/v), and the concentration of HA-Ox (1-3% w/v), on three output responses, gelation time, compressive modulus, and hydrogel stability over time. We identified 100 kDa HA-ADH3.0HA-Ox2.33 as an optimal hydrogel that met all of our design criteria, including displaying a gelation time of 3.7 minutes, compressive modulus of 62.1 Pa, and minimal mass change over 28 days. For protein delivery, we conjugated affinity proteins called affibodies that were specific to the osteogenic protein bone morphogenetic protein-2 (BMP-2) to HA hydrogels and demonstrated that our platform could control the release of BMP-2 over 28 days. Ultimately, our approach demonstrates the utility of DoE for optimizing hydrazone-crosslinked HA hydrogels for protein delivery.
Collapse
Affiliation(s)
- Esther A. Mozipo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
| | - Alycia, N. Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
| | - Jenna D. Khachatourian
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Conor G. Harris
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR
| | - Jonathan Dorogin
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
| | | | - Madeleine R. Ford
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Malvika Singhal
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| | - Kaitlin C. Fogg
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR
| | - Marian H. Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| |
Collapse
|
45
|
Wang Y, Wang S, Hu W, Kong S, Su F, Liu F, Li S. In situ Hydrogels Prepared by Photo-initiated Crosslinking of Acrylated Polymers for Local Delivery of Antitumor Drugs. J Pharm Sci 2023; 112:1863-1871. [PMID: 37201750 DOI: 10.1016/j.xphs.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 05/20/2023]
Abstract
A triblock copolymer was synthesized by ring opening polymerization of ε-caprolactone in the presence of poly(ethylene glycol) (PEG). The resulted PCL-PEG-PCL triblock copolymer, PEG and monomethoxy (MPEG) were functionalized by end group acrylation. NMR and FT-IR analyses evidenced the successful synthesis and functionalization of polymers. A series of photo-crosslinked hydrogels composed of acrylated PEG-PCL-Acr and MPEG-Acr or PEG-Acr were prepared by exposure to visible light using lithium phenyl-2,4,6-trimethylbenzoylphosphinate as initiator. The hydrogels present a porous and interconnected structure as shown by SEM. The swelling performance of hydrogels is closely related to the crosslinking density and hydrophilic content. Addition of MPEG or PEG results in increase in water absorption capacity of hydrogels. In vitro degradation of hydrogels was realized in the presence of a lipase from porcine pancreas. Various degradation rates were obtained which mainly depend on the hydrogel composition. MTT assay confirmed the good biocompatibility of hydrogels. Importantly, in situ gelation was achieved by irradiation of a precursor solution injected in the abdomen of mice. Doxorubicin (DOX) was selected as a model antitumor drug to evaluate the potential of hydrogels in cancer therapy. Drug-loaded hydrogels were prepared by in situ encapsulation. In vitro drug release studies showed a sustained release during 28 days with small burst release. DOX-loaded hydrogels exhibit antitumor activity against A529 lung cancer cells comparable to free drug, suggesting that injectable in situ hydrogel with tunable properties could be most promising for local drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Yuandou Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuxin Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenju Hu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaowen Kong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feng Su
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Suming Li
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
46
|
Budai L, Budai M, Fülöpné Pápay ZE, Vilimi Z, Antal I. Rheological Considerations of Pharmaceutical Formulations: Focus on Viscoelasticity. Gels 2023; 9:469. [PMID: 37367140 DOI: 10.3390/gels9060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Controlling rheological properties offers the opportunity to gain insight into the physical characteristics, structure, stability and drug release rate of formulations. To better understand the physical properties of hydrogels, not only rotational but also oscillatory experiments should be performed. Viscoelastic properties, including elastic and viscous properties, are measured using oscillatory rheology. The gel strength and elasticity of hydrogels are of great importance for pharmaceutical development as the application of viscoelastic preparations has considerably expanded in recent decades. Viscosupplementation, ophthalmic surgery and tissue engineering are just a few examples from the wide range of possible applications of viscoelastic hydrogels. Hyaluronic acid, alginate, gellan gum, pectin and chitosan are remarkable representatives of gelling agents that attract great attention applied in biomedical fields. This review provides a brief summary of rheological properties, highlighting the viscoelasticity of hydrogels with great potential in biomedicine.
Collapse
Affiliation(s)
- Lívia Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - Marianna Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | | | - Zsófia Vilimi
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
47
|
Tanga S, Aucamp M, Ramburrun P. Injectable Thermoresponsive Hydrogels for Cancer Therapy: Challenges and Prospects. Gels 2023; 9:gels9050418. [PMID: 37233009 DOI: 10.3390/gels9050418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
The enervating side effects of chemotherapeutic drugs have necessitated the use of targeted drug delivery in cancer therapy. To that end, thermoresponsive hydrogels have been employed to improve the accumulation and maintenance of drug release at the tumour site. Despite their efficiency, very few thermoresponsive hydrogel-based drugs have undergone clinical trials, and even fewer have received FDA approval for cancer treatment. This review discusses the challenges of designing thermoresponsive hydrogels for cancer treatment and offers suggestions for these challenges as available in the literature. Furthermore, the argument for drug accumulation is challenged by the revelation of structural and functional barriers in tumours that may not support targeted drug release from hydrogels. Other highlights involve the demanding preparation process of thermoresponsive hydrogels, which often involves poor drug loading and difficulties in controlling the lower critical solution temperature and gelation kinetics. Additionally, the shortcomings in the administration process of thermosensitive hydrogels are examined, and special insight into the injectable thermosensitive hydrogels that reached clinical trials for cancer treatment is provided.
