1
|
Azadi A, Rezaei F, Yazdani A, Hejazi K, Moallem Savasari A, Amid R, Kadkhodazadeh M. Hard and soft tissue alterations after the application of different soft tissue grafting materials during immediate dental implant placement: a systematic review and Bayesian network meta-analysis. BMC Oral Health 2025; 25:183. [PMID: 39901100 PMCID: PMC11789362 DOI: 10.1186/s12903-025-05461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND The aim of this review is to compare the clinical outcomes of different soft tissue grafting materials (connective tissue graft (CTG), platelet-rich fibrin (L-PRF), allogenic and xenogenic substitutes) applied in immediate implant placement with each other. METHODS Through an electronic search regarding the study's main question ("In patients with non-restorable teeth, who receive immediate dental implants (P), what is the best adjunctive soft tissue grafting approach among different autogenous, allogenous, and xenogenous grafts (I), to achieve the desired hard and soft tissue structure (O), compared to sites without grafting (C)?") in PubMed, Scopus, and ISI Web of Science, randomized controlled clinical trials (RCTs) using different soft tissue grafts were identified and analyzed using a Bayesian random-effect network meta-analysis framework. The pink esthetic score (PES), marginal interproximal bone level changes (MIBL), buccal bone thickness changes (BBT), keratinized tissue width changes (KTW), soft tissue thickness changes (STT), papilla height changes (PH), midfacial gingival margin level changes (MGML) were defined as desired outcomes of the study; except for the MIBL with 12 - 24 months of follow-up, 6 - 12 months is considered for other outcomes. RESULTS After duplication removal, 903 studies were identified through the electronic search; from which 21 RCTs were included in the review. Among all comparisons in different outcomes, only CTG demonstrated a significantly higher gain in STT compared to not placing soft tissue graft. However, CTG in MIBL, KTW, STT, PH, and MGML, and uni-layer xenogenic collagen matrix in PES were the superior treatments, according to the treatment ranking based on surface under cumulative ranking (SUCRA). CONCLUSIONS At the time of immediate implantation, there is no significant difference between different soft tissue grafts regarding the clinical outcomes of implants. However, the utilization of CTG can be suggested in cases with thin soft tissue. The acceptable efficacy of allogenic and xenogenic materials and the non-significant difference between them and CTG indicate supporting evidence for the application of these materials to specific clinical situations simultaneously with immediate implantation. SYSTEMATIC REVIEW REGISTRATION CRD42024568586.
Collapse
Affiliation(s)
- Ali Azadi
- Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rezaei
- School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Atoosa Yazdani
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Hejazi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aryousha Moallem Savasari
- Student Research Committee, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Amid
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Danshjoo BLVD, Velenjak, Shahid Chamran Highway, Tehran, 1983963113, Iran.
| | - Mahdi Kadkhodazadeh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Danshjoo BLVD, Velenjak, Shahid Chamran Highway, Tehran, 1983963113, Iran.
| |
Collapse
|
2
|
Vallecillo C, Osorio MT, Infante N, Ávalos MJ, Vallecillo-Rivas M, Lynch CD, Toledano M. In Vitro Degradation of Collagen-Based Membranes for Guided Bone Regeneration After Zn-Ions or Doxycycline Functionalization. Polymers (Basel) 2024; 16:3109. [PMID: 39599201 PMCID: PMC11598064 DOI: 10.3390/polym16223109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Collagen-based membrane is the most commonly used biomaterial for guided bone and tissue regeneration; however, its barrier function can be threatened by its rapid degradation pattern, affecting the success of the regeneration process. Differences in the origin and functionalization of the membrane to obtain better properties can alter the degradation rate. The objective of this study was to examine the biodegradation pattern of two commercially available collagen membranes (Jason® and Collprotect®) manufactured using porcine pericardium or dermis, doped or not with zinc-ions or doxycycline, in a period up to 21 days. The membrane specimens were subjected to hydrolytic and bacterial degradation tests. The different immersion times were carried out from 12 h up to 21 days. At each time point, quantitative measurements of thickness and weight were made using a digital caliper and an analytic microbalance, respectively. ANOVA and Student-Newman-Keuls tests were carried out for comparison purposes (p < 0.05). The differences between time-points within the same membranes and solutions were assessed by pairwise comparisons (p < 0.001). Unfunctionalized Jason membrane made of porcine pericardium attained the highest resistance to both degradation tests. The functionalization of the membranes did not alter the biodegradation patterns. All the membranes completely degraded before 48 h in the bacterial collagenase solution, which was the most aggressive test.
Collapse
Affiliation(s)
- Cristina Vallecillo
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (C.V.); (M.T.O.); (N.I.); (M.J.Á.); (M.T.)
| | - María T. Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (C.V.); (M.T.O.); (N.I.); (M.J.Á.); (M.T.)
| | - Nuria Infante
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (C.V.); (M.T.O.); (N.I.); (M.J.Á.); (M.T.)
| | - María Jesús Ávalos
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (C.V.); (M.T.O.); (N.I.); (M.J.Á.); (M.T.)
| | - Marta Vallecillo-Rivas
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (C.V.); (M.T.O.); (N.I.); (M.J.Á.); (M.T.)
| | - Christopher D. Lynch
- Restorative Dentistry, University Dental School & Hospital, University College Cork, Wilton, T12 E8YV Cork, Ireland;
| | - Manuel Toledano
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (C.V.); (M.T.O.); (N.I.); (M.J.Á.); (M.T.)
