1
|
Bhaduri A, Ha TJ. Biowaste-Derived Triboelectric Nanogenerators for Emerging Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405666. [PMID: 39248387 DOI: 10.1002/advs.202405666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Triboelectric nanogenerators (TENGs) combine contact electrification and electrostatic induction effects to convert waste mechanical energy into electrical energy. As conventional devices contribute to electronic waste, TENGs based on ecofriendly and biocompatible materials have been developed for various energy applications. Owing to the abundance, accessibility, low cost, and biodegradability of biowaste (BW), recycling these materials has gained considerable attention as a green approach for fabricating TENGs. This review provides a detailed overview of BW materials, processing techniques for BW-based TENGs (BW-TENGs), and potential applications of BW-TENGs in emerging bioelectronics. In particular, recent progress in material design, fabrication methods, and biomechanical and environmental energy-harvesting performance is discussed. This review is aimed at promoting the continued development of BW-TENGs and their adoption for sustainable energy-harvesting applications in the field of bioelectronics.
Collapse
Affiliation(s)
- Abhisikta Bhaduri
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Tae-Jun Ha
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| |
Collapse
|
2
|
Ratanaporn S, Bunriw W, Harnchana V, Banlusan K. Electrostatic energy-driven contact electrification mechanism from the ReaxFF molecular dynamics perspective. J Chem Phys 2024; 161:094702. [PMID: 39225523 DOI: 10.1063/5.0217824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Understanding the underlying principles of contact electrification is critical for more efficient triboelectric nanogenerator (TENG) development. Herein, we use ReaxFF molecular dynamics simulations in conjunction with a charge equilibration method to investigate the contact electrification mechanism in polyisoprene (PI), a natural rubber polymer, when it comes into contact with copper (Cu) and polytetrafluoroethylene (PTFE). The simulations reveal that the charge transfer directions in the PI/Cu and PI/PTFE contact models are opposite, and the amount of charge transfer in the former is substantially less than that in the latter, which are consistent with our TENG measurements. Contact electrification is revealed to be a spontaneous process that occurs to lower electrostatic energy, and the electrostatic energy released during contact electrification of PI/PTFE is greater than that of PI/Cu, which can be correlated with the relative strength of triboelectric charging observed for the two systems. A compression simulation of the PI/Cu contact model reveals that the quantity of charge transfer grows exponentially as compressive strain increases. Despite increasing the total energy of the system due to densification and distortion of the polymer structure, the applied deformation results in an energetically more stable electrostatic arrangement. We also find that the incorporation of a carbonaceous material into a polyisoprene matrix causes a faster increase in the amount of charge transfer with compressive strain, which is governed by a steeper electrostatic energy profile. This study provides an alternative perspective on the contact electrification mechanism, which could be beneficial for the development of energy harvesting devices.
Collapse
Affiliation(s)
- Sart Ratanaporn
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Weeraya Bunriw
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Viyada Harnchana
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kiettipong Banlusan
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Yoo H, Mahato M, Kim J, Oh S, Garai M, Nguyen VH, Taseer AK, Lee M, Oh I. Janus CoMOF-SEBS Membrane for Bifunctional Dielectric Layer in Triboelectric Nanogenerators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307656. [PMID: 38286669 PMCID: PMC11005725 DOI: 10.1002/advs.202307656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Considerable research has been conducted on the application of functional nano-fillers to enhance the power generation capabilities of triboelectric nanogenerators (TENGs). However, these additives often exhibit a decrease in output power at higher concentration. Here, a Janus cobalt metal-organic framework-SEBS (JCMS) membrane is reported as a dual-purpose dielectric layer capable of efficiently capturing and blocking charges for high-performance TENGs. The JCMS is produced asymmetrically through gravitational sedimentation, employing spherical CoMOFs within a diluted SEBS solution. Beyond its dual dielectric characteristics, the JCMS showcases exceptional mechanical durability, displaying notable stretchability of up to 475% and remarkable resilience when subjected to diverse mechanical pressures. Consequently, the JCMS-TENG produces a maximum peak-to-peak voltage of 936 V, a current of 42.8 µA, and a power density of 10.89 W m- 2 when exposed to an external force of 10 N at a 5 Hz frequency. This investigation highlights the potential of JCMS-TENGs with unique structures, known for their exceptional energy harvesting capabilities, mechanical strength, and flexibility. Additionally, the promising prospects of easily produced asymmetric structures is emphasized with bifunctionalities for developing efficient and flexible MOFs-based TENGs. These advancements are well-suited for self-powered wearables, rehabilitation devices, and energy harvesters.
