1
|
ElHassan A, Ahmed W, Zaneldin E. A Comparative Investigation of the Reliability of Biodegradable Components Produced through Additive Manufacturing Technology. Polymers (Basel) 2024; 16:615. [PMID: 38475299 DOI: 10.3390/polym16050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Using the linear elastic finite element method, we investigated how defects significantly influence the integrity of 3D-printed parts made from biodegradable material by experimental techniques and numerical simulations. A defective flaw was incorporated into the tensile test dog-bone sample using Computer-Aided Design and processed by slicing software. Three distinct raster angles examine two sets of samples, one featuring intact specimens and the other with the introduced defects. An open-source 3D printer was used to fabricate both sets of samples, utilizing biodegradable PLA material. In finite element analysis, we employed a highly detailed model that precisely accounted for the geometry and dimensions of the extruded 3D-printed filament, accurately replicating the actual configuration of the 3D-printed samples to an extent. Our study involved a thorough comparative analysis between the experimental results and the FEA simulations. Our findings uncovered a consistent trend for the intact and defective samples under tensile load. Specifically, in the intact case, the samples with a zero-degree raster orientation presented the highest resistance to failure and displayed minimal elongation. Remarkably, these conclusions paralleled our observations of the defective samples as well. Finite element analysis revealed that the stresses, including Principal, Max shear, and Von Mises, were remarkably higher at the 3D-printed samples' outer surface than the inner layers, reflecting that the failure starts at the outer surface since they exceeded the theoretical values, indicating a significant discrepancy between the simulated and anticipated values.
Collapse
Affiliation(s)
- Amged ElHassan
- Mechanical and Aerospace Engineering Department, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Essam Zaneldin
- Civil and Environmental Engineering Department, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Alzyod H, Ficzere P. Material-Dependent Effect of Common Printing Parameters on Residual Stress and Warpage Deformation in 3D Printing: A Comprehensive Finite Element Analysis Study. Polymers (Basel) 2023; 15:2893. [PMID: 37447538 DOI: 10.3390/polym15132893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Additive manufacturing (AM), commonly known as 3D printing, has gained significant popularity for its ability to produce intricate parts with high precision. However, the presence of residual stresses and warpage deformation are common issues affecting the quality and functionality of 3D-printed parts. This study conducts a comprehensive finite element analysis (FEA) to investigate the material-dependent impact of key printing parameters on residual stress and warpage deformation in 3D printing. The research focuses on three distinct materials: polyetherimide (PEI), acrylonitrile butadiene styrene (ABS), and polyamide 6 (PA6). Various printing parameters are systematically varied, including printing temperature, printing speed, bed temperature, infill density, layer thickness, and infill pattern. The study employs the Taguchi L27 orthogonal array and employs the analysis of variance (ANOVA) statistical technique to assess the significance of the input parameters. The obtained results reveal that certain parameters exhibit a greater sensitivity to material differences, whereas the layer thickness parameter demonstrates a relatively lower sensitivity. Notably, infill density and printing temperature play a crucial role in reducing residual stress for PA6, while the infill pattern parameter proves to be a significant contributor to minimizing warpage deformation across all three materials. These findings underscore the importance of conducting material-specific analyses to optimize 3D printing parameters and achieve the desired quality outcomes while mitigating residual stress and warpage deformation.
Collapse
Affiliation(s)
- Hussein Alzyod
- Department of Railway Vehicles and Vehicle System Analysis, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Műegyetem rkp.3, H-1111 Budapest, Hungary
| | - Peter Ficzere
- Department of Railway Vehicles and Vehicle System Analysis, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Műegyetem rkp.3, H-1111 Budapest, Hungary
| |
Collapse
|
3
|
Alzyod H, Ficzere P. Optimizing fused filament fabrication process parameters for quality enhancement of PA12 parts using numerical modeling and taguchi method. Heliyon 2023; 9:e14445. [PMID: 36942227 PMCID: PMC10023978 DOI: 10.1016/j.heliyon.2023.e14445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Fused Filament Fabrication (FFF) is an Additive Manufacturing (AM) technique implemented in widespread applications and several components. Despite its benefits, the physics behind the FFF process is quite complicated and requires fast heating and cooling rate of the extruded material. Consequently, the component experiences extremely non-uniform internal stresses that might lead to warpage deformation. It is necessary to optimize the printing parameters as they are associated with the warpage deformation of printed components. One method for achieving this target is conducting physical tests that offer precise findings, but it is an expensive strategy. Another approach is to simulate the printing parameters with special software. In this work, Digimat-AM was employed to develop a thermomechanical Finite Element Model of the FFF to simulate parts made of Polyamide12 (PA12). An L27 orthogonal array, a tool of the Taguchi orthogonal array, and an analysis of variance (ANOVA) were used to estimate the impact of five printing parameters and their ultimate levels to improve the dimension's quality by minimizing the warpage deformation. Results showed a significant impact of the bed temperature on the warpage deformation values. The infill density contributed 2.84% in reducing the warpage deformation, and the rest of the parameters' contribution was less than 1% for each.