- Biosanitary Research Institute, 18012 Granada, Spain
| |
Collapse
|
3
|
Hutomo DI, Deandra FA, Ketherin K, García-Gareta E, Bachtiar EW, Amir L, Tadjoedin FM, Widaryono A, Haerani N, Lessang R, Soeroso Y. The Effect of Carbodiimide Crosslinkers on Gelatin Hydrogel as a Potential Biomaterial for Gingival Tissue Regeneration. Gels 2024; 10:674. [PMID: 39590030 PMCID: PMC11593530 DOI: 10.3390/gels10110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Connective tissue grafts for gingival recession treatment present significant challenges as they require an additional surgical site, leading to increased morbidity, extended operative times, and a more painful postoperative recovery for patients. Gelatin contains the arginine-glycine-aspartic acid (RGD) sequence, which supports cell adhesion and interactions. The development of gelatin hydrogels holds significant promise due to their biocompatibility, ease of customization, and structural resemblance to the extracellular matrix, making them a potential candidate for gingival regeneration. This study aimed to assess the physical and biological properties of crosslinked gelatin hydrogels using EDC/NHS with two crosslinker concentrations (GelCL12 and GelCL24) and compare these to non-crosslinked gelatin. Both groups underwent morphological, rheological, and chemical analysis. Biological assessments were conducted to evaluate human gingival fibroblast (HGF) proliferation, migration, and COL1 expression in response to the scaffolds. The crosslinked gelatin group exhibited greater interconnectivity and better physical characteristics without displaying cytotoxic effects on the cells. FTIR analysis revealed no significant chemical differences between the groups. Notably, the GelCL12 group significantly enhanced HGF migration and upregulated COL1 expression. Overall, GelCL12 met the required physical characteristics and biocompatibility, making it a promising scaffold for future gingival tissue regeneration applications.
Collapse
Affiliation(s)
- Dimas Ilham Hutomo
- Doctoral Program, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia;
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Fathia Agzarine Deandra
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.A.D.); (K.K.)
| | - Ketherin Ketherin
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.A.D.); (K.K.)
| | - Elena García-Gareta
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Aragon Institute of Health Research (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain;
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1E 6DE, UK
| | - Endang Winiati Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (E.W.B.); (L.A.)
| | - Lisa Amir
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (E.W.B.); (L.A.)
| | - Fatimah Maria Tadjoedin
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Adityo Widaryono
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Natalina Haerani
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Robert Lessang
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| |
Collapse
|
4
|
Hamdy A, Ibrahim SSA, Ghalwash D, Adel-Khattab D. Volumetric assessment of volume stable collagen matrix in maxillary single implant site development: A randomized controlled clinical trial. Clin Implant Dent Relat Res 2024; 26:930-941. [PMID: 38938060 DOI: 10.1111/cid.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION The stability of soft tissue volume around dental implants is an important factor for the final esthetic outcome. The main objective of this study was to compare volume stable collagen matrix (VCMX) versus connective tissue graft (CTG) in the augmentation of soft tissue profiles in single implant sites with a class I Siebert ridge defect. MATERIALS AND METHODS Twenty patients (14 females and 6 males) were enrolled in the present study. After implant placement and augmentation of the buccal defect by VCMX or CTG, post-operative evaluation of the volumetric changes at the augmented implant site was carried out at 3, 6, and 9 months as primary outcome, clinical and radiographic soft tissue thickness were carried out at baseline and 9-month intervals, visual analog scale (VAS) and oral health impact profile-14 (OHIP14) were recorded 2 weeks after the surgery. RESULTS A statistically significant difference in soft tissue volume was found between baseline and 3, 6, and 9 months postoperatively in both groups with the highest value at 9 months (136.33 ± 86.80) (mm3) in VCMX and (186.38 ± 57.52) (mm3) in CTG. Soft tissue thickness was significantly increased in both groups at 9 months in comparison to baseline. However, there was a significantly higher increase in soft tissue thickness at 9 months in CTG (3.87 ± 0.91) than in VCMX (2.94 ± 0.31). Regarding the radiographic soft tissue thickness, there was a statistically significant increase in both groups at 9 months in comparison to baseline. However, there was a statistically higher increase in the radiographic soft tissue thickness at 9 months in CTG (3.08 ± 0.97) than in VCMX (2.37 ± 0.29). VAS showed a statistically lower value in VCMX (0.4 ± 0.7) than CTG (2.8 ± 1.48). The OHIP recorded lower values in the VCMX group than the CTG group with no statistical significance. In addition, there was no difference in the PES between the two groups. CONCLUSION The present study showed that CTG and VCMX were both effective in soft tissue augmentation around implants in the esthetic zone. However, CTG proved more efficient in increasing peri-implant soft tissue volume and mucosal thickness around single implants at a 9-month follow-up period. VCMX was associated with less pain or discomfort and reduced patient morbidity, as reflected by the significantly reduced VAS value in the VCMX group.
Collapse
Affiliation(s)
- Ahmed Hamdy
- Periodontology and Diagnosis, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Suzan Seif Allah Ibrahim
- Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry Ain Shams University, Cairo, Egypt
| | - Dalia Ghalwash
- Periodontology and Diagnosis, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Doaa Adel-Khattab
- Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Aguayo-Morales H, Cobos-Puc LE, Lopez-Badillo CM, Oyervides-Muñoz E, Ramírez-García G, Claudio-Rizo JA. Collagen-polyurethane-dextran hydrogels enhance wound healing by inhibiting inflammation and promoting collagen fibrillogenesis. J Biomed Mater Res A 2024; 112:1760-1777. [PMID: 38623028 DOI: 10.1002/jbm.a.37724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Diabetic foot ulcers are a serious complication of uncontrolled diabetes, emphasizing the need to develop wound healing strategies that are not only effective but also biocompatible, biodegradable, and safe. We aimed to create biomatrices composed of semi-interpenetrated polymer networks of collagen, polyurethane, and dextran, to enhance the wound healing process. The hydrogels were extensively characterized by various analytical techniques, including analysis of their structure, crystallinity, thermal properties, gelation process, reticulation, degradation, cell proliferation, and healing properties, among others. Semi-interpenetrated hydrogels containing dextran at levels of 10%, 20%, and 30% exhibited porous interconnections between collagen fibers and entrapped dextran granules, with a remarkable crosslinking index of up to 94% promoted by hydrogen bonds. These hydrogels showed significant improvements in mechanical properties, swelling, and resistance to proteolytic and hydrolytic degradation. After 24 h, there was a significant increase in the viability of several cell types, including RAW 264.7 cells, human peripheral blood mononuclear cells, and dermal fibroblasts. In addition, these hydrogels demonstrated an increased release of interleukin-10 and transforming growth factor-beta1 while inhibiting the release of monocyte chemotactic protein-1 and tumor necrosis factor-alpha after 72 h. Furthermore, these hydrogels accelerated the wound healing process in diabetic rats after topical application. Notably, the biomaterial with 20% dextran (D20) facilitated wound closure in only 21 days. These results highlight the potential of the D20 hydrogel, which exhibits physicochemical and biological properties that enhance wound healing by inhibiting inflammation and fibrillogenesis while remaining safe for application to the skin.