Collapse
Affiliation(s)
- Hyunjoon Yoo
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Ji‐Seok Kim
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Saewoong Oh
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Mousumi Garai
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Van Hiep Nguyen
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Ashhad Kamal Taseer
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Myung‐Joon Lee
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Il‐Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
4
|
Petchnui K, Uwanno T, Phonyiem Reilly M, Pinming C, Treetong A, Yordsri V, Moolsradoo N, Klamcheun A, Wongwiriyapan W. Preparation of Chitin Nanofibers and Natural Rubber Composites and Their Triboelectric Nanogenerator Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:738. [PMID: 38591595 PMCID: PMC10856660 DOI: 10.3390/ma17030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 04/10/2024]
Abstract
Triboelectric nanogenerators (TENGs) have gained significant attention as promising energy-harvesting devices that convert mechanical energy into electrical energy through charge separation induced by friction and electrostatic induction. In this study, we explore the utilization of biowaste shrimp shell-extracted chitin nanofiber (ChNF) as a viable eco-friendly material for TENG applications. Composite materials were prepared by incorporating ChNF into natural rubber (NRL) at loading levels of 0.1 and 0.2 wt% (NRL/ChNF) to form the TENG triboelectric layer. ChNFs with a uniform width of approximately 10-20 nm were successfully extracted from the shrimp shells through a simple mechanical procedure. The NRL/ChNF composites exhibited enhanced mechanical properties, as evidenced by a higher Young's modulus (3.4 GPa) compared to pure NRL. Additionally, the NRL/ChNF composites demonstrated an increased dielectric constant of 3.3 at 0.1 MHz. Moreover, the surface potential difference of NRL increased from 0.182 V to 1.987 V in the NRL/ChNF composite. When employed as the triboelectric layer in TENG, the NRL/ChNF composites exhibited significant improvement in their output voltage, with it reaching 106.04 ± 2.3 V. This enhancement can be attributed to the increased dielectric constant of NRL/ChNF, leading to enhanced charge exchange and charge density. This study presents a straightforward and environmentally friendly technique for preparing sustainable natural materials suitable for energy-harvesting devices.
Collapse
Affiliation(s)
- Kattaliya Petchnui
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand; (K.P.); (T.U.); (M.P.R.); (C.P.)
| | - Teerayut Uwanno
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand; (K.P.); (T.U.); (M.P.R.); (C.P.)
| | - Mayuree Phonyiem Reilly
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand; (K.P.); (T.U.); (M.P.R.); (C.P.)
| | - Chinathun Pinming
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand; (K.P.); (T.U.); (M.P.R.); (C.P.)
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Paholyothin Rd., Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand; (A.T.); (A.K.)
| | - Visittapong Yordsri
- National Matal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Paholyothin Rd., Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand;
| | - Nutthanun Moolsradoo
- Department of Production Technology Education, Faculty of Industrial Education and Technology, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Thung Khru, Bangkok 10140, Thailand;
| | - Annop Klamcheun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Paholyothin Rd., Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand; (A.T.); (A.K.)
| | - Winadda Wongwiriyapan
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand; (K.P.); (T.U.); (M.P.R.); (C.P.)
