1
|
Hallan SS, Ferrara F, Cortesi R, Sguizzato M. Potential of the Nano-Encapsulation of Antioxidant Molecules in Wound Healing Applications: An Innovative Strategy to Enhance the Bio-Profile. Molecules 2025; 30:641. [PMID: 39942745 PMCID: PMC11820390 DOI: 10.3390/molecules30030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Naturally available antioxidants offer remarkable medicinal applications in wound healing. However, the encapsulation of these phytoactive moieties into suitable nano-scale drug delivery systems has always been challenging due to their inherent characteristics, such as low molecular weight, poor aqueous solubility, and inadequate skin permeability. Here, we provide a systematic review focusing on the major obstacles hindering the development of various lipid and polymer-based drug transporters to carry these cargos to the targeted site. Additionally, this review covers the possibility of combining the effects of a polymer and a lipid within one system, which could increase the skin permeability threshold. Moreover, the lack of suitable physical characterization techniques and the challenges associated with scaling up the progression of these nano-carriers limit their utility in biomedical applications. In this context, consistent progressive approaches for addressing these shortcomings are introduced, and their prospects are discussed in detail.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
| |
Collapse
|
2
|
Indrakumar S, Gugulothu SB, Joshi A, Dash TK, Mishra V, Tandon B, Chatterjee K. Silk Composite-Based Multifunctional Pellets for Controlled Release. Macromol Biosci 2024:e2400410. [PMID: 39427344 DOI: 10.1002/mabi.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Chronic wounds present significant clinical challenges due to the high risk of infections and persistent inflammation. While personalized treatments in point-of-care settings are crucial, they are limited by the complex fabrication techniques of the existing products. The calcium sulfate hemihydrate (CSH)-based drug delivery platform enables rapid fabrication but lacks antioxidant and antibacterial properties, essential to promote healing. To develop a multifunctional platform, a tannic acid (TA)-silk fibroin (SF) complex is engineered and incorporated as an additive in CSH cement. This cement is then cast into pellets to create silk/bioceramic-based composite drug delivery systems, designed for point-of-care use. Compared to neat CSH pellets, the composite pellets exhibit a 7.5-fold increase in antioxidant activity and prolonged antibacterial efficacy (up to 13 d). Moreover, the subcutaneous implantation of the pellets shows no hallmarks of local or systemic toxicity in a rodent model. The pellets are optimized in composition and fabrication to ease market translation. Clinically, the pellets have the potential to be further developed into products to place on wound beds or fill into bone cavities that are designed to deliver the intended therapeutic effect. The developed multifunctional system proves to be a promising solution for personalized treatment in point-of-care settings.
Collapse
Affiliation(s)
- Sushma Indrakumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | | | - Akshat Joshi
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Tapan Kumar Dash
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore, 560064, India
| | - Vivek Mishra
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore, 560064, India
| | - Bharat Tandon
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore, 560064, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
3
|
Ma L, Dong W, Lai E, Wang J. Silk fibroin-based scaffolds for tissue engineering. Front Bioeng Biotechnol 2024; 12:1381838. [PMID: 38737541 PMCID: PMC11084674 DOI: 10.3389/fbioe.2024.1381838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Silk fibroin is an important natural fibrous protein with excellent prospects for tissue engineering applications. With profound studies in recent years, its potential in tissue repair has been developed. A growing body of literature has investigated various fabricating methods of silk fibroin and their application in tissue repair. The purpose of this paper is to trace the latest developments of SF-based scaffolds for tissue engineering. In this review, we first presented the primary and secondary structures of silk fibroin. The processing methods of SF scaffolds were then summarized. Lastly, we examined the contribution of new studies applying SF as scaffolds in tissue regeneration applications. Overall, this review showed the latest progress in the fabrication and utilization of silk fibroin-based scaffolds.