Collapse
Affiliation(s)
- Hilda Aguayo-Morales
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Luis E Cobos-Puc
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | | | | | - Gonzalo Ramírez-García
- Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Jesús A Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
6
|
Ibrahim A, Saymeh R. Alveolar Ridge Preservation With Fibro-Gide or Connective Tissue Graft: A Randomized Controlled Trial of Soft and Hard Tissue Changes. Clin Exp Dent Res 2024; 10:e929. [PMID: 39039936 PMCID: PMC11263734 DOI: 10.1002/cre2.929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the effectiveness of a novel biomaterial (FG) for alveolar ridge preservation compared to CTG in terms of soft tissue thickness and bone dimensional changes. MATERIALS AND METHODS A randomized clinical trial was conducted on 30 patients who required extraction of 30 hopeless mandibular posterior teeth. All patients went through atraumatic tooth extraction, and then, they were randomly allocated to either a CTG, an FG, or a spontaneous healing (SH) group (1:1:1). All patients received a dental implant placed 6 months postoperatively. The soft tissue thickness and bone dimensional changes were measured before and 6 months after the procedure. RESULTS The study's analysis revealed statistically significant differences in buccal gingival thickness and dimensional bone changes across the three examined groups after 6 months (p < 0.05). The SH group had lower gingival thickness (1.31 ± 0.65 mm) and higher vertical resorption (-1.46 ± 1.67 mm at the buccal aspect) compared with the CTG and FG groups. The CTG and FG groups had similar gingival thickness (2.42 ± 0.70 and 3.00 ± 0.71 mm, respectively) and bone width reduction (+0.86 ± 2.31 and +0.93 ± 2.38 mm, respectively), whereas the CTG group had lower vertical bone loss (-0.30 ± 1.09 mm at the buccal aspect) than the FG group (-0.47 ± 2.30 mm at the buccal aspect). CONCLUSION FG and CTG demonstrate equivalent soft tissue thickness and comparable horizontal bone dimension outcomes in ARP.
Collapse
Affiliation(s)
- Ammar Ibrahim
- Department of Periodontology, Faculty of Dental Medicine, Damascus University, Damascus, Syria
| | - Rowaida Saymeh
- Department of Periodontology, Faculty of Dental Medicine, Damascus University, Damascus, Syria
| |
Collapse
|
7
|
Slavin BV, Stauber ZM, Ehlen QT, Costello JP, Tabibi O, Herbert JE, Mirsky NA, Nayak VV, Daunert S, Witek L, Coelho PG. Evaluation of Porcine-Derived Collagen Membranes for Soft Tissue Augmentation in the Oral Cavity: An In Vivo Study. J Craniofac Surg 2024:00001665-990000000-01775. [PMID: 39028179 DOI: 10.1097/scs.0000000000010482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
The use of porcine-derived collagen membranes (PDCM) to improve intraoral soft tissue rehabilitation remains under investigation. Different degrees of crosslinking have yielded differences in resorption time and inflammation surrounding collagen membranes. The aim of this study was to evaluate the in vivo performance of bilayered PDCMs with varying degrees of crosslinking for the regeneration of oral soft tissue defects. Bilateral split-thickness oral mucosa defects were created in mandibles of beagles (n=17) and assigned to one of the following: bilayer PDCM (high crosslinking porcine dermis in sheet form-H-xlink) and (low crosslinking porcine dermis in sheet form-L-xlink), bilayer PDCM (non-crosslinked predicate collagen membrane in spongy form-Ctrl), or negative control (Sham) and compared with positive control (unoperated). Animals were euthanized after 4-, 8-, or 12-weeks of healing to evaluate soft tissue regeneration and remodeling through histomorphometric analyses. H-xlink membranes presented delayed healing with a poorly developed epithelial layer (analogous to the sham group) across time points. Relative to Ctrl at 8 and 12 weeks, defects treated with H-xlink presented no difference in semiquantitative scores ( P > 0.05), while L-xlink exhibited greater healing ( P = 0.042, P = 0.043, at 8 and 12 weeks, respectively). Relative to positive control, L-xlink exhibited similar healing at 8 weeks and greater healing at 12 weeks ( P = 0.037) with a well-developed epithelial layer. Overall, groups treated with L-xlink presented with greater healing relative to the positive control after 12 weeks of healing and may serve as an alternative to autologous grafts for intraoral soft tissue regeneration.