| |
Collapse
|
5
|
Mekbuntoon P, Kongpet S, Kaeochana W, Luechar P, Thongbai P, Chingsungnoen A, Chinnarat K, Kaewnisai S, Harnchana V. The Modification of Activated Carbon for the Performance Enhancement of a Natural-Rubber-Based Triboelectric Nanogenerator. Polymers (Basel) 2023; 15:4562. [PMID: 38231981 PMCID: PMC10708179 DOI: 10.3390/polym15234562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Increasing energy demands and growing environmental concerns regarding the consumption of fossil fuels are important motivations for the development of clean and sustainable energy sources. A triboelectric nanogenerator (TENG) is a promising energy technology that harnesses mechanical energy from the ambient environment by converting it into electrical energy. In this work, the enhancement of the energy conversion performance of a natural rubber (NR)-based TENG has been proposed by using modified activated carbon (AC). The effect of surface modification techniques, including acid treatments and plasma treatment for AC material on TENG performance, are investigated. The TENG fabricated from the NR incorporated with the modified AC using N2 plasma showed superior electrical output performance, which was attributed to the modification by N2 plasma introducing changes in the surface chemistry of AC, leading to the improved dielectric property of the NR-AC composite, which contributes to the enhanced triboelectric charge density. The highest power density of 2.65 mW/m2 was obtained from the NR-AC (N2 plasma-treated) TENG. This research provides a key insight into the modification of AC for the development of TENG with high energy conversion performance that could be useful for other future applications such as PM2.5 removal or CO2 capture.
Collapse
Affiliation(s)
- Pongsakorn Mekbuntoon
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (S.K.); (W.K.); (P.L.); (P.T.)
| | - Sirima Kongpet
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (S.K.); (W.K.); (P.L.); (P.T.)
| | - Walailak Kaeochana
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (S.K.); (W.K.); (P.L.); (P.T.)
| | - Pawonpart Luechar
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (S.K.); (W.K.); (P.L.); (P.T.)
| | - Prasit Thongbai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (S.K.); (W.K.); (P.L.); (P.T.)
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Artit Chingsungnoen
- Department of Physics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand; (A.C.); (K.C.); (S.K.)
| | - Kodchaporn Chinnarat
- Department of Physics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand; (A.C.); (K.C.); (S.K.)
| | - Suninad Kaewnisai
- Department of Physics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand; (A.C.); (K.C.); (S.K.)
| | - Viyada Harnchana
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (S.K.); (W.K.); (P.L.); (P.T.)
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Troncoso OP, Corman-Hijar JI, Torres FG. Lignocellulosic Biomass for the Fabrication of Triboelectric Nano-Generators (TENGs)-A Review. Int J Mol Sci 2023; 24:15784. [PMID: 37958768 PMCID: PMC10647769 DOI: 10.3390/ijms242115784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Growth in population and increased environmental awareness demand the emergence of new energy sources with low environmental impact. Lignocellulosic biomass is mainly composed of cellulose, lignin, and hemicellulose. These materials have been used in the energy industry for the production of biofuels as an eco-friendly alternative to fossil fuels. However, their use in the fabrication of small electronic devices is still under development. Lignocellulose-based triboelectric nanogenerators (LC-TENGs) have emerged as an eco-friendly alternative to conventional batteries, which are mainly composed of harmful and non-degradable materials. These LC-TENGs use lignocellulose-based components, which serve as electrodes or triboelectric active materials. These materials can be derived from bulk materials such as wood, seeds, or leaves, or they can be derived from waste materials from the timber industry, agriculture, or recycled urban materials. LC-TENG devices represent an eco-friendly, low-cost, and effective mechanism for harvesting environmental mechanical energy to generate electricity, enabling the development of self-powered devices and sensors. In this study, a comprehensive review of lignocellulosic-based materials was conducted to highlight their use as both electrodes and triboelectric active surfaces in the development of novel eco-friendly triboelectric nano-generators (LC-TENGs). The composition of lignocellulose and the classification and applications of LC-TENGs are discussed.
Collapse
Affiliation(s)
| | | | - Fernando G. Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru; (O.P.T.); (J.I.C.-H.)
| |
Collapse
|
7
|
Meng X, Cai C, Luo B, Liu T, Shao Y, Wang S, Nie S. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics. NANO-MICRO LETTERS 2023; 15:124. [PMID: 37166487 PMCID: PMC10175533 DOI: 10.1007/s40820-023-01094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
With the rapid development of the Internet of Things and flexible electronic technologies, there is a growing demand for wireless, sustainable, multifunctional, and independently operating self-powered wearable devices. Nevertheless, structural flexibility, long operating time, and wearing comfort have become key requirements for the widespread adoption of wearable electronics. Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing. Compared with rigid electronics, cellulosic self-powered wearable electronics have significant advantages in terms of flexibility, breathability, and functionality. In this paper, the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed. The interfacial characteristics of cellulose are introduced from the top-down, bottom-up, and interfacial characteristics of the composite material preparation process. Meanwhile, the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented. Furthermore, the design strategies of triboelectric materials such as surface functionalization, interfacial structure design, and vacuum-assisted self-assembly are systematically discussed. In particular, cellulosic self-powered wearable electronics in the fields of human energy harvesting, tactile sensing, health monitoring, human-machine interaction, and intelligent fire warning are outlined in detail. Finally, the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed.