Collapse
Affiliation(s)
- Li Ma
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Wenyuan Dong
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Enping Lai
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Jiamian Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| |
Collapse
|
4
|
Huang L, Shi J, Zhou W, Zhang Q. Advances in Preparation and Properties of Regenerated Silk Fibroin. Int J Mol Sci 2023; 24:13153. [PMID: 37685960 PMCID: PMC10487664 DOI: 10.3390/ijms241713153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Over the years, silk fibroin (SF) has gained significant attention in various fields, such as biomedicine, tissue engineering, food processing, photochemistry, and biosensing, owing to its remarkable biocompatibility, machinability, and chemical modifiability. The process of obtaining regenerated silk fibroin (RSF) involves degumming, dissolving, dialysis, and centrifugation. RSF can be further fabricated into films, sponges, microspheres, gels, nanofibers, and other forms. It is now understood that the dissolution method selected greatly impacts the molecular weight distribution and structure of RSF, consequently influencing its subsequent processing and application. This study comprehensively explores and summarizes different dissolution methods of SF while examining their effects on the structure and performance of RSF. The findings presented herein aim to provide valuable insights and references for researchers and practitioners interested in utilizing RSF in diverse fields.
Collapse
Affiliation(s)
| | | | | | - Qing Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Phan VHG, Murugesan M, Nguyen PPT, Luu CH, Le NHH, Nguyen HT, Manivasagan P, Jang ES, Li Y, Thambi T. Biomimetic injectable hydrogel based on silk fibroin/hyaluronic acid embedded with methylprednisolone for cartilage regeneration. Colloids Surf B Biointerfaces 2022; 219:112859. [PMID: 36162179 DOI: 10.1016/j.colsurfb.2022.112859] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
Articular cartilage injury is characterized by limited self-repair capacity due to the shortage of blood vessels, lymphatics, and nerves. Hence, this study aims to exploit a classic injectable hydrogel platform that can restore the cartilage defects with minimally invasive surgery, which is similar to the natural extracellular microenvironment, and highly porous network for cell adhesion and proliferation. In this study, an injectable scaffold system comprised of silk fibroin (SF) and hyaluronic acid (HA) was developed to adapt the above requirements. Besides, methylprednisolone (MP) was encapsulated by SF/HA scaffold for alleviating inflammation. The SF/HA hydrogel scaffold was prepared by chemical cross-linking between the lysine residues of SF via Schiff base formation, and pore diameter of the obtained hydrogels was 100.47 ± 32.09 µm. The highly porous nature of hydrogel could further benefit the soft tissue regeneration. Compared with HA-free hydrogels, SF/HA hydrogel showed more controlled release on MP. In ovo experiment of chick embryo chorioallantoic membrane (CAM) demonstrated that SF/HA hydrogels not altered the angiogenesis and formation of blood vessels, thus making it suitable for cartilage regeneration. Furthermore, in vivo gel formation was validated in mice model, suggesting in situ gel formation of SF/HA hydrogels. More importantly, SF/HA hydrogels exhibited the controlled biodegradation. Overall, SF/HA hydrogels provide further insights to the preparation of effective scaffold for tissue regeneration and pave the way to improve the articular cartilage injury treatment.
Collapse
Affiliation(s)
- V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - P P Thanh Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Cuong Hung Luu
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ngoc-Han Hoai Le
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Huong Thi Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Panchanathan Manivasagan
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang Province, PR China.
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea.