Collapse
Affiliation(s)
| | | | - Quinn T Ehlen
- University of Miami Miller School of Medicine, Miami, FL
| | | | - Orel Tabibi
- University of Miami Miller School of Medicine, Miami, FL
| | - Justin E Herbert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
| | | | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY
| | - Paulo G Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
- DeWitt Daughtry Family Department of Surgery, Division of Plastic & Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
8
|
Rahimnejad M, Makkar H, Dal-Fabbro R, Malda J, Sriram G, Bottino MC. Biofabrication Strategies for Oral Soft Tissue Regeneration. Adv Healthc Mater 2024; 13:e2304537. [PMID: 38529835 PMCID: PMC11254569 DOI: 10.1002/adhm.202304537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Gingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors. Successful tissue-engineered gingival constructs hinge on strategic choices such as cell sources, scaffold design, mechanical properties, and growth factor delivery. Unveiling advancements in recent biofabrication technologies like 3D bioprinting, electrospinning, and microfluidic organ-on-chip systems, this review elucidates their precise control over cell arrangement, biomaterials, and signaling cues. These technologies empower the recapitulation of microphysiological features, enabling the development of gingival constructs that closely emulate the anatomical, physiological, and functional characteristics of native gingival tissues. The review explores diverse engineering strategies aiming at the biofabrication of realistic tissue-engineered gingival grafts. Further, the parallels between the skin and gingival tissues are highlighted, exploring the potential transfer of biofabrication approaches from skin tissue regeneration to gingival tissue engineering. To conclude, the exploration of innovative biofabrication technologies for gingival tissues and inspiration drawn from skin tissue engineering look forward to a transformative era in regenerative dentistry with improved clinical outcomes.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Bienz SP, Gadzo N, Zuercher AN, Wiedemeier D, Jung RE, Thoma DS. Clinical and histological wound healing patterns of collagen-based substitutes: An experimental randomized controlled trial in standardized palatal defects in humans. J Clin Periodontol 2024; 51:319-329. [PMID: 38017650 DOI: 10.1111/jcpe.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 11/30/2023]
Abstract
AIM To evaluate the progression of wound healing of standardized palatal defects in groups using three different collagen-based wound dressings and a control group, in terms of wound closure, pain perception and descriptive histology. MATERIALS AND METHODS Twenty participants were enrolled in this experimental study, in whom four palatal defects were created. The defects (6 mm diameter, 3 mm depth) were randomly assigned to one of four treatment modalities: C (control), MG (Mucograft®), MD (mucoderm®) and FG (Fibro-Gide®). Photographs were taken, and pain assessment was performed before and after treatment and at 5, 7, 9, 12, 14 and 16 days after surgery. All participants wore a palatal splint for a duration of 16 days. RESULTS All groups achieved complete wound closure at 14 days. The percentage of the remaining open wound on day 7 amounted to 49.3% (C; interquartile range [IQR]: 22.6), 70.1% (FG; IQR: 20.7), 56.8% (MD; IQR: 26.3) and 62.2% (MG; IQR: 34.4). Statistically significant differences were found between FG and C (p =.01) and between MD and FG (p =.04). None of the participants rated pain higher than 4 out of 10 during the entire study period. CONCLUSIONS Collagen-based wound dressings provide coverage of open defects, albeit without acceleration of wound closure or reduction of pain. FG (which is not intended for open oral wounds) showed slower wound closure compared to C and MD.
Collapse
Affiliation(s)
- Stefan P Bienz
- Clinic of Reconstructive Dentistry, University of Zurich, Zurich, Switzerland
| | - Naida Gadzo
- Clinic of Reconstructive Dentistry, University of Zurich, Zurich, Switzerland
| | - Anina N Zuercher
- Clinic of Reconstructive Dentistry, University of Zurich, Zurich, Switzerland
| | - Daniel Wiedemeier
- Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ronald E Jung
- Clinic of Reconstructive Dentistry, University of Zurich, Zurich, Switzerland
| | - Daniel S Thoma
- Clinic of Reconstructive Dentistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Antoshin A, Gostev M, Khristidis Y, Giliazova A, Voloshin S, Blagushina N, Smirnova O, Diachkova E, Istranova E, Usanova A, Solodov N, Fayzullin A, Ivanova E, Sadchikova E, Vergara Bashkatova MN, Drakina O, Tarasenko S, Timashev P. Electrophoretically Co-Deposited Collagen-Lactoferrin Membranes with Enhanced Pro-Regenerative Properties for Oral Soft Tissue Regeneration. Int J Mol Sci 2023; 24:17330. [PMID: 38139159 PMCID: PMC10743871 DOI: 10.3390/ijms242417330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The quality of soft tissue defect regeneration after dental surgeries largely determines their final success. Collagen membranes have been proposed for the healing of such defects, but in some cases, they do not guarantee a sufficient volume of the regenerated tissue and vascularization. For this purpose, lactoferrin, a protein with natural pro-regenerative, anti-inflammatory, and pro-angiogenic activity, can be added to collagen. In this article, we used a semipermeable barrier-assisted electrophoretic deposition (SBA-EPD) method for the production of collagen-lactoferrin membranes. The membrane structure was studied by SEM, and its mechanical properties were shown. The lactoferrin release kinetics were shown by ELISA within 75 h. When tested in vitro, we demonstrated that the collagen-lactoferrin membranes significantly increased the proliferation of keratinocytes (HaCaT) and fibroblasts (977hTERT) compared to blank collagen membranes. In vivo, on the vestibuloplasty and free gingival graft harvesting models, we showed that collagen-lactoferrin membranes decreased the wound inflammation and increased the healing rates and regeneration quality. In some parameters, collagen-lactoferrin membranes outperformed not only blank collagen membranes, but also the commercial membrane Mucograft®. Thus, we proved that collagen-lactoferrin membranes produced by the SBA-EPD method may be a valuable alternative to commercially used membranes for soft tissue regeneration in the oral cavity.
