1
|
Dacha P, Hambsch M, Pohl D, Haase K, Löffler M, Lan T, Feng X, Rellinghaus B, Mannsfeld SCB. Tailoring the Morphology of a Diketopyrrolopyrrole-based Polymer as Films or Wires for High-Performance OFETs using Solution Shearing. SMALL METHODS 2024; 8:e2300842. [PMID: 38009770 DOI: 10.1002/smtd.202300842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/29/2023]
Abstract
Conjugated polymers often show efficient charge carrier transport along their backbone which is a primary factor in the electrical behavior of Organic Field Effect Transistor (OFETs) devices fabricated from these materials. Herein, a solution shearing procedure is reported to fabricate micro/nano wires from a diketopyrrolopyrrole (DPP)-based polymer. Millimeter to nanometer long polymer wires orientated in the coating direction are developed after a thorough analysis of the deposition conditions. It shows several morphological regimes-film, transition, and wires and experimentally derive a phase diagram for the parameters coating speed and surface energy of the substrate. The as-fabricated wires are isolated, which is confirmed by optical, atomic force, and scanning electron microscopy. Beside the macroscopic alignment of wires, cross-polarized optical microscopy images show strong birefringence suggesting a high degree of molecular orientation. This is further substantiated by polarized UV-Vis-NIR spectroscopy, selected area electron diffraction transmission electron microscopy, and grazing-incidence wide-angle X-ray scattering. Finally, an enhanced electrical performance of single wire OFETs is observed with a 15-fold increase in effective charge carrier mobility to 1.57 cm2 V-1 s-1 over devices using films (0.1 cm2 V-1 s-1 ) with similar values for on/off current ratio and threshold voltage.
Collapse
Affiliation(s)
- Preetam Dacha
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01069, Dresden, Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Darius Pohl
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Katherina Haase
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01069, Dresden, Germany
| | - Markus Löffler
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Tianshu Lan
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Bernd Rellinghaus
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
2
|
Ren C, Cao L, Wu T. Meniscus-Guided Deposition of Organic Semiconductor Thin Films: Materials, Mechanism, and Application in Organic Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300151. [PMID: 36869409 DOI: 10.1002/smll.202300151] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Solution-processable organic semiconductors are one of the promising materials for the next generation of organic electronic products, which call for high-performance materials and mature processing technologies. Among many solution processing methods, meniscus-guided coating (MGC) techniques have the advantages of large-area, low-cost, adjustable film aggregation, and good compatibility with the roll-to-roll process, showing good research results in the preparation of high-performance organic field-effect transistors. In this review, the types of MGC techniques are first listed and the relevant mechanisms (wetting mechanism, fluid mechanism, and deposition mechanism) are introduced. The MGC processes are focused and the effect of the key coating parameters on the thin film morphology and performance with examples is illustrated. Then, the performance of transistors based on small molecule semiconductors and polymer semiconductor thin films prepared by various MGC techniques is summarized. In the third section, various recent thin film morphology control strategies combined with the MGCs are introduced. Finally, the advanced progress of large-area transistor arrays and the challenges for roll-to-roll processes are presented using MGCs. Nowadays, the application of MGCs is still in the exploration stage, its mechanism is still unclear, and the precise control of film deposition still needs experience accumulation.
Collapse
Affiliation(s)
- Chunxing Ren
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Long Cao
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| |
Collapse
|
3
|
Kuo CW, Chang JC, Lee LT, Lin YD, Lee PY, Wu TY. 1,4-Bis((9H-Carbazol-9-yl)Methyl)Benzene-Containing Electrochromic Polymers as Potential Electrodes for High-Contrast Electrochromic Devices. Polymers (Basel) 2022; 14:1175. [PMID: 35335506 PMCID: PMC8955579 DOI: 10.3390/polym14061175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 12/27/2022] Open
Abstract
Four 1,4-bis((9H-carbazol-9-yl)methyl)benzene-containing polymers (PbCmB, P(bCmB-co-bTP), P(bCmB-co-dbBT), and P(bCmB-co-TF)) were electrosynthesized onto ITO transparent conductive glass and their spectral and electrochromic switching performances were characterized. The PbCmB film displayed four types of color variations (bright gray, dark gray, dark khaki, and dark olive green) from 0.0 to 1.2 V. P(bCmB-co-bTP) displayed a high transmittance variation (∆T = 39.56% at 685 nm) and a satisfactory coloration efficiency (η = 160.5 cm2∙C-1 at 685 nm). Dual-layer organic electrochromic devices (ECDs) were built using four bCmB-containing polycarbazoles and poly(3,4-ethylenedioxythiophene) (PEDOT) as anodes and a cathode, respectively. PbCmB/PEDOT ECD displayed gainsboro, dark gray, and bright slate gray colors at -0.4 V, 1.0 V, and 2.0 V, respectively. The P(bCmB-co-bTP)/PEDOT ECD showed a high ∆T (40.7% at 635 nm) and a high coloration efficiency (η = 428.4 cm2∙C-1 at 635 nm). The polycarbazole/PEDOT ECDs exhibited moderate open circuit memories and electrochemical redox stability. The characterized electrochromic properties depicted that the as-prepared polycarbazoles had a satisfactory application prospect as an electrode for the ECDs.