| |
Collapse
|
6
|
Hallan SS, Amirian J, Brangule A, Bandere D. Lipid-Based Nano-Sized Cargos as a Promising Strategy in Bone Complications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1146. [PMID: 35407263 PMCID: PMC9000285 DOI: 10.3390/nano12071146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
Bone metastasis has been considered the fatal phase of cancers, which remains incurable and to be a challenge due to the non-availability of the ideal treatment strategy. Unlike bone cancer, bone metastasis involves the spreading of the tumor cells to the bones from different origins. Bone metastasis generally originates from breast and prostate cancers. The possibility of bone metastasis is highly attributable to its physiological milieu susceptible to tumor growth. The treatment of bone-related diseases has multiple complications, including bone breakage, reduced quality of life, spinal cord or nerve compression, and pain. However, anticancer active agents have failed to maintain desired therapeutic concentrations at the target site; hence, uptake of the drug takes place at a non-target site responsible for the toxicity at the cellular level. Interestingly, lipid-based drug delivery systems have become the center of interest for researchers, thanks to their biocompatible and bio-mimetic nature. These systems possess a great potential to improve precise bone targeting without affecting healthy tissues. The lipid nano-sized systems are not only limited to delivering active agents but also genes/peptide sequences/siRNA, bisphosphonates, etc. Additionally, lipid coating of inorganic nanomaterials such as calcium phosphate is an effective approach against uncontrollable rapid precipitation resulting in reduced colloidal stability and dispersity. This review summarizes the numerous aspects, including development, design, possible applications, challenges, and future perspective of lipid nano-transporters, namely liposomes, exosomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoparticulate gels to treat bone metastasis and induce bone regeneration. Additionally, the economic suitability of these systems has been discussed and different alternatives have been discussed. All in all, through this review we will try to understand how far nanomedicine is from clinical and industrial applications in bone metastasis.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Jhaleh Amirian
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| |
Collapse
|
7
|
Wang Q, Wang Y, Liu S, Sha X, Song X, Dai Y, Zhao M, Cai L, Xu K, Li J. Theranostic nanoplatform to target macrophages enables the inhibition of atherosclerosis progression and fluorescence imaging of plaque in ApoE(-/-) mice. J Nanobiotechnology 2021; 19:222. [PMID: 34320994 PMCID: PMC8317354 DOI: 10.1186/s12951-021-00962-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
Background Rupture of atherosclerotic plaque can cause acute malignant heart and cerebrovascular events, such as acute coronary heart disease, stroke and so on, which seriously threaten the safety of human life and property. Therefore, the early diagnosis and inhibition of atherosclerotic plaque progress still be a vital task. Results In this study, we presented the development of composite mesoporous silica nanoparticle (Ru(bpy)3@SiO2-mSiO2, CMSN)-based nanomedicines (NMs) (Ru(bpy)3@SiO2-mSiO2@SRT1720@AntiCD36, CMSN@SRT@Anti) for accurate diagnosis and treatment of atherosclerosis (AS). In vitro cell experiments showed that both RAW264.7 and oxidized low density lipoprotein (ox-LDL)-stimulated RAW264.7 cells could significantly uptake CMSN@SRT@Anti. Conversely, little fluorescence signal could be observed in CMSN@SRT group, showing the excellent targeting ability of CMSN@SRT@Anti to Class II scavenger receptor, CD36 on macrophage. Additionally, such fluorescence signal was significantly stronger in ox-LDL-stimulated RAW264.7 cells, which might benefit from the upregulated expression of CD36 on macrophages after ox-LDL treatment. For another, compared with free SRT1720, CMSN@SRT@Anti had a better and more significant effect on the inhibition of macrophage foaming process, which indicated that drug-carrying mesoporous silicon with targeting ability could enhance the efficacy of SRT1720. Animal experimental results showed that after the abdominal injection of CMSN@SRT@Anti, the aortic lesions of ApoE-/-mice could be observed with obvious and persistent fluorescence signals. After 4 weeks post-treatment, the serum total cholesterol, aortic plaque status and area were significantly improved in the mouse, and the effect was better than that in the free SRT1720 group or the CMSN@SRT group. Conclusions The designed CMSN@SRT@Anti with excellent biocompatibility, high-performance and superior atherosclerosis-targeting ability has great potential for accurate identification and targeted therapy of atherosclerotic diseases. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00962-w.
Collapse
Affiliation(s)
- Qi Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Yong Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Siwen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Xuan Sha
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Xiaoxi Song
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Yue Dai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Mingming Zhao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Lulu Cai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China. .,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China. .,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|