Collapse
Affiliation(s)
- Artem Antoshin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Mikhail Gostev
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Yana Khristidis
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Aliia Giliazova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Sergei Voloshin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Nataliia Blagushina
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Ekaterina Diachkova
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Elena Istranova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Anna Usanova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Nikolai Solodov
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Elena Ivanova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Elena Sadchikova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119344 Moscow, Russia
| | | | - Olga Drakina
- Department of Operative Surgery and Topographic Anatomy, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Svetlana Tarasenko
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
11
|
Solderer A, Widmer N, Gubler A, Fischer KR, Hicklin SP, Schmidlin PR. Properties of three collagen scaffolds in comparison with native connective tissue: an in-vitro study. Int J Implant Dent 2023; 9:36. [PMID: 37819469 PMCID: PMC10567619 DOI: 10.1186/s40729-023-00504-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
PURPOSE To evaluate collagen scaffolds (CS) in terms of their in vitro resorption behavior, surface structure, swelling behavior, and mechanical properties in physiologically simulated environments, compared with porcine native connective tissue. MATERIALS AND METHODS Three test materials-one porcine collagen matrix (p-CM), two acellular dermal matrices (porcine = p-ADM, allogenic = a-ADM)-and porcine native connective tissue (p-CTG) as a control material were examined for resorption in four solutions using a high-precision scale. The solutions were artificial saliva (AS) and simulated body fluid (SBF), both with and without collagenase (0.5 U/ml at 37 °C). In addition, the surface structures of CS were analyzed using a scanning electron microscope (SEM) before and after exposure to AS or SBF. The swelling behavior of CS was evaluated by measuring volume change and liquid absorption capacity in phosphate-buffered saline (PBS). Finally, the mechanical properties of CS and p-CTG were investigated using cyclic compression testing in PBS. RESULTS Solutions containing collagenase demonstrated high resorption rates with significant differences (p < 0.04) between the tested materials after 4 h, 8 h and 24 h, ranging from 54.1 to 100% after 24 h. SEM images revealed cross-linked collagen structures in all untreated specimens. Unlike a-ADM, the scaffolds of p-CM and p-ADM displayed a flake-like structure. The swelling ratio and fluid absorption capacity per area ranged from 13.4 to 25.5% among the test materials and showed following pattern: p-CM > a-ADM > p-ADM. P-CM exhibited higher elastic properties than p-ADM, whereas a-ADM, like p-CTG, were barely compressible and lost structural integrity under increasing pressure. CONCLUSIONS AND CLINICAL IMPLICATIONS Collagen scaffolds vary significantly in their physical properties, such as resorption and swelling behavior and elastic properties, depending on their microstructure and composition. When clinically applied, these differences should be taken into consideration to achieve the desired outcomes.
Collapse
Affiliation(s)
- Alex Solderer
- Division for Periodontology and Peri-Implant Diseases, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| | - Nicole Widmer
- Division for Periodontology and Peri-Implant Diseases, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Andrea Gubler
- Division for Periodontology and Peri-Implant Diseases, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Kai R Fischer
- Division for Periodontology and Peri-Implant Diseases, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Stefan P Hicklin
- Division for Periodontology and Peri-Implant Diseases, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Patrick R Schmidlin
- Division for Periodontology and Peri-Implant Diseases, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| |
Collapse
|
12
|
Abtahi S, Chen X, Shahabi S, Nasiri N. Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations. ACS MATERIALS AU 2023; 3:394-417. [PMID: 38089090 PMCID: PMC10510521 DOI: 10.1021/acsmaterialsau.3c00013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 03/22/2024]
Abstract
Lack of horizontal and vertical bone at the site of an implant can lead to significant clinical problems that need to be addressed before implant treatment can take place. Guided bone regeneration (GBR) is a commonly used surgical procedure that employs a barrier membrane to encourage the growth of new bone tissue in areas where bone has been lost due to injury or disease. It is a promising approach to achieve desired repair in bone tissue and is widely accepted and used in approximately 40% of patients with bone defects. In this Review, we provide a comprehensive examination of recent advances in resorbable membranes for GBR including natural materials such as chitosan, collagen, silk fibroin, along with synthetic materials such as polyglycolic acid (PGA), polycaprolactone (PCL), polyethylene glycol (PEG), and their copolymers. In addition, the properties of these materials including foreign body reaction, mechanical stability, antibacterial property, and growth factor delivery performance will be compared and discussed. Finally, future directions for resorbable membrane development and potential clinical applications will be highlighted.
Collapse
Affiliation(s)
- Sara Abtahi
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Xiaohu Chen
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| | - Sima Shahabi
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Noushin Nasiri
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
13
|
Wang H. Biomaterials in Medical Applications. Polymers (Basel) 2023; 15:polym15040847. [PMID: 36850130 PMCID: PMC9960308 DOI: 10.3390/polym15040847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Natural biomaterials are materials extracted from living organisms or their by-products [...].
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
14
|
Osorio R, Asady S, Toledano-Osorio M, Toledano M, Bueno JM, Martínez-Ojeda RM, Osorio E. Biomimetic Remineralization of an Extracellular Matrix Collagen Membrane for Bone Regeneration. Polymers (Basel) 2022; 14:polym14163274. [PMID: 36015534 PMCID: PMC9415104 DOI: 10.3390/polym14163274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Natural extracellular matrix (ECM) collagen membranes are frequently used for bone regeneration procedures. Some disadvantages, such as rapid degradation and questionable mechanical properties, limit their clinical use. These membranes have a heterologous origin and may proceed from different tissues. Biomineralization is a process in which hydroxyapatite deposits mainly in collagen fibrils of the matrices. However, when this deposition occurs on the ECM, its mechanical properties are increased, facilitating bone regeneration. The objective of the present research is to ascertain if different membranes from distinct origins may undergo biomineralization. Nanomechanical properties, scanning electron (SEM) and multiphoton (MP) microscopy imaging were performed in three commercially available ECMs before and after immersion in simulated body fluid solution for 7 and 21 d. The matrices coming from porcine dermis increased their nanomechanical properties and they showed considerable mineralization after 21 d, as observed in structural changes detected through SEM and MP microscopy. It is hypothesized that the more abundant crosslinking and the presence of elastin fibers within this membrane explains the encountered favorable behavior.