Collapse
|
4
|
Chen P, Wang H, Su J, Tian Y, Wen S, Su B, Yang C, Chen B, Zhou K, Yan C, Shi Y. Recent Advances on High-Performance Polyaryletherketone Materials for Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200750. [PMID: 35385149 DOI: 10.1002/adma.202200750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Polyaryletherketone (PAEK) is emerging as an important high-performance polymer material in additive manufacturing (AM) benefiting from its excellent mechanical properties, good biocompatibility, and high-temperature stability. The distinct advantages of AM facilitate the rapid development of PAEK products with complex customized structures and functionalities, thereby enhancing their applications in various fields. Herein, the recent advances on AM of high-performance PAEKs are comprehensively reviewed, concerning the materials properties, AM processes, mechanical properties, and potential applications of additively manufactured PAEKs. To begin, an introduction to fundamentals of AM and PAEKs, as well as the advantages of AM of PAEKs is provided. Discussions are then presented on the material properties, AM processes, processing-matter coupling mechanism, thermal conductivity, crystallization characteristics, and microstructures of AM-processed PAEKs. Thereafter, the mechanical properties and anisotropy of additively manufactured PAEKs are discussed in depth. Their representative applications in biomedical, aerospace, electronics, and other fields are systematically presented. Finally, current challenges and possible solutions are discussed for the future development of high-performance AM polymers.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haoze Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shifeng Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Binling Chen
- College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, EX4 4QF, UK
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
5
|
Wang B, Huang M, Dang P, Xie J, Zhang X, Yan X. PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement. Polymers (Basel) 2022; 14:polym14122323. [PMID: 35745900 PMCID: PMC9228596 DOI: 10.3390/polym14122323] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Polyetheretherketone (PEEK) has been widely applied in fixed dental prostheses, comprising crowns, fixed partial dentures, and post-and-core. PEEK’s excellent mechanical properties facilitate better stress distribution than conventional materials, protecting the abutment teeth. However, the stiffness of PEEK is not sufficient, which can be improved via fiber reinforcement. PEEK is biocompatible. It is nonmutagenic, noncytotoxic, and nonallergenic. However, the chemical stability of PEEK is a double-edged sword. On the one hand, PEEK is nondegradable and intraoral corrosion is minimized. On the other hand, the inert surface makes adhesive bonding difficult. Numerous strategies for improving the adhesive properties of PEEK have been explored, including acid etching, plasma treatment, airborne particle abrasion, laser treatment, and adhesive systems.
Collapse
Affiliation(s)
- Biyao Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China; (B.W.); (P.D.); (J.X.)
| | - Minghao Huang
- Liaoning Provincial Key Laboratory of Oral Diseases, Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China;
| | - Pengrui Dang
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China; (B.W.); (P.D.); (J.X.)
| | - Jiahui Xie
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China; (B.W.); (P.D.); (J.X.)
| | - Xinwen Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China;
- Correspondence: (X.Z.); (X.Y.); Tel.: +86-024-31927731 (X.Z.); +86-024-31927715 (X.Y.)
| | - Xu Yan
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China; (B.W.); (P.D.); (J.X.)
- Correspondence: (X.Z.); (X.Y.); Tel.: +86-024-31927731 (X.Z.); +86-024-31927715 (X.Y.)
| |
Collapse
|
6
|
Yang J, Xie J, Ji K, Wang X, Jiao X, Xu Z, Zhao P. Microcellular injection molding of polyether-ether-ketone. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Wang P, Pan A, Xia L, Cao Y, Zhang H, Wu W. Effect of process parameters of fused deposition modeling on mechanical properties of poly-ether-ether-ketone and carbon fiber/poly-ether-ether-ketone. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083211067388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a rapidly developing additive manufacturing technology, fused deposition modeling (FDM) has become widespread in many industry fields. It can fabricate complicated geometries using filament of thermoplastic materials such as PP, polylactic acid, acrylonitrile butadiene styrene, etc. However, poor mechanical properties of raw materials limit their application. Poly-ether-ether-ketone is a type of special engineering plastic with high performance, which could be further reinforced by adding carbon fibers (CFs). During FDM process, the mechanical properties of printed parts are largely subject to careful selection of process parameters. To improve the mechanical properties of PEEK and CF/PEEK 3D-printed parts, the effects of various process parameters including building orientation, raster angle, nozzle temperature, platform temperature, ambient temperature, printing speed, layer thickness, infill density, and number of printed parts on mechanical properties were investigated. The tensile fracture interfaces of printed parts were observed by scanning electron microscope (SEM) to explain the influence mechanism of process parameters. In the single factor experiments, flat and on-edge specimens show the best tensile and flexural strength, respectively; the specimens with raster angle ±45° and 0° show the best tensile and flexural strength, respectively. When the nozzle temperature at 500°C, platform temperature at 200°C, ambient temperature at 150°C, printing speed is 20 mm/s, layer thickness is 0.2 mm, and infill density is 100%, the printed parts exhibit the best mechanical properties.
Collapse
Affiliation(s)
- Pei Wang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Aigang Pan
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Liu Xia
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yitao Cao
- Unmanned System Research Institute, Northwestern Polytechnical University, Shaanxi, China
| | - Hongjie Zhang
- Beijing Institute of Spacecraft System Engineering, Beijing, China
| | - Weichao Wu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|