1
|
Luo H, Akkermans S, Verheyen D, Wang J, Polanska M, Van Impe JFM. Tuning and modeling cheese flavor. Compr Rev Food Sci Food Saf 2024; 23:e13420. [PMID: 39217506 DOI: 10.1111/1541-4337.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Flavor is a major sensory attribute affecting consumers' preference for cheese products. Differences in cheesemaking change the cheese microenvironment, thereby affecting cheese flavor profiles. A framework for tuning cheese flavor is proposed in this study, which depicts the full picture of flavor development and modulation, from manufacturing and ripening factors through the main biochemical pathways to flavor compounds and flavor notes. Taking semi-hard and hard cheeses as examples, this review describes how cheese flavor profiles are affected by milk type and applied treatment, fat and salt content, microbiota composition and microbial interactions, ripening time, temperature, and environmental humidity, together with packaging method and material. Moreover, these factors are linked to flavor profiles through their effects on proteolysis, the further catabolism of amino acids, and lipolysis. Acids, alcohols, ketones, esters, aldehydes, lactones, and sulfur compounds are key volatiles, which elicit fruity, sweet, rancid, green, creamy, pungent, alcoholic, nutty, fatty, and sweaty flavor notes, contributing to the overall flavor profiles. Additionally, this review demonstrates how data-driven modeling techniques can link these influencing factors to resulting flavor profiles. This is done by providing a comprehensive review on the (i) identification of key factors and flavor compounds, (ii) discrimination of cheeses, and (iii) prediction of flavor notes. Overall, this review provides knowledge tools for cheese flavor modulation and sheds light on using data-driven modeling techniques to aid cheese flavor analysis and flavor prediction.
Collapse
Affiliation(s)
- Huabin Luo
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Davy Verheyen
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jian Wang
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Monika Polanska
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| |
Collapse
|
2
|
Singh S, Bhat HF, Kumar S, Muhammad Aadil R, Mohan MS, Proestos C, Bhat ZF. Storage stability of chocolate can be enhanced using locust protein-based film incorporated with E. purpurea flower extract-based nanoparticles. ULTRASONICS SONOCHEMISTRY 2023; 100:106594. [PMID: 37713960 PMCID: PMC10511807 DOI: 10.1016/j.ultsonch.2023.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
The study aimed to develop a locust protein (Loct-Prot)-based film to enhance the lipid oxidative and storage stability of chocolate. The E. purpurea flower extract based-nanoparticles (EFNPs) were developed using ultrasonication (500 W and 20 kHz for 10 min) following a green method of synthesis. The EFPNs were incorporated at different levels [T0 (0%), T1 (1.0%), T2 (1.5%), and T3 (2.0%)] to impart bioactive properties to the Loct-Prot-based films which were used for packaging of white chocolate during 90 days trial. The addition of EFPNs increased (P < 0.05) the density of the Loct-Prot-based film which in turn decreased (P < 0.05) the transmittance (%) and WVTR (water vapour transmission rate, mg/mt2) with increasing levels of addition. While brightness (L*) showed a decrease, redness (a*) and yellowness (b*) increased with increasing concentration of EFPNs. No significant (P > 0.05) effect was recorded on other physicomechanical parameters of the film. The addition of EFPNs (P < 0.05) increased the mean values of all the antioxidant and antimicrobial parameters (total flavonoid and phenolic contents, FRAP, DPPH, and ABTS activities, antioxidant release and inhibitory halos) of the film. The presence of Loct-Prot-based film decreased the lipid (TBARS and free fatty acids) and protein (total carbonyl content) oxidation of the chocolate samples during storage. A significant (P < 0.05) increase was observed in the antioxidant properties [FRAP (µM TE/100 g) and DPPH and ABTS activities (% inhibition)] of the chocolate samples after one month and the sensory and microbial qualities towards the end of the storage. The gastrointestinal digestion simulation showed a positive impact on the antioxidant properties of the chocolate. Based on our results, Loct-Prot-based film incorporated with EFPNs can be used to enhance the storage stability of chocolate during storage.
Collapse
Affiliation(s)
- Shubam Singh
- Division of Livestock Products Technology, SKUAST-J, India
| | - Hina F Bhat
- Division of Animal Biotechnology, SKUAST-K, India.
| | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST-J, India
| | | | - Maneesha S Mohan
- Dairy and Food Science, South Dakota State University, Brookings, USA.
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou 15784, Athens, Greece.