Collapse
Affiliation(s)
- Raquel Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Samara Asady
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
- Medicina Clínica y Salud Pública Programme, University of Granada, 18071 Granada, Spain
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
- Medicina Clínica y Salud Pública Programme, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-243-789
| | - Manuel Toledano
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Juan M. Bueno
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo (Ed. 34), 30100 Murcia, Spain
| | - Rosa M. Martínez-Ojeda
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo (Ed. 34), 30100 Murcia, Spain
| | - Estrella Osorio
- Medicina Clínica y Salud Pública Programme, University of Granada, 18071 Granada, Spain
| |
Collapse
|
15
|
Cosyn J, Eeckhout C, De Bruyckere T, Eghbali A, Vervaeke S, Younes F, Christiaens V. A multi-centre randomized controlled trial comparing connective tissue graft with collagen matrix to increase soft tissue thickness at the buccal aspect of single implants: 1-year results. J Clin Periodontol 2022; 49:911-921. [PMID: 35781692 DOI: 10.1111/jcpe.13691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022]
Abstract
AIM To compare connective tissue graft (CTG) with collagen matrix (CMX) in terms of increase in buccal soft tissue profile (BSP) at 1 year when applied at single implant sites. MATERIALS AND METHODS Patients with a single tooth gap in the anterior maxilla and horizontal mucosa defect were enrolled in a multi-centre RCT. All sites had a bucco-palatal bone dimension of at least 6 mm, received a single implant and an immediate implant restoration using a full digital workflow. Sites were randomly allocated to the control (CTG) or test group (CMX) to increase buccal soft tissue thickness. The primary outcome was the increase in BSP at 1 year when compared to the pre-operative situation based on superimposed digital surface models. The changes in BSP over time were registered at a buccal area of interest reaching from 0.5 mm below the soft tissue margin to 4 mm more apical. Secondary outcomes included patient-reported, clinical and aesthetic outcomes. RESULTS Thirty patients were included per group (control: 50% females, mean age 50.1; test: 53% females, mean age 48.2). The increase in BSP at 1 year was 0.98 mm (98.3% CI: 0.75 - 1.20) for CTG and 0.57 mm (98.3% CI: 0.34 - 0.79) for CMX. The mean difference of 0.41 mm (98.3% CI: 0.12 - 0.69) in favour of CTG was significant (p < 0.001). Based on an arbitrarily chosen threshold for success of 0.75 mm increase in BSP, 89.7% of the patients in the control group and 10% of the patients in the test group were successfully treated (OR = 77.90; 95% CI 13.52 - 448.80; p < 0.001). Sites treated with CMX demonstrated 0.89 mm (98.3% CI: 0.49 - 1.30) more shrinkage between postop and 1 year than sites treated with CTG. In addition, CMX resulted in significantly more marginal bone loss (0.39 mm; 95% CI 0.05- 0.74; p = 0.026) than CTG. There were no significant differences between the groups in terms of patients' aesthetic satisfaction (p = 0.938), probing depth (p = 0.917), plaque (p = 0.354), bleeding on probing (p = 0.783), midfacial recession (p = 0.915), Pink Esthetic Score (p = 0.121) and Mucosal Scarring Index (p = 0.965). CONCLUSION CTG remains the gold standard to increase soft tissue thickness at implant sites. Clinicians need to outweigh the benefits of CMX against considerable resorption of the graft.
Collapse
Affiliation(s)
- Jan Cosyn
- Ghent University, Faculty of Medicine and Health Sciences, Oral Health Sciences, Department of Periodontology and Oral Implantology, Corneel Heymanslaan 10, Ghent, Belgium
| | - Célien Eeckhout
- Ghent University, Faculty of Medicine and Health Sciences, Oral Health Sciences, Department of Periodontology and Oral Implantology, Corneel Heymanslaan 10, Ghent, Belgium
| | - Thomas De Bruyckere
- Ghent University, Faculty of Medicine and Health Sciences, Oral Health Sciences, Department of Periodontology and Oral Implantology, Corneel Heymanslaan 10, Ghent, Belgium
| | - Aryan Eghbali
- Ghent University, Faculty of Medicine and Health Sciences, Oral Health Sciences, Department of Periodontology and Oral Implantology, Corneel Heymanslaan 10, Ghent, Belgium
| | - Stijn Vervaeke
- Ghent University, Faculty of Medicine and Health Sciences, Oral Health Sciences, Department of Periodontology and Oral Implantology, Corneel Heymanslaan 10, Ghent, Belgium
| | - Faris Younes
- Ghent University, Faculty of Medicine and Health Sciences, Oral Health Sciences, Department of Periodontology and Oral Implantology, Corneel Heymanslaan 10, Ghent, Belgium
| | - Véronique Christiaens
- Ghent University, Faculty of Medicine and Health Sciences, Oral Health Sciences, Department of Periodontology and Oral Implantology, Corneel Heymanslaan 10, Ghent, Belgium
| |
Collapse
|
16
|
Effects on Tissue Integration of Collagen Scaffolds Used for Local Delivery of Gentamicin in a Rat Mandible Defect Model. Bioengineering (Basel) 2022; 9:bioengineering9070275. [PMID: 35877326 PMCID: PMC9312234 DOI: 10.3390/bioengineering9070275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Surgical site infections (SSIs) are a common complication following orthopedic surgery. SSIs may occur secondary to traumatic or contaminated wounds or may result from invasive procedures. The development of biofilms is often associated with implanted materials used to stabilize injuries and to facilitate healing. Regardless of the source, SSIs can be challenging to treat. This has led to the development of devices that act simultaneously as local antibiotic delivery vehicles and as scaffolds for tissue regeneration. The goal for the aforementioned devices is to increase local drug concentration in order to enhance bactericidal activity while reducing the risk of systemic side effects and toxicity from the administered drug. The aims of this study were to assess the effect of antibiotic loading of a collagen matrix on the tissue integration of the matrix using a rat mandibular defect model. We hypothesized that the collagen matrix could load and elute gentamicin, that the collagen matrix would be cytocompatible in vitro, and that the local delivery of a high dose of gentamicin via loaded collagen matrix would negatively impact the tissue–scaffold interface. The results indicate that the collagen matrix could load and elute the antimicrobial gentamicin and that it was cytocompatible in vitro with or without the presence of gentamicin and found no significant impact on the tissue–scaffold interface when the device was loaded with a high dose of gentamicin.
