1
|
Zhao N, Qin L, Liu Y, Zhai M, Li D. Improved new bone formation capacity of hyaluronic acid-bone substitute compound in rat calvarial critical size defect. BMC Oral Health 2024; 24:994. [PMID: 39182066 PMCID: PMC11344309 DOI: 10.1186/s12903-024-04679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Bone loss of residual alveolar ridges is a great challenge in the field of dental implantology. Deproteinized bovine bone mineral (DBBM) is commonly used for bone regeneration, however, it is loose and difficult to handle in clinical practice. Hyaluronic acid (HA) shows viscoelasticity, permeability and excellent biocompatibility. The aim of this study is to evaluate whether high-molecular-weight (MW) HA combined with DBBM could promote new bone formation in rat calvarial critical size defects (CSDs). MATERIALS AND METHODS Rat calvarial CSDs (5 mm in diameter) were created. Rats (n = 45) were randomly divided into 3 groups: HA-DBBM compound grafting group, DBBM particles only grafting group and no graft group. Defect healing was assessed by hematoxylin-eosin staining and histomorphometry 2, 4 and 8 weeks postop, followed by Micro-CT scanning 8 weeks postop. Statistical analyses were performed by ANOVA followed by Tukey's post hoc test with P < 0.05 indicating statistical significance. RESULTS All rats survived after surgery. Histomorphometric evaluation revealed that at 2, 4 and 8 weeks postop, the percentage of newly formed bone was significantly greater in HA-DBBM compound grafting group than in the other two groups. Consistently, Micro-CT assessment revealed significantly more trabecular bone (BV/TV and Tb.N) in HA-DBBM compound group than in the other two groups, respectively (P < 0.05). Moreover, the trabecular bone was significantly more continuous (Tb.Pf) in HA-DBBM compound group than in the other two groups, respectively (P < 0.05). CONCLUSION HA not only significantly promoted new bone formation in rats calvarial CSDs but also improved the handling ability of DBBM.
Collapse
Affiliation(s)
- Ningbo Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Lei Qin
- DeLun Dental, Baiyun District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Military Stomatology, Department of Oral Implants, School of Stomatology, Fourth Military Medical University, No. 145 Changle West Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Min Zhai
- Department of Stomatology, General Hospital of the Tibet Military Area Command, Lhasa, Tibet, 850007, People's Republic of China
| | - Dehua Li
- State Key Laboratory of Military Stomatology, Department of Oral Implants, School of Stomatology, Fourth Military Medical University, No. 145 Changle West Road, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
2
|
Qasim SSB, Trajkovski B, Zafiropoulos GG. The response of human osteoblasts on bovine xenografts with and without hyaluronate used in bone augmentation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:880-897. [PMID: 38346177 DOI: 10.1080/09205063.2024.2311454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
The aim of the in vitro study was to asses the effect of hyaluronate in conjunction with bovine derived xenografts on the viability, proliferation on day 4, 7 and 10, expression of early osteogenic differentiation marker Alkaline phosphatase on day 14 and 21, collagen, calcium deposition on day 14, 21 and 28 and cellular characteristics, as assessed through live cell image analysis, confocal laser scanning microscopy and scanning electron microscopy, in primary human osteoblasts compared to three bovine xenografts without hyaluronate. All experiments were performed in triplicates. Data were compared between groups and timepoints using one-way analysis of variance (ANOVA). Bonferroni post hoc test were further used for multiple comparison between groups (p < .05) An increase in cell viability (p < .05) and enhanced ALP activity was observed in all xenografts. Specimens containing hyaluronate showed a highest significant difference (23755 ± 29953, p < .0001). The highest levels of calcium (1.60 ± 0.30) and collagen (1.92 ± 0.09, p < .0001) deposition were also observed with hyaluronate loaded groups. The osteoblasts were well attached and spread on all xenograft groups. However, a higher number of cells were observed with hyaluronate functionalized xenograft (76.27 ± 15.11, (p < .0001) in live cell image analysis and they migrated towards the graft boundaries. The biofunctionalization of xenografts with hyaluronate improves their in vitro performance on human osteoblasts. This suggests that hyaluronate might be able to improve the bone regeneration when using such xenografts.