Collapse
Affiliation(s)
- Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yuzheng Shao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
8
|
Lee HJ, Shim JW, Lee JJ, Lee WJ. The Encapsulation of Natural Organic Dyes on TiO 2 for Photochromism Control. Int J Mol Sci 2023; 24:ijms24097860. [PMID: 37175567 PMCID: PMC10178252 DOI: 10.3390/ijms24097860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Titanium dioxide (TiO2) plays a pivotal role in photocatalytic reactions and holds great promise for the cosmetic and paint industries due to its white color and high refractive index. However, the original color of TiO2 changes gradually to blue or yellow with UV irradiation, which affects its color realization. We encapsulated TiO2 with several natural organic dye compounds, including purpurin, curcumin, and safflower, to control its photochromism and realize a range of different colors. The chemical reaction between TiO2 and dyes based on their functional group was investigated, and the light absorption was tested via FTIR and UV-Vis spectroscopy. The changes in morphology and size distribution additionally supported their successful encapsulation. The discoloration after UV irradiation was evaluated by measuring the color difference (ΔE) of control TiO2 and dye encapsulated TiO2. The unique structure utilized natural dyes to preserve photochromism based on the physical barrier and automatically controlled the electronic transition of core TiO2. In particular, the color difference values of purpurin and curcumin were 4.05 and 3.76, which is lower than the 5.36 of the control TiO2. Dye encapsulated TiO2 was manipulated into lipstick to verify its color realization and retention.
Collapse
Affiliation(s)
- Hye Ju Lee
- Department of Fiber System Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Jong Won Shim
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Jung Jin Lee
- Department of Fiber System Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Won Jun Lee
- Department of Fiber System Engineering, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
9
|
Ag-Cellulose Hybrid Filler for Boosting the Power Output of a Triboelectric Nanogenerator. Polymers (Basel) 2023; 15:polym15051295. [PMID: 36904535 PMCID: PMC10006984 DOI: 10.3390/polym15051295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The triboelectric nanogenerator (TENG) is a newly developed energy harvesting technology that can convert mechanical energy into electricity. The TENG has received extensive attention due to its potential applications in diverse fields. In this work, a natural based triboelectric material has been developed from a natural rubber (NR) filled with cellulose fiber (CF) and Ag nanoparticles. Ag nanoparticles are incorporated into cellulose fiber (CF@Ag) and are used as a hybrid filler material for the NR composite to enhance the energy conversion efficiency of TENG. The presence of Ag nanoparticles in the NR-CF@Ag composite is found to improve the electrical power output of the TENG by promoting the electron donating ability of the cellulose filler, resulting in the higher positive tribo-polarity of NR. The NR-CF@Ag TENG shows significant improvement in the output power up to five folds compared to the pristine NR TENG. The findings of this work show a great potential for the development of a biodegradable and sustainable power source by converting mechanical energy into electricity.
Collapse
|
10
|
Yamklang W, Prada T, Bunriw W, Kaeochana W, Harnchana V. Fe 3O 4-Filled Cellulose Paper for Triboelectric Nanogenerator Application. Polymers (Basel) 2022; 15:polym15010094. [PMID: 36616444 PMCID: PMC9824807 DOI: 10.3390/polym15010094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Cellulose-based materials have recently drawn much interest due to their sustainability, biodegradability, biocompatibility, and low cost. In this present work, cellulose fiber paper (CFP) was fabricated from sugarcane leaves and used as a friction material for a triboelectric nanogenerator (TENG). Fe3O4 was incorporated to CFP triboelectric material to increase the dielectric constant of CFP for boosting power generation of TENG. The Fe3O4 filled CFP was synthesized using a facile one-pot co-precipitation technique. The effect of Fe3O4 content in CFP on dielectric property and TENG performance was investigated and optimized. The CFP filled with Fe3O4 nanoparticles exhibited the improved dielectric constant and possessed a superior TENG performance than pristine CF. The highest power density of 1.9 W/m2 was achieved, which was able to charge commercial capacitors serving as a power source for small electronic devices.