Collapse
|
17
|
Webb BCW, Glogauer M, Santerre JP. The Structure and Function of Next-Generation Gingival Graft Substitutes-A Perspective on Multilayer Electrospun Constructs with Consideration of Vascularization. Int J Mol Sci 2022; 23:5256. [PMID: 35563649 PMCID: PMC9099797 DOI: 10.3390/ijms23095256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
There is a shortage of suitable tissue-engineered solutions for gingival recession, a soft tissue defect of the oral cavity. Autologous tissue grafts lead to an increase in morbidity due to complications at the donor site. Although material substitutes are available on the market, their development is early, and work to produce more functional material substitutes is underway. The latter materials along with newly conceived tissue-engineered substitutes must maintain volumetric form over time and have advantageous mechanical and biological characteristics facilitating the regeneration of functional gingival tissue. This review conveys a comprehensive and timely perspective to provide insight towards future work in the field, by linking the structure (specifically multilayered systems) and function of electrospun material-based approaches for gingival tissue engineering and regeneration. Electrospun material composites are reviewed alongside existing commercial material substitutes', looking at current advantages and disadvantages. The importance of implementing physiologically relevant degradation profiles and mechanical properties into the design of material substitutes is presented and discussed. Further, given that the broader tissue engineering field has moved towards the use of pre-seeded scaffolds, a review of promising cell options, for generating tissue-engineered autologous gingival grafts from electrospun scaffolds is presented and their potential utility and limitations are discussed.
Collapse
Affiliation(s)
- Brian C. W. Webb
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada; (B.C.W.W.); (M.G.)
- Institute of Biomedical Engineering, University of Toronto, 164 Collage St Room 407, Toronto, ON M5S 3G9, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada; (B.C.W.W.); (M.G.)
| | - J. Paul Santerre
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada; (B.C.W.W.); (M.G.)
- Institute of Biomedical Engineering, University of Toronto, 164 Collage St Room 407, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
18
|
Biofunctionalization of Xenogeneic Collagen Membranes with Autologous Platelet Concentrate-Influence on Rehydration Protocol and Angiogenesis. Biomedicines 2022; 10:biomedicines10030706. [PMID: 35327506 PMCID: PMC8945896 DOI: 10.3390/biomedicines10030706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The aim of this study was to analyze possible interactions of different xenogeneic collagen membranes (CM) and platelet-rich fibrin (PRF). PH values were evaluated in the CM rehydration process with PRF, and their influence on angiogenesis was analyzed in vivo. Materials and Methods: Porcine (Bio-Gide®, Geistlich)- and bovine-derived collagen membranes (Symbios®, Dentsply Sirona) were biofunctionalized with PRF by plotting process. PRF in comparison to blood, saline and a puffer pH7 solution was analysed for pH-value changes in CM rehydration process in vitro. The yolk sac membrane (YSM) model was used to investigate pro-angiogenic effects of the combination of PRF and the respective CM in comparison to native pendant by vessel in-growth and branching points after 24, 48 and 72 h evaluated light-microscopically and by immunohistochemical staining (CD105, αSMA) in vivo. Results: Significantly higher pH values were found at all points in time in PRF alone and its combined variants with Bio-Gide® and Symbios® compared with pure native saline solution and pH 7 solution, as well as saline with Symbios® and Bio-Gide® (each p < 0.01). In the YSM, vessel number and branching points showed no significant differences at 24 and 48 h between all groups (each p > 0.05). For PRF alone, a significantly increased vessel number and branching points between 24 and 48 h (each p < 0.05) and between 24 and 72 h (each p < 0.05) was shown. After 72 h, CM in combination with PRF induced a statistically significant addition to vessels and branching points in comparison with native YSM (p < 0.01) but not vs. its native pendants (p > 0.05). Summary: PRF represents a promising alternative for CM rehydration to enhance CM vascularization.
Collapse
|
19
|
Guarnieri R, Reda R, Di Nardo D, Miccoli G, Zanza A, Testarelli L. In Vitro Direct and Indirect Cytotoxicity Comparative Analysis of One Pre-Hydrated versus One Dried Acellular Porcine Dermal Matrix. MATERIALS 2022; 15:ma15051937. [PMID: 35269168 PMCID: PMC8911924 DOI: 10.3390/ma15051937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023]
Abstract
Aim: The aim of the present study was to compare the direct and indirect cytotoxicity of a porcine dried acellular dermal matrix (PDADM) versus a porcine hydrated acellular dermal matrix (PHADM) in vitro. Both are used for periodontal and peri-implant soft tissue regeneration. Materials and methods: Two standard direct cytotoxicity tests—namely, the Trypan exclusion method (TEM) and the reagent WST-1 test (4-3-[4-iodophenyl]-2-[4-nitrophenyl]-2H-[5-tetrazolio]-1,3-benzol-desulphonated)—were performed using human primary mesenchymal stem cells (HPMSCs) seeded directly onto a PDADM and PHADM after seven days. Two standard indirect cytotoxicity tests—namely, lactate dehydrogenase (LTT) and MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazoliumbromide)—were performed using HPMSCs cultivated in eluates from the matrices incubated for 0.16 h (10 min), 1 h, and 24 h in a serum-free cell culture medium. Results: The WST and the TEM tests revealed significantly lower direct cytotoxicity values of HPMSCs on the PHADM compared with the PDADM. The indirect cytotoxicity levels were low for both the PHADM and PDADM, peaking in short-term eluates and decreasing with longer incubation times. However, they were lower for the PHADM with a statistically significant difference (p < 0.005). Conclusions: The results of the current study demonstrated a different biologic behavior between the PHADM and the PDADM, with the hydrated form showing a lower direct and indirect cytotoxicity.