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, India.
| |
Collapse
|
3
|
Chirilli C, Torri L. Effect of Biobased Cling Films on Cheese Quality: Color and Aroma Analysis for Sustainable Food Packaging. Foods 2023; 12:3672. [PMID: 37835325 PMCID: PMC10572124 DOI: 10.3390/foods12193672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Biobased and biodegradable polymeric materials are a sustainable alternative to the conventional plastics used in food packaging. This study investigated the possible effect of biobased cling films derived from renewable and circular and sustainable sources on key cheese sensory parameters (appearance and odor) able to influence consumer acceptance or rejection of a food product over time. For this purpose, a semi-hard cheese was selected as food model and stored for 14 days at 5 °C wrapped with five cling films: two bio-plastic materials from renewable circular and sustainable sources (R-BP1 and R-BP2), one bio-plastic film from a non-renewable source (NR-BP), and two conventional cling films (LDPE and PVC). Three analytical approaches (image analysis, electronic nose, and sensory test) were applied to evaluate the variation and the acceptability in terms of appearance and odor of the cheese. In preserving cheese color, the R-BP1 and RBP2 films were comparable to LDPE film, while NR-BP film was comparable to PVC film. In terms of odor preservation, R-BP2 film was comparable to LDPE and PVC. The consumer test showed that appearance and odor scores were higher for cheeses stored in R-BP1 and R-BP2 films than NR-BP film. Moreover, in terms of odor, R-BP1 film performed better than conventional films. This study shows how biodegradable cling films from renewable circular and sustainable resources could have comparable performance to conventional plastics (LDPE and PVC) used in the food sector.
Collapse
Affiliation(s)
| | - Luisa Torri
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy;
| |
Collapse
|
4
|
Bhat ZF, Bhat HF, Mohan MS, Aadil RM, Hassoun A, Aït-Kaddour A. Edible packaging systems for improved microbial quality of animal-derived foods and the role of emerging technologies. Crit Rev Food Sci Nutr 2023; 64:12137-12165. [PMID: 37594230 DOI: 10.1080/10408398.2023.2248494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Animal-derived foods are susceptible to microbial spoilage due to their superior nutritional composition and high moisture content. Among the various options, edible packaging is a relatively nascent area and can effectively control microbial growth without substantially affecting the sensory and techno-functional properties. Numerous studies have evaluated the effect of edible packaging systems on the microbial quality of animal-derived foods, however, a review that specifically covers the effect of edible packaging on animal foods and summarizes the findings of these studies is missing in the literature. To fill this gap, the present review analyses the findings of the studies on animal foods published during the last five years. Studies have reported edible-packaging systems for improving microbial stability of animal foods using different biopolymers (proteins, polysaccharides, lipids, and their derivatives) and bioactive ingredients (phytochemicals, peptides, plant extracts, essential oils, and their nanoparticles, nanoemulsions or coarse emulsions). In general, nanoparticles and nanoemulsions are more effective in controlling microbial spoilage in animal foods compared to the direct addition of bioactive agents to the film matrices. Studies have reported the use of non-thermal and emerging technologies in combination with edible packaging systems for improved food safety or their use for enhancing functionality, bioactivity and characteristics of the packaging systems. Future studies should focus on developing sustainable packaging systems using widely available biopolymers and bioactive ingredients and should also consider the economic feasibility at the commercial scale.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Hina F Bhat
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | - Maneesha S Mohan
- Dairy and Food Science, South Dakota State University, Brookings, SD, USA
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Boulogne-sur-Mer, France
| | | |
Collapse
|
5
|
Brandelli A, Lopes NA, Pinilla CMB. Nanostructured Antimicrobials for Quality and Safety Improvement in Dairy Products. Foods 2023; 12:2549. [PMID: 37444286 DOI: 10.3390/foods12132549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In the food sector, one of the most important economic activities is the dairy industry, which has been facing many challenges in order to meet the increasing demand by consumers for natural and minimally processed products with high quality. In this sense, the application of innovative and emerging technologies can be an interesting alternative, for example, the use of nanotechnology in packaging and as delivery systems. This technology has the potential to improve the quality and safety of dairy products, representing an interesting approach for delivering food preservatives and improving the mechanical, barrier and functional properties of packaging. Several applications and promising results of nanostructures for dairy product preservation can be found throughout this review, including the use of metallic and polymeric nanoparticles, lipid-based nanostructures, nanofibers, nanofilms and nanocoatings. In addition, some relevant examples of the direct application of nanostructured natural antimicrobials in milk and cheese are presented and discussed, as well as the use of milk agar as a model for a preliminary test. Despite their high cost and the difficulties for scale-up, interesting results of these technologies in dairy foods and packaging materials have promoted a growing interest of the dairy industry.
Collapse
Affiliation(s)
- Adriano Brandelli
- Laboratory of Nanobiotechnology and Applied Microbiology, Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Nathalie Almeida Lopes
- Laboratory of Nanobiotechnology and Applied Microbiology, Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Cristian Mauricio Barreto Pinilla
- Laboratory of Nanobiotechnology and Applied Microbiology, Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Dairy Technology Center, Institute of Food Technology, Campinas 13083-015, Brazil
| |
Collapse
|
6
|
Domagała J, Pluta-Kubica A, Wieteska-Śliwa I, Duda I. The influence of milk protein cross-linking by transglutaminase on technology, composition and quality properties of Gouda-type cheese. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|