Collapse
Affiliation(s)
| | - Teerayut Prada
- Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Weeraya Bunriw
- Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Viyada Harnchana
- Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| |
Collapse
|
11
|
Yan Q, Li S, Tao X, Wang T, Xu X, Wang X, Li H, Chen X, Bian Z. Self-Cleaning and Shape-Adaptive Triboelectric Nanogenerator-Contained TiO 2 Nanoparticle Coating. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49755-49764. [PMID: 36301113 DOI: 10.1021/acsami.2c14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the rapid development of triboelectric nanogenerators (TENGs) for flexible wearable devices and electronic skins, challenges have gradually emerged related to the electrification surface, such as pollutant contamination and sophisticated surface adaptability. Hence, we report a simple spraying method to produce a shape-adaptive photocatalytic (SAP) triboelectric material with both self-cleaning and shape-adaptive functions. By spraying the polyvinyl alcohol solution with TiO2 photocatalysts and pre-drying cyclic, the SAP film can be adapted to a varied and intricate substrate. The highest transferred charge density of the SAP film reaches 197.5 μC/m2, when it contacts with the PTFE film. At the same time, it can degrade 74.4% of simulated pollutants under sunlight illumination, and 97% of the transferred charge density can be maintained after the degradation process, indicating good self-cleaning function and stable electrical output. Moreover, the spraying method of this allows it to have shape-adaptive functions. Accordingly, the SAP film can be deposited on the rectangular pyramid and hemispherical surface for fabricating TENGs with special shapes. This low-cost and simple spraying method further promotes the commercialized application of TENGs in the field of wearable devices and skin sensors.
Collapse
Affiliation(s)
- Qi Yan
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Shuyao Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinglin Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Wang
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Xiyan Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Xingling Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hexing Li
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
- Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenfeng Bian
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|
12
|
Mekbuntoon P, Kaeochana W, Prada T, Appamato I, Harnchana V. Power Output Enhancement of Natural Rubber Based Triboelectric Nanogenerator with Cellulose Nanofibers and Activated Carbon. Polymers (Basel) 2022; 14:4495. [PMID: 36365489 PMCID: PMC9654016 DOI: 10.3390/polym14214495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 03/26/2024] Open
Abstract
The growing demand for energy and environmental concern are crucial driving forces for the development of green and sustainable energy. The triboelectric nanogenerator (TENG) has emerged as a promising solution for harvesting mechanical energy from the environment. In this research, a natural rubber (NR)-based TENG has been developed with an enhanced power output from the incorporation of cellulose nanofibers (CNF) and activated carbon (AC) nanoparticles. The highest voltage output of 137 V, a current of 12.1 µA, and power density of 2.74 W/m2 were achieved from the fabricated NR-CNF-AC TENG. This is attributed to the synergistic effect of the electron-donating properties of cellulose material and the large specific surface area of AC materials. The enhancement of TENG performance paves the way for the application of natural-based materials to convert mechanical energy into electricity, as a clean and sustainable energy source.