Collapse
Affiliation(s)
- Syed Saad Bin Qasim
- Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Safat, Kuwait
| | - Branko Trajkovski
- Faculty of Dentistry, College of Dentistry, Kuwait University, Safat, Kuwait
| | | |
Collapse
|
3
|
Heinemann C, Buchner F, Lee PS, Bernhardt A, Kruppke B, Wiesmann HP, Hintze V. Effects of Gamma Irradiation and Supercritical Carbon Dioxide Sterilization on Methacrylated Gelatin/Hyaluronan Hydrogels. J Funct Biomater 2023; 14:317. [PMID: 37367281 DOI: 10.3390/jfb14060317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Biopolymer hydrogels have become an important group of biomaterials in experimental and clinical use. However, unlike metallic or mineral materials, they are quite sensitive to sterilization. The aim of this study was to compare the effects of gamma irradiation and supercritical carbon dioxide (scCO2) treatment on the physicochemical properties of different hyaluronan (HA)- and/or gelatin (GEL)-based hydrogels and the cellular response of human bone marrow-derived mesenchymal stem cells (hBMSC). Hydrogels were photo-polymerized from methacrylated HA, methacrylated GEL, or a mixture of GEL/HA. The composition and sterilization methods altered the dissolution behavior of the biopolymeric hydrogels. There were no significant differences in methacrylated GEL release but increased methacrylated HA degradation of gamma-irradiated samples. Pore size/form remained unchanged, while gamma irradiation decreased the elastic modulus from about 29 kPa to 19 kPa compared to aseptic samples. HBMSC proliferated and increased alkaline phosphatase activity (ALP) particularly in aseptic and gamma-irradiated methacrylated GEL/HA hydrogels alike, while scCO2 treatment had a negative effect on both proliferation and osteogenic differentiation. Thus, gamma-irradiated methacrylated GEL/HA hydrogels are a promising base for multi-component bone substitute materials.
Collapse
Affiliation(s)
- Christiane Heinemann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Frauke Buchner
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Poh Soo Lee
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Benjamin Kruppke
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Hans-Peter Wiesmann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| |
Collapse
|
4
|
Zhang S, Dong J, Pan R, Xu Z, Li M, Zang R. Structures, Properties, and Bioengineering Applications of Alginates and Hyaluronic Acid. Polymers (Basel) 2023; 15:2149. [PMID: 37177293 PMCID: PMC10181120 DOI: 10.3390/polym15092149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, polymeric materials have been used in a wide range of applications in a variety of fields. In particular, in the field of bioengineering, the use of natural biomaterials offers a possible new avenue for the development of products with better biocompatibility, biodegradability, and non-toxicity. This paper reviews the structural and physicochemical properties of alginate and hyaluronic acid, as well as the applications of the modified cross-linked derivatives in tissue engineering and drug delivery. This paper summarizes the application of alginate and hyaluronic acid in bone tissue engineering, wound dressings, and drug carriers. We provide some ideas on how to replace or combine alginate-based composites with hyaluronic-acid-based composites in tissue engineering and drug delivery to achieve better eco-economic value.
Collapse
Affiliation(s)
- Shuping Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.D.)
| | | | | | | | | | | |
Collapse
|
5
|
Jabbari F, Babaeipour V, Saharkhiz S. Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications. Int J Biol Macromol 2023; 240:124484. [PMID: 37068534 DOI: 10.1016/j.ijbiomac.2023.124484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Hyaluronic acid (HA), an anionic and nonsulfated glycosaminoglycan, is the main structural component of various tissues and plays an important role in various biological processes. Given the promising properties of HA, such as high cellular compatibility, moisture retention, antiaging, proper interaction with cells, and CD44 targeting, HA can be widely used extensively in drug delivery, tissue engineering, wound healing, and cancer therapy. HA can obtain from animal tissues and microbial fermentation, but its applications depend on its molecular weight. Microbial fermentation is a common method for HA production on an industrial scale and S. zooepidemicus is the most frequently used strain in HA production. Culture conditions including pH, temperature, agitation rate, aeration speed, shear stress, dissolved oxygen, and bioreactor type significantly affect HA biosynthesis properties. In this review all the HA production methods and purification techniques to improve its physicochemical and biological properties for various biomedical applications are discussed in details. In addition, we showed that how HA molecular weight can significantly affect its properties and applications.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Iran.