Collapse
Affiliation(s)
- Renzo Guarnieri
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.G.); (R.R.); (G.M.); (A.Z.); (L.T.)
- Private Periodontal Implant Practice, 31100 Treviso, Italy
| | - Rodolfo Reda
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.G.); (R.R.); (G.M.); (A.Z.); (L.T.)
| | - Dario Di Nardo
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.G.); (R.R.); (G.M.); (A.Z.); (L.T.)
- Correspondence:
| | - Gabriele Miccoli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.G.); (R.R.); (G.M.); (A.Z.); (L.T.)
| | - Alessio Zanza
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.G.); (R.R.); (G.M.); (A.Z.); (L.T.)
| | - Luca Testarelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.G.); (R.R.); (G.M.); (A.Z.); (L.T.)
| |
Collapse
|
20
|
Bacakova L, Novotna K, Hadraba D, Musilkova J, Slepicka P, Beran M. Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation. Polymers (Basel) 2022; 14:polym14030602. [PMID: 35160591 PMCID: PMC8838484 DOI: 10.3390/polym14030602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022] Open
Abstract
Collagen, as the main component of connective tissue, is frequently used in various tissue engineering applications. In this study, porous sponge-like collagen scaffolds were prepared by freeze-drying and were then mineralized in a simulated body fluid. The mechanical stability was similar in both types of scaffolds, but the mineralized scaffolds (MCS) contained significantly more calcium, magnesium and phosphorus than the unmineralized scaffolds (UCS). Although the MCS contained a lower percentage (~32.5%) of pores suitable for cell ingrowth (113–357 μm in diameter) than the UCS (~70%), the number of human-osteoblast-like MG-63 cells on days 1, 3 and 7 after seeding was higher on MCS than on UCS, and the cells penetrated deeper into the MCS. The cell growth in extracts prepared by eluting the scaffolds for 7 days in a cell culture medium was also markedly higher in the MCS extracts, as indicated by real-time monitoring in the sensory xCELLigence system for 7 days. From this point of view, MCS are more promising for bone tissue engineering than UCS. However, MCS evoked a more pronounced inflammatory response than UCS, as indicated by the production of tumor necrosis factor-alpha (TNF-α) in macrophage-like RAW 264.7 cells in cultures on these scaffolds.
Collapse
Affiliation(s)
- Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.N.); (D.H.); (J.M.)
- Correspondence: ; Tel.: +420-2-9644-3743
| | - Katarina Novotna
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.N.); (D.H.); (J.M.)
| | - Daniel Hadraba
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.N.); (D.H.); (J.M.)
| | - Jana Musilkova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.N.); (D.H.); (J.M.)
| | - Petr Slepicka
- Department of Solid State Engineering, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic;
| | - Milos Beran
- Food Research Institute Prague, Radiova 7, 102 31 Prague 10, Czech Republic;
| |
Collapse
|
21
|
Vallecillo-Rivas M, Toledano-Osorio M, Vallecillo C, Toledano M, Osorio R. The Collagen Origin Influences the Degradation Kinetics of Guided Bone Regeneration Membranes. Polymers (Basel) 2021; 13:polym13173007. [PMID: 34503047 PMCID: PMC8433692 DOI: 10.3390/polym13173007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/21/2021] [Accepted: 09/03/2021] [Indexed: 01/28/2023] Open
Abstract
Collagen membranes are currently the most widely used membranes for guided bone regeneration; however, their rapid degradation kinetics means that the barrier function may not remain for enough time to permit tissue regeneration to happen. The origin of collagen may have an important effect on the resistance to degradation. The aim of this study was to investigate the biodegradation pattern of five collagen membranes from different origins: Biocollagen, Heart, Evolution X-fine, CopiOs and Parasorb Resodont. Membranes samples were submitted to different degradation tests: (1) hydrolytic degradation in phosphate buffer saline solution, (2) bacterial collagenase from Clostridium histolyticum solution, and (3) enzyme resistance using a 0.25% porcine trypsin solution. Immersion periods from 1 up to 50 days were performed. At each time point, thickness and weight measurements were performed with a digital caliper and an analytic microbalance, respectively. ANOVA and Student–Newman–Keuls tests were used for comparisons (p < 0.05). Differences between time-points within the same membranes and solutions were assessed by pair-wise comparisons (p < 0.001). The Evolution X-fine collagen membrane from porcine pericardium attained the highest resistance to all of the degradation tests. Biocollagen and Parasorb Resodont, both from equine origin, experienced the greatest degradation when immersed in PBS, trypsin and C. histolyticum during challenge tests. The bacterial collagenase solution was shown to be the most aggressive testing method.
Collapse
Affiliation(s)
- Marta Vallecillo-Rivas
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, 18071 Granada, Spain
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-243-789
| | - Cristina Vallecillo
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, 18071 Granada, Spain
| | - Manuel Toledano
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
| | - Raquel Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
| |
Collapse
|