Collapse
Affiliation(s)
| | | | - Teerayut Prada
- Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Intuorn Appamato
- Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Viyada Harnchana
- Department of Physics, Khon Kaen University, Khon Kaen 40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
13
|
Kim YW, Akin S, Yun H, Xu S, Wu W, Jun MBG. Enhanced Performance of Triboelectric Nanogenerators and Sensors via Cold Spray Particle Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46410-46420. [PMID: 36198071 DOI: 10.1021/acsami.2c09367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a high-performance triboelectric nanogenerator (TENG) is developed based on cold spray (CS) deposition of composite material layers. Composite layers were fabricated by cold spraying of micron-scale tin (Sn) particles on aluminum (Al) and polytetrafluoroethylene (PTFE) films, which led to improved TENG performance owing to functionalized composite layers as friction layers and electrodes, respectively. As-sprayed tin composite layers not only enhanced the flow of charges by strong adhesion to the target layer but also formed a nano-microstructure on the surface of the layers, thereby increasing the surface area during friction. More importantly, the electricity generation performance was improved more than 6 times as compared to the TENG without CS deposition on it. From parametric studies, the TENG using the cold-sprayed composite layer produced an electrical potential of 1140 V for a simple structure with a 25.4 × 25.4 mm2 contact area. We also optimize the geometry and fabrication process of the TENG to increase the manufacturing efficiency while reducing the processing cost. The resultant sprayed layers and structures exhibited sustainable robustness by showing consistent electrical performance after the mechanical adhesion test. The proposed manufacturing approach is also applicable for processing three-dimensional (3D) complex layers owing to the technological convergence of a cold spray gun attached to a robotic arm, which makes possible to fabricate the 3D TENG. To elaborate, a composite layer having the shape of a 3D ball is produced, and the exercise status of the ball is monitored in real-time. The fabricated 3D ball using the TENG transmitted a distinguishable signal in real-time according to the state of the ball. The proposed TENG sensing system can be utilized as a self-powered sensor without the need of a battery, amplifier, and rectifier. The results of this study can potentially provide insights for the practical material design and fabrication of self-powered TENG systems.
Collapse
Affiliation(s)
- Young Won Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Semih Akin
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Huitaek Yun
- Indiana Manufacturing Competitiveness Center (IN-MaC), Purdue University, West Lafayette, Indiana 47906, United States
| | - Shujia Xu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Martin Byung-Guk Jun
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- Indiana Manufacturing Competitiveness Center (IN-MaC), Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
14
|
Liu Z, Li S, Lin S, Shi Y, Yang P, Chen X, Wang ZL. Crystallization-Induced Shift in a Triboelectric Series and Even Polarity Reversal for Elastic Triboelectric Materials. NANO LETTERS 2022; 22:4074-4082. [PMID: 35522039 DOI: 10.1021/acs.nanolett.2c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A stretchable triboelectric nanogenerator (TENG) can be a promising solution for the power supply of various flexible electronics. However, the detailed electrification mechanism of elastic triboelectric materials still needs to be clarified. In this work, we found crystallization behavior induced by strain and low temperature can lead to a shift in a triboelectric series for commonly used triboelectric elastomers and even reverse the triboelectric polarity. This effect is attributed to the notable rearrangement of surface electron cloud density happening along with the crystallization process of the molecular chain. This effect is significant with natural rubber, and silicone rubber can experience this effect at low temperature, which also leads to a shift in a triboelectric series, and an applied strain at low temperature can further enhance this shift. This study demonstrated that the electrification polarity of triboelectric materials should be re-evaluated under different strains and different temperatures, which provides a mechanism distinct from the general understanding of elastic triboelectric materials.
Collapse
Affiliation(s)
- Zhaoqi Liu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Shuyao Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Shiquan Lin
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Yuxiang Shi
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Peng Yang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
15
|
Eco-Friendly Triboelectric Material Based on Natural Rubber and Activated Carbon from Human Hair. Polymers (Basel) 2022; 14:polym14061110. [PMID: 35335443 PMCID: PMC8955187 DOI: 10.3390/polym14061110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
The triboelectric nanogenerator (TENG) has emerged as a novel energy technology that converts mechanical energy from surrounding environments to electricity. The TENG fabricated from environmentally friendly materials would encourage the development of next-generation energy technologies that are green and sustainable. In the present work, a green triboelectric material has been fabricated from natural rubber (NR) filled with activated carbon (AC) derived from human hair. It is found that the TENG fabricated from an NR-AC composite as a tribopositive material and a poly-tetrafluoroethylene (PTFE) sheet as a tribonegative one generates the highest peak-to-peak output voltage of 89.6 V, highest peak-to-peak output current of 6.9 µA, and can deliver the maximum power density of 242 mW/m2. The finding of this work presents a potential solution for the development of a green and sustainable energy source.