| | - Saeed Saharkhiz
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Iran
| |
Collapse
|
6
|
Fabrication of Low-Molecular-Weight Hyaluronic Acid-Carboxymethyl Cellulose Hybrid to Promote Bone Growth in Guided Bone Regeneration Surgery: An Animal Study. Polymers (Basel) 2022; 14:polym14153211. [PMID: 35956724 PMCID: PMC9370888 DOI: 10.3390/polym14153211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Guided bone regeneration surgery is an important dental operation used to regenerate enough bone to successfully heal dental implants. When this technique is performed on maxilla sinuses, hyaluronic acid (HLA) can be used as an auxiliary material to improve the graft material handling properties. Recent studies have indicated that low-molecular hyaluronic acid (L-HLA) provides a better regeneration ability than high-molecular-weight (H-HLA) analogues. The aim of this study was to fabricate an L-HLA-carboxymethyl cellulose (CMC) hybrid to promote bone regeneration while maintaining viscosity. The proliferation effect of fabricated L-HLA was tested using dental pulp stem cells (DPSCs). The mitogen-activated protein kinase (MAPK) pathway was examined using cells cultured with L-HLA combined with extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 inhibitors. The bone growth promotion of fabricated L-HLA/CMC hybrids was tested using an animal model. Micro-computer tomography (Micro-CT) and histological images were evaluated quantitatively to compare the differences in the osteogenesis between the H-HLA and L-HLA. Our results show that the fabricated L-HLA can bind to CD44 on the DPSC cell membranes and affect MAPK pathways, resulting in a prompt proliferation rate increase. Micro CT images show that new bone formation in rabbit calvaria defects treated with L-HLA/CMC was almost two times higher than in defects filled with H-HLA/CMC (p < 0.05) at 4 weeks, a trend that remained at 8 weeks and was confirmed by HE-stained images. According to these findings, it is reasonable to conclude that L-HLA provides better bone healing than H-HLA, and that the L-HLA/CMC fabricated in this study is a potential candidate for improving bone healing efficiency when a guided bone regeneration surgery was performed.
Collapse
|
7
|
Chang YL, Liao PB, Wu PH, Chang WJ, Lee SY, Huang HM. Cancer Cytotoxicity of a Hybrid Hyaluronan-Superparamagnetic Iron Oxide Nanoparticle Material: An In-Vitro Evaluation. NANOMATERIALS 2022; 12:nano12030496. [PMID: 35159842 PMCID: PMC8839197 DOI: 10.3390/nano12030496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
While hyaluronic acid encapsulating superparamagnetic iron oxide nanoparticles have been reported to exhibit selective cytotoxicity toward cancer cells, it is unclear whether low-molecular-weight hyaluronic acid-conjugated superparamagnetic iron oxide nanoparticles also display such cytotoxicity. In this study, high-molecular-weight hyaluronic acid was irradiated with γ-ray, while Fe3O4 nanoparticles were fabricated using chemical co-precipitation. The low-molecular-weight hyaluronic acid and Fe3O4 nanoparticles were then combined according to a previous study. Size distribution, zeta potential, and the binding between hyaluronic acid and iron oxide nanoparticles were examined using dynamic light scattering and a nuclear magnetic resonance spectroscopy. The ability of the fabricated low-molecular-weight hyaluronic acid conjugated superparamagnetic iron oxide nanoparticles to target cancer cells was examined using time-of-flight secondary ion mass spectrometry and T2* weighted magnetic resonance images to compare iron signals in U87MG human glioblastoma and NIH3T3 normal fibroblast cell lines. Comparison showed that the present material could target U87MG cells at a higher rate than NIH3T3 control cells, with a viability inhibition rate of 34% observed at day two and no cytotoxicity observed in NIH3T3 normal fibroblasts during the three-day experimental period. Supported by mass spectrometry images confirming that the nanoparticles accumulated on the surface of cancer cells, the fabricated materials can reasonably be suggested as a candidate for both magnetic resonance imaging applications and as an injectable anticancer agent.
Collapse
Affiliation(s)
- Yen-Lan Chang
- Divison of Prosthodontics, Department of Stomatology, Mackay Memorial Hospital, Taipei 10449, Taiwan;
| | - Pei-Bang Liao
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Ping-Han Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jen Chang
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; (W.-J.C.); (S.-Y.L.)
| | - Sheng-Yang Lee
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; (W.-J.C.); (S.-Y.L.)
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, 11696 Taipei, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; (W.-J.C.); (S.-Y.L.)
- Correspondence: ; Tel.: +886-291-937-9783
| |
Collapse
|