Collapse
Affiliation(s)
- Sandrine Tanga
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Marique Aucamp
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
48
|
Multifunctional antibacterial chitosan-based hydrogel coatings on Ti6Al4V biomaterial for biomedical implant applications. Int J Biol Macromol 2023; 231:123328. [PMID: 36681215 DOI: 10.1016/j.ijbiomac.2023.123328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Among biomedical community, great efforts have been realized to develop antibacterial coatings that avoid implant-associated infections. To date, conventional mono-functional antibacterial strategies have not been effective enough for successful long-term implantations. Consequently, researchers have recently focused their attention on novel bifunctional or multifunctional antibacterial coatings, in which two or more antibacterial mechanisms interact synergistically. Thus, in this work different chitosan-based (CHI) hydrogel coatings were created on Ti6Al4V surface using genipin (Ti-CHIGP) and polyethylene glycol (Ti-CHIPEG) crosslinking agents. Hydrogel coatings demonstrated an exceptional in vivo biocompatibility plus a remarkable ability to promote cell proliferation and differentiation. Lastly, hydrogel coatings demonstrated an outstanding bacteria-repelling (17-28 % of S. aureus and 33-43 % of E. coli repelled) and contact killing (186-222 % of S. aureus and 72-83 % of E. coli damaged) ability. Such bifunctional antibacterial activity could be further improved by the controlled release of drugs resulting in powerful multifunctional antibacterial coatings.
Collapse
|
49
|
Babaluei M, Mottaghitalab F, Seifalian A, Farokhi M. Injectable multifunctional hydrogel based on carboxymethylcellulose/polyacrylamide/polydopamine containing vitamin C and curcumin promoted full-thickness burn regeneration. Int J Biol Macromol 2023; 236:124005. [PMID: 36907296 DOI: 10.1016/j.ijbiomac.2023.124005] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Burn injuries are a major global problem, with a high risk of infection and mortality. This study aimed to develop an injectable hydrogel for wound dressings, composed of sodium carboxymethylcellulose/polyacrylamide/polydopamine containing vitamin C (CMC/PAAm/PDA VitC) for its antioxidant and antibacterial properties. Simultaneously, silk fibroin/alginate nanoparticles (SF/SANPs) loaded with curcumin (SF/SANPs CUR) were incorporated into the hydrogel to enhance wound regeneration and reduce bacterial infection. The hydrogels were fully characterized and tested in vitro and in preclinical rat models for biocompatibility, drug release, and wound healing efficacy. Results showed stable rheological properties, appropriate swelling and degradation ratios, gelation time, porosity, and free radical scavenging capacity. Biocompatibility was confirmed through MTT, lactate dehydrogenase, and apoptosis evaluations. Hydrogels containing curcumin demonstrated antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). In the preclinical study, hydrogels containing both drugs showed superior support for full-thickness burn regeneration, with improved wound closure, re-epithelialization, and collagen expression. The hydrogels also showed neovascularization and anti-inflammatory effects, as confirmed by CD31 and TNF-α markers. In conclusion, these dual drug-delivery hydrogels showed significant potential as wound dressings for full-thickness wounds.
Collapse
Affiliation(s)
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
50
|
Tang Y, Ding J, Zhou X, Ma X, Zhao Y, Mu Q, Huang Z, Tao Q, Liu F, Wang L. Injectable hydrogels of enzyme-catalyzed cross-linked tyramine-modified gelatin for drug delivery. Aust J Chem 2023. [DOI: 10.1071/ch22188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Enzymatically catalyzed cross-linking is a hydrogel fabrication method that generally is considered to have lower cytotoxicity than traditional chemical cross-linking methods. In order to optimize the properties of injectable hydrogels and expand their applications, an enzyme-catalyzed cross-linked injectable hydrogel was designed. The tyramine-modified gelatin (G-T) was formed into a stable injectable hydrogel by the combination of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) catalysis. 1H NMR spectroscopy was used to demonstrate the successful modification of gelatin by tyramine. The surface morphology of the prepared hydrogels was characterized jointly by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Rheological tests demonstrated the tunable mechanical strength, formation kinetics, shear thinning and good self-recovery properties of the hydrogels. In addition, the hydrogels can be formed into various shapes by injection. The hydrogel network structure is complex and interlaced, as such it is suitable to encapsulate drugs for controlled release. The drug release from the prepared hydrogels followed the Peppas–Sahlin model and belonged to Fickian diffusion. This study constructed injectable hydrogels through the enzyme-catalyzed cross-linking of modified gelatin and applied the hydrogels for drug release, which is expected to expand the application in biomedical fields.
Collapse
|