Collapse
|
16
|
Zhang R, Örtegren J, Hummelgård M, Olsen M, Andersson H, Olin H. A review of the advances in composites/nanocomposites for triboelectric nanogenerators. NANOTECHNOLOGY 2022; 33:212003. [PMID: 35030545 DOI: 10.1088/1361-6528/ac4b7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Material development is essential when studying triboelectric nanogenerators (TENGs). This importance is because the performance of TENGs is highly dependent on the properties of the utilized triboelectric materials. To obtain more specific properties, composites have been developed that combine the features of their components. According to Google Scholar, 55% of published papers related to triboelectric nanogenerators have utilized or mentioned composites. This number is 34.5% if one searches with the keyword nanocomposites instead of composites. The importance of composites is because they can exhibit new dielectric properties, better mechanical strength, enhanced charge affinities, etc. Therefore, the development of new composites has great importance in TENG studies. In this paper, we review the production of nanocomposites, the types of nanocomposites, and their application in TENG studies. This review gives an overview of how nanocomposites boost the performance of TENGs and provides guidance for future studies.
Collapse
Affiliation(s)
- Renyun Zhang
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall, Sweden
| | - Jonas Örtegren
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall, Sweden
| | - Magnus Hummelgård
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall, Sweden
| | - Martin Olsen
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall, Sweden
| | - Henrik Andersson
- Department of Electronics Design, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall, Sweden
| | - Håkan Olin
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall, Sweden
| |
Collapse
|
17
|
Zhang R, Olin H. Advances in Inorganic Nanomaterials for Triboelectric Nanogenerators. ACS NANOSCIENCE AU 2022; 2:12-31. [PMID: 35211696 PMCID: PMC8861933 DOI: 10.1021/acsnanoscienceau.1c00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
Triboelectric nanogenerators (TENGs) that utilize triboelectrification and electrostatic induction to convert mechanical energy to electricity have attracted increasing interest in the last 10 years. As a universal physical phenomenon, triboelectrification can occur between any two surfaces that experience physical contact and separation regardless of the type of material. For this reason, many materials, including both organic and inorganic materials, have been studied in TENGs with different purposes. Although organic polymers are mainly used as triboelectric materials in TENGs, the application of inorganic nanomaterials has also been intensively studied because of their unique dielectric, electric, piezoelectric, and optical properties, which can improve the performance of TENGs. A review of how inorganic nanomaterials are used in TENGs would help researchers gain an overview of the progress in this area. Here, we present a review to summarize how inorganic nanomaterials are utilized in TENGs based on the roles, types, and characteristics of the nanomaterials.
Collapse
Affiliation(s)
- Renyun Zhang
- Department of Natural Sciences, Mid Sweden University, SE85170 Sundsvall, Sweden
| | - Håkan Olin
- Department of Natural Sciences, Mid Sweden University, SE85170 Sundsvall, Sweden
| |
Collapse
|
18
|
The Use of Copper Oxides as Cross-Linking Substances for Chloroprene Rubber and Study of the Vulcanizates Properties. Part II. The Effect of Filler Type on the Properties of CR Products. MATERIALS 2021; 14:ma14216528. [PMID: 34772052 PMCID: PMC8585425 DOI: 10.3390/ma14216528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
The properties of rubber materials are dependent on the characteristics of the elastomer matrix, the filler type, the cross-linking agent, the number of ingredients, and their interactions. In the previous article, we showed that chloroprene rubber can be efficiently cross-linked with copper(I) oxide or copper(II) oxide. During the processing of rubber compounds, the incorporation of a filler and a curing substance are two substantial parameters, such as the homogeneity of mixing and cross-linking that significantly affect the properties of the vulcanizates. Therefore, this work aimed to evaluate the curing characteristics, mechanical and dynamical properties, morphology, and flammability of the composites containing chloroprene rubber cross-linked with Cu2O or CuO and filled with different fillers (silica, carbon black, montmorillonite, kaolin, chalk). It was found that the type of filler and curing agent had a significant impact on the degree of cross-linking of the chloroprene rubber and the properties of its vulcanizates. The degree and speed of the cross-linking of filled CR were higher when the CR was cured with copper(II) oxide. Among the fillers used, the presence of carbon black or silica ensured the highest degree of CR cross-linking and the most useful properties. The flammability tests indicated that all produced vulcanizates were characterized by a high oxygen index, which allows them to be classified as non-flammable materials.
Collapse
|