Collapse
Affiliation(s)
- Chung-Wen Kuo
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (C.-W.K.); (Y.-D.L.)
| | - Jui-Cheng Chang
- Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan; (J.-C.C.); (P.-Y.L.)
- Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Li-Ting Lee
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan;
| | - Yi-Dong Lin
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (C.-W.K.); (Y.-D.L.)
| | - Pei-Ying Lee
- Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan; (J.-C.C.); (P.-Y.L.)
| | - Tzi-Yi Wu
- Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan; (J.-C.C.); (P.-Y.L.)
| |
Collapse
|
4
|
Ditte K, Nguyen Le TA, Ditzer O, Sandoval Bojorquez DI, Chae S, Bachmann M, Baraban L, Lissel F. Rapid Detection of SARS-CoV-2 Antigens and Antibodies Using OFET Biosensors Based on a Soft and Stretchable Semiconducting Polymer. ACS Biomater Sci Eng 2021; 9:2140-2147. [PMID: 34519484 DOI: 10.1021/acsbiomaterials.1c00727] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the midst of the COVID-19 pandemic, adaptive solutions are needed to allow us to make fast decisions and take effective sanitation measures, e.g., the fast screening of large groups (employees, passengers, pupils, etc.). Although being reliable, most of the existing SARS-CoV-2 detection methods cannot be integrated into garments to be used on demand. Here, we report an organic field-effect transistor (OFET)-based biosensing device detecting of both SARS-CoV-2 antigens and anti-SARS-CoV-2 antibodies in less than 20 min. The biosensor was produced by functionalizing an intrinsically stretchable and semiconducting triblock copolymer (TBC) film either with the anti-S1 protein antibodies (S1 Abs) or receptor-binding domain (RBD) of the S1 protein, targeting CoV-2-specific RBDs and anti-S1 Abs, respectively. The obtained sensing platform is easy to realize due to the straightforward fabrication of the TBC film and the utilization of the reliable physical adsorption technique for the molecular immobilization. The device demonstrates a high sensitivity of about 19%/dec and a limit of detection (LOD) of 0.36 fg/mL for anti-SARS-Cov-2 antibodies and, at the same time, a sensitivity of 32%/dec and a LOD of 76.61 pg/mL for the virus antigen detection. The TBC used as active layer is soft, has a low modulus of 24 MPa, and can be stretched up to 90% with no crack formation of the film. The TBC is compatible with roll-to-roll printing, potentially enabling the fabrication of low-cost wearable or on-skin diagnostic platforms aiming at point-of-care concepts.
Collapse
Affiliation(s)
- Kristina Ditte
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Chemistry and Food Chemistry, Dresden Technical University, Dresden 01062, Germany
| | - Trang Anh Nguyen Le
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany.,Faculty of Medicine Carl Gustav Carus, Dresden Technical University, Dresden 01307, Germany
| | - Oliver Ditzer
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Chemistry and Food Chemistry, Dresden Technical University, Dresden 01062, Germany
| | - Diana Isabel Sandoval Bojorquez
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany
| | - Soosang Chae
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany.,Faculty of Medicine Carl Gustav Carus, Dresden Technical University, Dresden 01307, Germany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany
| | - Franziska Lissel
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Chemistry and Food Chemistry, Dresden Technical University, Dresden 01062, Germany.,Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, Jena 07743, Germany
| |
Collapse
|